首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate cerebral injury in the monkey due to transient ischemia, monkeys were each subjected to temporary occlusion of eight (bilateral common carotid, internal and external carotid, and vertebral) major arteries. After 0 (control), 5, 10, 13, 15, and 18 min occlusion, blood flow was restored. The monkeys were sacrificed by perfusion fixation 5 days after the operation, and all brain regions were then histologically examined for ischemic neuronal changes induced by the occlusion. The amplitude of EEG signals from skull and scalp became almost isoelectric within 1-6 min after the onset of occlusion. The EEG signals from the hippocampus were markedly attenuated within 1-4 min, although they did not become completely isoelectric. Blood pressure was significantly increased after 10-min ischemia. Five-min occlusion produced no ischemic neuronal changes except a slight increment of glial cells in the striatum and III, V, and VI layers of the neocortices. After 10- to 15-min occlusion, there were ischemic cell changes restricted exclusively to the CA1 subfield of the hippocampus. Eighteen-min occlusion produced more prominent ischemic neuronal damage in the CA1 subfield of the hippocampus, but ischemic neuronal damage was no longer confined to the hippocampus. These results suggest that only the CA1 subfield of the monkey hippocampus could be damaged by mild ischemic insult. We demonstrate that the limited lesion of the hippocampus, especially the CA1 subfield, after 10- to 15-min occlusion of eight arteries in the monkey, produces a model equivalent to human amnesia caused by transient ischemic insult.  相似文献   

2.
Preconditioning the brain with sublethal ischemia protects against neuronal damage following subsequent ischemic insult. Using [3H]inositol 1,4,5-triphosphate (IP3), [3H]phorbol 12,13-dibutyrate (PDBu), [3H]cyclic adenosine monophosphate (cAMP) and [3H]rolipram, we performed quantitative autoradiography to determine postischemic alterations in second-messenger systems in the gerbil hippocampus following preconditioning the brain with sublethal ischemia. At 7 days of reperfusion, no alterations were observed in brains subjected to 2 min of forebrain ischemia which produced no neuronal damage. However, 3-min ischemia caused a 75% reduction in [3H]IP3 binding (p < 0.01 vs. control) and 15-25% reductions in [3H]forskolin (p < 0.01 vs. control), [3H]cAMP (p < 0.05 vs. control), and [3H]rolipram (p < 0.01 vs. control) binding in the CA1 subfield coincident with histopathological CA1 pyramidal cell destruction, but no significant alterations in [3H]PDBu binding. Preconditioning the brain with 2 min of ischemia followed by 4 days of reperfusion prevented both histopathological cell death and the reductions in binding following subsequent 3 min of ischemia. Interestingly, [3H]IP3 and [3H]rolipram binding in CA1 showed a transient reduction, by 30% and 20% (both p < 0.01 vs. control), respectively, in the early reperfusion period. This downregulation of the IP3 system may play a role in the protection against cell death.  相似文献   

3.
The protective effects of protein kinase inhibitors and a calmodulin kinase inhibitor (W-7) against ischemic neuronal damage were examined in the CA1 subfield of the hippocampus. Staurosporine, KT5720, and KT5822 were used as inhibitors of protein kinase C (PKC), cyclic AMP-dependent protein kinase, and cyclic GMP-dependent protein kinase, respectively. All test compounds were injected topically into the CA1 subfield of the hippocampus. In the gerbil ischemia model, staurosporine (0.1-10 ng) administered 30 min before ischemia prevented neuronal damage in a dose-dependent manner. However, KT5720, KT5822, and W-7 were ineffective, even at a dose of 10 ng. In the rat ischemia model, staurosporine (10 ng) also prevented neuronal damage when administered before ischemic insult, although staurosporine administered 10 or 180 min after recirculation was ineffective. These results suggest the involvement of PKC in CA1 pyramidal cell death after ischemia and that the fate of vulnerable CA1 pyramidal cells through PKC-mediated processes could be determined during the early recirculation period.  相似文献   

