首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
医学图像分割是医学图像定量分析的关键步骤之一,因此病灶分割对临床诊断有重要意义。针对传统分割方法中存在的过多依赖医学领域的先验知识和人为评估错误等问题,提出了基于深度学习的病灶分割方法。本文总结了卷积神经网络算法应用于医学图像病灶分割的研究进展。首先,论述卷积神经网络的基本结构及其常用架构;其次介绍深度学习在医学图像病灶分割中的应用,其中包括肺结节的检测和分类,脑肿瘤分割和乳腺病灶的分割;最后,分析了目前该研究中存在的优缺点并对深度学习的发展方向进行展望。  相似文献   

2.
智能医学图像分割方法正在快速地发展和应用,但面临着域转移挑战,即由于源域和目标域数据分布不同导致算法性能下降。为此,本文提出了一种基于生成对抗网络(GAN)的无监督端到端域自适应医学图像分割方法。设计网络训练调整模型,由分割网络和鉴别网络组成。分割网络以残差模块为基本模块,增加对特征的复用能力,降低模型优化难度,并将分割损失与对抗损失相结合,在鉴别网络的作用下学习图像特征层面的跨域特征。鉴别网络采用卷积神经网络,并带入源域标签训练,用来区分生成网络的分割结果是来自源域或目标域,整个训练过程无监督。使用膝关节磁共振(MR)图像公开数据集和采集的临床数据集进行实验,与经典的特征级域自适应方法和图像级域自适应方法对比,所提方法的平均戴斯相似性系数(DSC)分别提高了2.52%与6.10%。本文方法有效提高了分割方法的域自适应能力,显著提高了对胫骨和股骨的分割精度,可以较好地解决磁共振图像分割中的域转移问题。  相似文献   

3.
目的 依据临床诊断对MRI脑图像自动分割算法的需求,基于卷积神经网络(convolutional neural networks,CNN)设计了一种端到端的深度监督全卷积网络(deeply supervised fully convolutional network,DS-FCN)以解决脑图像中脑组织的自动分割问题。方法 针对三维MRI脑图像,先将体数据切割成二维图像切片,在FCN网络结构的基础上,加入了深度监督机制,即在特征提取的多层级结构中提前得到损失值反馈。结果 以三维MRI脑图像公开数据集LPBA-40为实验数据,56类脑组织的准确率(precision rate)、召回率(recall rate)、F1评估值分别为74. 40%、74. 82%、73. 75%,测试速率为152 ms。结论 通过引入深度监督结构,改进后的DS-FCN在MRI脑组织分割任务中得到了更精准的分割效果。  相似文献   

4.
将深度学习算法应用于核磁共振(MR)图像分割时,必需以大量经标注后图像作为训练集的数据支撑。然而,MR图像的特殊性导致采集大量的图像数据较困难,制作大量的标注数据成本高。为降低MR图像分割对大量标注数据的依赖,本文提出了一种用于小样本MR图像分割的元U型网络(Meta-UNet),能够利用少量的图像标注数据完成MR图像分割任务,并获得良好的分割结果。其具体操作为:通过引入空洞卷积对U型网络(U-Net)进行改进,增加网络模型感受野从而提高模型对不同尺度目标的灵敏度;通过引入注意力机制提高模型对不同尺度目标的适应性;通过引入元学习机制,并采用复合损失函数对模型训练进行良好的监督和有效的引导。本文利用提出的Meta-UNet模型,在不同分割任务上进行训练,然后用训练好的模型在全新的分割任务上进行评估,实现了目标图像的高精度分割。新的分割方法比起常用的无监督医学图像配准分割方法——体素变形网络(VoxelMorph)、数据增强医学图像分割方法——转换学习数据增强模型(DataAug)和基于标签转移的医学图像分割方法——标签转移网络(LT-Net)三种模型平均戴斯相似性系数(DSC)有一定提高...  相似文献   