4.
Selective vulnerability in the gerbil hippocampus following transient ischemia   总被引:23,自引:0,他引:23  
Summary Following brief ischemia, the Mongolian gerbil is reported to develop unusual hippocampal cell injury (Brain Res 239:57–69, 1982). To further clarify this hippocampal vulnerability, gerbils were subjected to ischemia for 3, 5, 10, 20, and 30 min by bilateral occlusion of the common carotid arteries. They were perfusion-fixed after varying intervals of survival time ranging from 3 h up to 7 days. Following brief ischemia (5–10min), about 90% of the animals developed typical hippocampal damage. The lesion was present throughout the extent of the dorsal hippocampus, whereas damage outside the hippocampus was not observed. Each sector of the hippocampus showed different types of cell reaction to ischemia. Ischemic cell change was seen in scattered CA4 neurons, and reactive change was found in CA2, whereas CA1 pyramidal cells developed a strikingly slow cell death process. Ischemia for 3 min did not produce hippocampal lesion in most cases. Following prolonged ischemia (20–30min), brain injury had a wide variety in its extent and distribution. These results revealed that the gerbil brief ischemia model can serve as an excellent, reliable model to study the long-known hippocampal selective vulnerability to ischemia. Delayed neuronal death in CA1 pyramidal cells was confirmed after varying degrees of ischemic insult. These findings demonstrated that the pathology of neuronal injury following brief ischemia was by no means uniform nor simple.  相似文献   

5.
'Ischemic tolerance' phenomenon detected in various brain regions.   总被引:34,自引:0,他引:34  
We investigated the effects of mild and non-lethal ischemic insult on neuronal death following subsequent lethal ischemic stress in various brain regions, using a gerbil model of bilateral cerebral ischemia. Single 10-min ischemia consistently caused neuronal damage in the hippocampal CA1, CA2, CA3 and CA4, layer III/IV of the cerebral cortex, dorsolateral part of the caudoputamen and ventrolateral part of the thalamus. On the other hand, in double ischemia groups, 2-min ischemic insult 2 days before 10-min ischemia exhibited significant protection in the CA1 and CA3 of the hippocampus, the cerebral cortex, the caudoputamen and the thalamus. Five-min ischemic insult 2 days before 10-min ischemia also showed protective effect in the same areas as those of 2-min ischemia except for the CA1 region of the hippocampus, while 1-min ischemic insult exhibited no protective effect in any brain regions. In the immunoblot analysis, both 2- and 5-min ischemia caused increased synthesis of heat shock protein 72 (HSP 72) in the hippocampus, but 1-min ischemia did not. The present study demonstrated that the 'ischemic tolerance' phenomenon was widely found in the brain and also suggested that ischemic treatment severe enough to cause HSP 72 synthesis might be needed for induction of 'ischemic tolerance'.  相似文献   

6.
We investigated the effects of mild and non-lethal ischemic insult on neuronal death following subsequent lethal ischemic stress in various brain regions, using a gerbil model of bilateral cerebral ischemia. Single 10-min ischemia consistently caused neuronal damage in the hippocampal CA1, CA2, CA3 and CA4, layer III/IV of the cerebral cortex, dorsolateral part of the caudoputamen and ventrolateral part of the thalamus. On the other hand, in double ischemia groups, 2-min ischemic insult 2 days before 10-min ischemia exhibited significant protection in the CA1 and CA3 of the hippocampus, the cerebral cortex, the caudoputamen and the thalamus. Five-min ischemic insult 2 days before 10-min ischemia also showed protective effect in the same areas as those of 2-min ischemia except for the CA1 region of the hippocampus, while 1-min ischemic insult exhibited no protective effect in any brain regions. In the immunoblot analysis, both 2- and 5-min ischemia caused increased synthesis of heat shock protein 72 (HSP 72) in the hippocampus, but 1-min ischemia did not. The present study demonstrated that the ‘ischemic tolerance’ phenomenon was widely found in the brain and also suggested that ischemic treatment severe enough to cause HSP 72 synthesis might be needed for induction of ‘ischemic tolerance’.  相似文献   

7.
Preconditioning the brain with sublethal ischemia induces tolerance to subsequent ischemic insult. Using [3H]quinuclidinyl benzilate (QNB), [3H]MK 801, [3H]cyclohexyladenosine, [3H]muscimol, and [3H]PN200-110, we investigated the alterations in neurotransmitter receptor and calcium channel binding in the gerbil hippocampus following ischemia with or without preconditioning. Two-minute forebrain ischemia, which produced no neuronal damage, resulted in no alterations in binding except for a slight reduction in [3H]QNB binding in the CA1 subfield. Three-minute ischemia destroyed the majority of CA1 pyramidal cells and caused, in CA1, reductions in binding of all ligands used. Preconditioning with 2-min ischemia followed by 4 days of reperfusion protected against CA1 neuronal damage and prevented the reductions in binding although [3H]QNB and [3H]PN200-110 binding transiently decreased in the early reperfusion period, suggesting down-regulation. Thus, preconditioning protects against damage to the neurotransmission system as well as histopathological neuronal death.  相似文献   

8.
在大鼠四血管夹闭前脑缺血模型上,观察了侧脑室给予钾通道阻断剂四乙基铵(TEA)和4-氨基吡啶(4-AP)对脑缺血后海马CA1区锥体神经元迟发性死亡的保护作用。结果发现:再灌流30min后给予TEA组CA1区存活的锥体细胞数明显高于生理盐水对照组,而再灌流30min后给予4-AP组和缺血前30min给予TEA组的存活细胞数则与生理盐水对照组无明显差别。表明再灌流后给予TEA对脑缺血诱导的海马CA1区锥体神经元死亡具有明显的保护作用,提示钾通道可能在缺血后海马CA1区锥体细胞的迟发性死亡中发挥重要的作用。  相似文献   

9.
Gu Z  Jiang Q  Zhang G 《Brain research》2001,901(1-2):79-84
To investigate the effect of the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) on cerebral ischemic injury, temporospatial alterations of active (diphosphorylated) ERK1/2 immunoreactivity in hippocampus was examined. Western blot showed that diphosphorylated ERK1/2 were decreased at 10 min of cerebral ischemia but increased rapidly (within 2 min) and transiently (within 4 h) during reperfusion. Immunohistochemistry showed that little diphosphorylated ERK1/2 immunoreactivity was seen in CA1 pyramidal cell bodies after ischemia, while strong immunoreactivity were seen in neuronal bodies in CA3/DG and in fiber systems in both CA1 and CA3 regions. Cerebral ventricular infusion of PD98059, a specific inhibitor of ERK kinase, completely prevented ERK1/2 activation after ischemia but had no effect on the survival of pyramidal cells in CA1 subfield. The results suggest that ERK1/2 activation in hippocampus after brain ischemia may not interfere with the postischemic cell death in CA1 region.  相似文献   

10.
沙鼠脑缺血耐受的组织学变化及HSP在其中的作用   总被引:6,自引:0,他引:6  
目的 :观察脑缺血耐受时的组织学变化及 HSP在其中的作用。方法 :通过 HE染色观察脑缺血耐受时的组织学变化 ,并通过免疫组化染色 ,了解 HSP70及 HSP2 7在其中的作用。结果 :一次性 5分钟缺血后 7天海马 CA1区神经元大多坏死 ,若在缺血前给予 2分钟的缺血预处理 ,该区神经元大多保留 ,表现出明显的保护作用。只给一次性 5分钟缺血 ,海马 CA1区神经元无 HSP70染色。若在缺血前给予预处理 ,海马 CA1区神经元可见明显 HSP70染色。而HSP2 7主要在胶质细胞表达 ,海马区的神经元未见其表达。结论 :缺血前给予预处理对以后的缺血有保护作用 ;在缺血耐受过程中 ,HSP70表达出一定的保护作用。  相似文献   

11.
Using [3H]inositol 1,4,5-triphosphate (IP3), [3H]phorbol 12,13-dibutyrate (PDBu) and [3H]forskolin, we performed quantitative autoradiography to determine sequential alterations in second-messenger systems in the gerbil hippocampus following repeated brief ischemic insults. Changes following three 2-min ischemic insults were compared with those following single 2- or 6-min ischemia. [3H]IP3 binding was extremely sensitive to ischemic insult, and more than 80% of the binding sites were lost after destruction of CA1 pyramidal cells following 6-min ischemia and three 2-min ischemic insults. Furthermore, a 30% reduction was observed after 2-min ischemia which leads to no neuronal loss. [3H]PDBu binding in the CA1 subfield decreased by 1 day after three 2-min ischemic insults and by 4 days after 6-min ischemia, and 40-50% reductions were observed at 1 month. In contrast, [3H]forskolin binding was relatively preserved. [3H]PDBu and [3H]forskolin binding transiently increased early in the reperfusion period. We also observed a difference in the pattern and severity of alterations between repeated ischemic insults and single ischemia.  相似文献   