5.
随着网络结构的迅速发展,卷积神经网络(CNN)在图像分析领域已成为一种领先的机器学习工具。因此,基于CNN的语义分割也已成为医学图像理解中的一项关键高级任务。本文综述了基于CNN的语义分割在医学图像领域中的研究进展,回顾了多种经典的语义分割方法及其架构变化,并重点介绍了它们在该领域的贡献和意义。在此基础上,进一步总结和讨论了它们在一些重要的生理与病理解剖结构分割中的应用。最后,本文讨论了语义分割在医学图像领域应用将遭遇的挑战和潜在发展方向。  相似文献   

6.
图像分割在医学图像处理中的应用   总被引:3,自引:0,他引:3  
卫阿盈  杨磊 《医学信息》2005,18(12):1629-1631
目的讨论了医学图像处理中图像分割的几种算法。方法讲述了几种图像分割的算法,并应用于实际的医学图像处理中。结果每种图像分割算法与图像处理都有各自不同的处理效果,各有优、缺点。结论在具体实际情况的使用中,根据不同的情况采用不同的分割算法,以达到更好的效果。  相似文献   

7.
目的:常规的交互式图像分割算法通常只能对单个目标进行分割,或对多个目标的分割比较繁琐。针对该问题,本文期望提出一种基于随机游走算法的改进算法,以实现离散多目标的快速分割。方法:随机游走算法是使用最为广泛的交互式图像分割方法之一,在各类图像的分割中表现良好。而对于目标呈现离散分布的图像,该方法虽然也可以对其进行分割,但需要用户在各个离散的目标区域均选择种子点,因此分割效率低下。针对该问题,本文将初始种子点的灰度信息作为先验,初步估计待分割图像中像素点隶属于各类种子点的概率,并将其作为非图像空间项加入随机游走算法的目标函数,引导图像分割。使用改进方法分别对人工合成图像和临床医学图像进行分割,验证本文算法。结果:改进方法在减少交互的情况下,能有效地对人工合成图像和临床医学图像中的多个离散目标实现全部分割,且分割结果明显优于原始的随机游走算法。结论:本文提出的改进方法能有效地实现离散目标的医学图像分割,并且简化了分割的交互过程。  相似文献   

8.
作为确定病灶与诊断的重要基础,医学图像分割已成为生物医学领域中极其重要的热门研究领域之一,其中基于全卷积神经网络和U型网络(U-net)等神经网络的医学图像分割算法得到越来越多研究人员的重视。目前,医学图像分割算法应用于直肠癌诊断的研究报道较少,且已有的研究对直肠癌的分割结果精度不高。本文提出了一种结合图像裁剪和预处理方法的编码—解码卷积网络模型。该模型在U型网络的基础上,借鉴残差网络思想,用残差块代替传统的卷积块,有效避免了梯度消失的问题。此外,本文还采用了图像增广的方法提高了所提模型的泛化能力,并在"泰迪杯"数据挖掘挑战赛所提供的数据集进行测试。测试结果表明,本文提出的基于残差块的改进U型网络模型结合图像裁剪预处理,可以大大提高直肠癌的分割精度,得到的戴斯系数在验证集上达到0.97。  相似文献   

9.
卷积神经网络(CNN)是机器学习研究中的热点,在医学图像应用中具有一定价值。本文首先介绍了CNN基本原理,其次综述了其在网络结构的改进:在模型结构方面,总结了CNN的11种经典模型,并以时间顺序梳理发展进程;在结构优化方面,从CNN的5个方面(输入层、卷积层、下采样层、全连接层以及整个网络)总结研究进展。然后,对学习算法从优化和融合两个方面进行归纳:优化算法方面,根据优化目的(提高准确率、防止过拟合、防止局部最值、提高收敛速度)梳理算法的进展;方法融合方面,分别从输入层、卷积层、下采样层、全连接层和输出层共5个角度进行归纳。最后,将CNN映射到医学图像领域,结合计算机辅助诊断探讨CNN在医学图像中的应用。本文对CNN进行了较为全面系统地总结,对CNN的研究发展具有积极意义。  相似文献   