12.
H Kato  T Araki  H Hara  K Kogure 《Brain research》1991,553(1):33-38
We performed quantitative autoradiography to determine sequential alterations in the binding of muscarinic cholinergic and adenosine A1 receptors and of an L-type calcium channel blocker in the gerbil hippocampus following repeated brief ischemic insults. [3H]Quinuclidinyl benzilate (QNB). [3H]cyclohexyladenosine (CHA) and [3H]PN200-110 were used to label muscarinic and adenosine A1 receptors and L-type calcium channels, respectively. Changes at 1 h, 6 h, 1 day, 4 days and 1 month after three 2-min ischemic insults were compared with changes after single 2- or 6-min ischemia. Two-minute ischemia, which causes no histopathological neuronal damage, produced no persistent alterations in binding sites. We observed a transient and mild increase in binding activities, especially in [3H]CHA binding, at 1 h of recirculation. Following 6-min ischemia and three 2-min ischemic insults. [3H]QNB and [3H]PN200-110 binding decreased by more than 50% in the CA1 subfield by 1 month, but [3H]CHA binding decreased transiently by 20-30% at 4 days when delayed neuronal death of hippocampal CA1 pyramidal cells took place. Reductions in binding, especially in [3H]QNB binding, following three 2-min ischemic insults were greater and appeared earlier than those after 6-min ischemia. Furthermore, alterations extended to the CA3 subfield and the dentate gyrus following repeated insults. Thus, alterations in receptor binding after repeated ischemic insults were greater than those after equivalent single period of ischemia.  相似文献   

13.
H Kato  Y Liu  T Araki  K Kogure 《Brain research》1991,553(2):238-242
We examined the response of the gerbil brain to secondary ischemic insult following pretreatment with brief ischemia at intervals of 5 min, 1 and 6 h, 1, 2, 4, 7 and 14 days. Two minutes of bilateral carotid artery occlusion produced no histopathological brain damage, whereas 3 min of occlusion caused a moderate to severe reduction in the number of hippocampal CA1 pyramidal cells. Two-minute occlusion followed by 3-min occlusion at 5-min, 1- and 6-h intervals resulted in almost complete destruction of CA1 neurons. Additional neuronal damage was observed in the striatum at a 1-h interval and in the thalamus and the neocortex at 1- and 6-h intervals. The neuronal damage was most severe at a 1-h interval. Two-minute ischemia followed by 3-min ischemia at intervals of 1, 2, 4 and 7 days, however, caused a marked protective effect, and the hippocampal CA1 neurons were preserved. The protective effect was not observed at a 14-day interval and following pretreatment with 1-min ischemia. Thus, pretreatment with brief ischemia leads to complex responses of the brain to secondary ischemic insult; cumulative damage at intervals of 1-6 h and protective effects at intervals of 1-7 days.  相似文献   

14.
Cerebral ischemia produces perturbation of signal transduction systems in neurons. In order to estimate the contribution of guanine nucleotide-binding protein (G-protein) to hippocampal neuronal death, the effect of pertussis toxin (PTX) on the CA1 pyramidal cell damage after transient forebrain ischemia in rats was examined. PTX was administered 3 days before 20 min of transient forebrain ischemia. PTX injection into the CA1 failed subfield to alter the number of ischemic-damaged CA1 pyramidal cells. In contrast, ventricular PTX injection exacerbated CA1 pyramidal cell damage. We also studied postischemic alteration of GTP binding sites in the hippocampal formation using quantitative in vitro autoradiography. Autoradiographic imaging demonstrated predominant distribution of GTP binding sites in synaptic areas in the hippocampus. No significant change of GTP binding activity was observed in the hippocampus until 2 days after recirculation. Seven days after ischemia, when the CA1 pyramidal cells were depleted, the GTP binding sites of the strata oriens and radiatum in the CA1 subfield had reduced by 32% and 31%, respectively. In contrast, GTP binding in the CA3 subfield and the dentate gyrus remained unaltered throughout the reperfusion period. These results suggest that the amount of G-proteins as estimated by GTP binding remained unaltered in the hippocampus during the early recirculation period, when the CA1 pyramidal cells were morphologically intact, and that signal transduction pathways mediated by Gi and Go do not play a major role in delayed death of the CA1 pyramidal cells.  相似文献   