10.
肝脏肿瘤严重危害着全人类的生命健康。近年来,随着深度学习的快速发展,涌现了许多使用腹部计算机断层扫描(computed tomography,CT)图像进行肝脏肿瘤分割的深度学习方法,这些方法的应用对于临床上实现肝脏肿瘤的计算机辅助诊断具有十分重要的意义。为此,本文对深度学习方法在肝脏肿瘤CT图像分割中的应用进行了归纳,将各种卷积神经网络(convolutional neural networks,CNN)分为二维(two-dimensional,2D)、三维(three-dimensional,3D)和2.5维(2.5-dimensional,2.5D)卷积神经网络。此外,本文总结了各类网络的优缺点以及改进方法,为深度学习在肝脏肿瘤分割中的应用提供了有益参考。  相似文献   

11.
医学图像自动分割具有广泛和重要临床应用价值,特别是病灶、脏器的自动分割。基于传统图像处理方法的医学图像分割仅能利用浅层结构模型的浅层特征来识别感兴趣区域,并且需要大量人工干预。而基于机器学习的分割方法在模型建模时存在局限性且缺乏可解释性。本研究提出一种基于Transformer和卷积神经网络结合形态结构约束的三维医学图像分割方法。编码器中利用卷积神经网络和Transformer构建U型网络结构提取多重特征;解码器中采用上采样并通过跳跃连接将不同层次的特征拼接在一起;加入形态结构约束模块,通过提取病灶和脏器等分割目标的形状信息,以增强模型可解释性,并采用最大池化和平均池化操作,对经过卷积神经网络得到的结果进一步提取有代表性的特征,作为形态结构模块的输入,最终提高分割结果的准确性。在公开数据集Synapse和ACDC上利用评价指标Dice相似系数(DSC)和Hausdorff距离(HD)验证所提出算法的有效性。其中,在Synapse数据集上,18例数据作为训练集,12例数据作为测试集;在ACDC数据集上,70例数据作为训练集,10例数据作为验证集,20例数据作为测试集。实验结果表明,在Sy...  相似文献   

12.
近年来,随着医学影像技术的快速发展,医学图像分析步入大数据时代,如何从海量的医学图像数据中挖掘出有用信息,对医学图像识别带来巨大的挑战。深度学习是机器学习的一个新领域,传统的机器学习方法不能有效地挖掘到医学图像中蕴含的丰富信息,而深度学习通过模拟人脑建立分层模型,具有强大的自动特征提取、复杂模型构建以及高效的特征表达能力,更重要的是深度学习方法能从像素级的原始数据中逐级提取从底层到高层的特征,这为解决医学图像识别面临的新问题提供了新思路。首先阐述深度学习方法,列举深度学习方法的三种常见的实现模型,并介绍深度学习的训练过程;随后总结了深度学习方法在疾病检测与分类和病变识别两方面的应用情况,以及深度学习应用在医学图像识别中的两个共性问题;最后对深度学习在医学图像识别中存在的问题进行分析及展望.  相似文献   

13.
医学图像分割可以为临床诊疗和病理学研究提供可靠的依据,并能辅助医生对病人的病情做出准确的判断。基于深度学习的分割网络的出现解决了传统自动分割方法鲁棒性不强、准确率低等问题。U-Net凭借其出色的性能在众多的分割网络中脱颖而出,研究者以U-Net为基础相继提出了多种改进变体。以U-Net网络及其变体为主线,首先详细介绍U-Net的网络结构及常用改进方法;然后根据分割对象的不同,将U-Net变体网络进一步划分为泛用型分割网络及特定型分割网络,并就其在医学图像分割中的研究进展进行论述;最后,分析了目前研究中工作尚存在的难点与问题,并对今后的发展方向进行展望。  相似文献   

14.
Journal of Digital Imaging - Developing a convolutional neural network (CNN) for medical image segmentation is a complex task, especially when dealing with the limited number of available labelled...  相似文献   

15.
由于医学图像数据爆炸式增长,传统依靠医生人工对医学图像进行分析诊断,不仅工作效率低下,工作量大,还容易误诊、漏诊。随着人工智能(artificial intelligence,AI)技术的发展与应用,机器学习(machine learning,ML),尤其是深度学习(deep learning,DL)在医学图像分析领域发挥着越来越重要的作用。本文对DL在医学图像自动分割和分类识别中的研究进展进行综述,为DL在解决医学图像分析诊断方面提供有益参考。  相似文献   

16.
Deep learning is an important new area of machine learning which encompasses a wide range of neural network architectures designed to complete various tasks. In the medical imaging domain, example tasks include organ segmentation, lesion detection, and tumor classification. The most popular network architecture for deep learning for images is the convolutional neural network (CNN). Whereas traditional machine learning requires determination and calculation of features from which the algorithm learns, deep learning approaches learn the important features as well as the proper weighting of those features to make predictions for new data. In this paper, we will describe some of the libraries and tools that are available to aid in the construction and efficient execution of deep learning as applied to medical images.  相似文献   

17.
针对目前大多数医学图像分割方法难以对多模态图像进行特征融合进而完成精确分割任务的问题,提出一种基于编码器-解码器总体架构的多模态脑瘤图像特征融合策略。首先,编码阶段利用孪生网络对不同模态数据进行特征提取,孪生网络结构参数和权值共享的特性可有效减少网络参数量;其次,在进行特征提取的编码阶段加入级间融合,保留不同模态的共性特征的同时强调其互补特征;然后,在解码阶段引入密集跳跃连接思想,最大程度结合不同尺度特征图的低级细节和高级语义信息;最后,设计混合损失函数,在网络生成的预测图受真值图监督的同时让最高级特征融合图也受同倍下采样真值图的监督。所提方法在公开数据集BraTS2019上进行实验,并用图像分割常用的5种指标进行评估。在脑瘤及水肿区域分割任务中得到平均Dice系数为0.884,阳性预测率为0.870,灵敏度为0.898,豪斯多夫距离为3.917,平均交并比达到79.1%,与较先进的算法U-Net和PA-Net相比多项指标均有提升。实验结果说明,级间融合和层间跳跃连接的加入对多模态医学图像的分割效果有所提升,在医学上对脑肿瘤磁共振图像进行病变区域分割具有重要的应用价值和理论意义。  相似文献   

18.
医学图像融合方法可以将有用的信息整合到一张图上,提高单张图像的信息量。对多模态医学图像进行融合时,如何对图像进行有效的变换,提取到不同图像中独有的特征,并施以适当的融合规则是医学图像融合领域研究的重点。近年随着深度学习的快速发展,深度学习被广泛应用于医学图像领域,代替传统方法中的一些人工操作,并在图像表示、图像特征提取以及融合规则的选择方面显示出独特优势。本文针对基于深度学习的医学图像融合进展予以探讨,介绍了卷积神经网络、卷积稀疏表示、深度自编码和深度信念网络这些常用于医学图像融合的框架,对一些应用于融合过程不同步骤的深度学习方法进行分析和总结,最后,分析了当前基于深度学习的融合方法的不足并展望了未来的研究方向。  相似文献   

19.
用神经网络进行超声医学图像分割   总被引:4,自引:0,他引:4  
分割问题是超声心脏图像多维重建中的一大难题,本文研究超声心脏图像分割的自组织神经网络方法,这是一种无监督的分割方法,通过自组织神经网络的自动聚类分割,实验证明,本文方法优于传统的K-means方法。  相似文献   

20.
目的:为了满足临床新冠肺炎检测的实际需求,提出一种基于轻量级人工神经网络的新冠肺炎CT新型识别技术。方法:首先,选取目前公开的所有新冠肺炎CT图像数据集,经过图像亮度规范化和数据集清洗后作为训练数据,通过大样本提高深度学习的泛化能力;其次,采用GhostNet轻量级网络简化网络参数,使深度学习模型能够在医用计算机上运行,提高新冠肺炎CT诊断的效率;再次,在网络输入中加入肺部区域分割图像,进一步提高新冠肺炎CT诊断的准确性;最后,提出加权交叉熵损失函数减小漏诊率。结果:在本研究构建的数据集上进行测试,所提出方法的精确率、召回率、准确率和F1值分别为83%、96%、90%和88%,且在医用计算机上耗时为236 ms。结论:本研究提出方法的效率和准确性均优于其他对比算法,能较好地适应新冠肺炎诊断的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号