15.
Physiological and histological investigation was undertaken to examine dynamic and metabolic changes due to transient ischemic insult of the monkey brain with and without postischemic treatment by the calcium entry blocker, NC-1100 (1 mg/kg, IV). Monkeys were subjected to temporary occlusion of the eight major arteries: bilateral common carotid, internal and external carotid, and vertebral arteries. Blood flow was restored after 5-, 10-, 13-, and 15-min ischemia in different monkeys. The amplitudes of extradural, cortical, and hippocampal electroencephalograms decreased severely within 1–6 min after beginning occlusion. Complete recovery of these electroencephalograms required more than 1 h. During ischemia, significant change was obvious in arterial glucose, and systolic, diastolic, and mean blood pressure, all of which increased. There were no significant physiological differences between the untreated and NC-1100—treated groups, except decreased diastolic blood pressure and slightly lower postischemic heart rate in the treated group. These small differences might be accounted for by the effect of the calcium blocker. Ten to 15 minutes ischemia caused cell changes, including cell death, which were confined almost exclusively to the CA1 subfield of untreated hippocampi examined the fifth day after occlusion. However, no ischemia-induced cell change was observed in the CA1 subfield of hippocampi subjected to 10 to 15 min ischemia in the NC-1100-treated group. It was concluded that a calcium entry blocker can protect neurons from mild ischemia-induced injury and might ameliorate morphological damage and functional impairment of the brain due to ischemia in patients who suffer transient anoxic or hypoxic injury. The present physiological data should contribute to their clinical treatment.  相似文献   

16.
Effects of treatment with (+/-)-1-(3,4-dimethoxyphenyl)-2-(4- diphenylmethylpiperazinyl)ethanol dihydrochloride (NC-1100), a calcium entry blocker, on ischemic neuronal damage were investigated. Monkeys were subjected to temporary occlusion of eight (bilateral common carotid, internal and external carotid, and vertebral arteries) major arteries. Blood flow was restored after 5, 10, 13, and 15 min occlusion, and NC-1100 (1 mg/kg) was then immediately infused intravenously. Monkeys were killed by perfusion fixation 5 days after occlusion. All brain regions were then histologically investigated for ischemic neuronal changes. Physiological data of NC-1100-treated subjects were not significantly different than those of untreated subjects. Heart rate tended to decrease after ischemia in treated subjects. Occlusion of 8 arteries for 10 to 15 min produced ischemic neuronal damage confined exclusively to the CA1 subfield of the hippocampus. Treatment with NC-1100 markedly reduced ischemic neuronal damage in the CA1 subfield of the hippocampus. It is suggested that postischemic treatment with the calcium entry blocker, NC-1100, might protect the brain from the ischemic damage produced in patients suffering from transient ischemia.  相似文献   

17.
Gu Z  Jiang Q  Zhang G 《Neuroreport》2001,12(5):897-900
To clarify the role of c-Jun N-terminal kinase (NK) activation in brain ischemia, temporospatial alteration of active (diphosphorylated) JNK1/2 immunoreactivity in hippocampus after brain ischemia in rat was investigated. Western immunoblot study showed that JNK1/2 diphosphorylation level was increased biphasically in CA1 but not CA3/dentate gyrus (DG) after 10 min of ischemia. Cerebral ventricular infusion of JNK1/2 antisense oligonucleotides not only significantly decreased JNK1/2 protein expression and the activation level but also significantly decreased CA1 pyramidal cell death (demonstrated by cresyl violet staining) and DNA fragmentation (demonstrated by in situ end-labeling of DNA). These results suggest that JNK1/2 were selectively activated and involved in the selective cell death in hippocampal CA1 subfield after cerebral ischemia.  相似文献   

18.
Summary An unusual, delayed neuronal death (DND) has been noticed in the hippocampus of the Mongolian gerbil following brief ischemia (Kirino 1982). On day 1 following 5–10min of ischemia, light microscopy showed the CA1 pyramidal cells unchanged. On day 2, the cells showed massive growth of membranous cytoplasmic organelles instead of overt cellular disintegration. These neurons were destroyed extensively by day 4 after ischemic insult. Following longer ischemia (20–30min), however, the changes in the CA1 pyramidal cells appeared faster and resembled the wellcharacterized ischemic cell change (ICC). To further clarify the differences between ICC and DND, gerbils were submitted to transient 5–30min ischemia. They were perfusion-fixed following a given survival period and then processed for electron microscopy. Following transient ischemia, specimens showed slow cell changes with growth of cisterns of the endoplasmic reticulum (ER). In some CA1 neurons, the cytoplasm was shrunken and darkly stained, but they also displayed accumulation of ER cisterns. Occasionally, the CA1 cells demonstrated highly shrunken dark perikarya, no different than in ICC. These results indicate that DND seems to be the typical disease process of the CA1 sector and that a severer insult makes the change faster and more similar to ICC. ICC seems to occur when the CA1 pyramidal cells are damaged so severely that they cannot react with proliferous activity.  相似文献   

19.
It has been postulated that the central neurotoxicity of glutamate participates in the pathogenesis of the ischemia-induced neuronal death and the process of the neuronal death is initiated by overexcitation or depolarization of postsynaptic neurons induced by increased extracellular glutamate during ischemia. In the present study, in order to know whether ischemic neurons show the overexcitation, we studied changes of CA1 neuronal discharges in gerbil hippocampus induced by transient forebrain ischemia (1-5 min) using an extracellular unit recording technique. CA1 neurons showed the high frequency discharges shortly after ischemic insult of 90 sec, however, these discharges did not induce neuronal death. Delayed neuronal death in the CA1 sector was observed in animals with 5-min ischemia which did not induce high frequency discharges. Neuronal depolarization with no spike discharge may persist during and shortly after 5-min ischemia and initiate the delayed neuronal death.  相似文献   

20.
Summary It has not been discussed whether transient forebrain ischemia of 5-min duration, which is a model frequently used to evaluate pharmacological protection against ischemic injury, is an optimal model in the CA1 field of this animal whose brain temperature is maintained at normothermic levels. The temperature of the brain during an ischemic insult strongly affects the extent of the resulting neuronal injury. If the brain temperature is not regulated, it usually falls in the gerbil by 2°–4°C during 5-min ischemia. However, the brain temperature during ischemic insult was not regulated in many previous studies. In the present study, the effects of transient (1 to 5 min) forebrain ischemia on the development of neuronal degeneration in hippocampal regions of the gerbil whose brain temperature was maintained at 37°C were examined. In the CA1 field of the hippocampus, transient ischemia of 3- and 4-min duration caused almost the same maximal damage (88%–91% neuronal loss) as observed in the gerbils subjected to 5-min ischemia. Transient ischemia of 2-and 2.5-min duration provoked substantial neuronal damage in 25% and 55% of experimental gerbils, respectively. These results indicate that 5-min bilateral forebrain ischemia is more than is necessary to examine ischemiainduced neuronal degeneration in hippocampal CA1 field of the gerbil whose brain temperature is maintained at normothermic levels. In the normothermic gerbil brain, an ischemic period of 3-min already induces extensive neuronal death in the CA1 and, thus, constitutes a sensitive model to evaluate faint protective effects of drugs against ischemic injury in the normothermic gerbil.Supported by Grant-in-Aid for Encouragement of Young Scientist (03857019) from the Ministry of Education, Science and Culture of Japan and the Sasakawa Health Science Foundation to A.M., and Grants-in-Aid for General Scientific Research (01400004 and 03557007) from the Ministry of Education, Science and Culture of Japan, Japan Foundation for Aging and Health and Mitsui Life Social Welfare Foundation to K.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号