首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的:研究马来酸氨氯地平微囊的最佳制备工艺,以扩大马来酸氨氯地平的临床应用范围。方法采用物理化学法制备马来酸氨氯地平微囊,通过正交试验,以包封率和载药量为指标综合评价制备工艺,筛选最佳工艺条件。结果优选后的马来酸氨氯地平微囊的最佳制备工艺条件为:采用囊材与药物比例为1∶1.5、油水相比例为3∶1、聚维酮用量为0.2g,此时包封率为88.03%、微囊载药量为54.80%,综合评分71.41%。结论马来酸氨氯地平微囊的工艺稳定可靠,重现性良好,为临床生产缓控制剂提供基础。  相似文献   

2.
目的采用复凝聚法制备桃金娘油肠溶微囊,并对其体外性质进行评价。方法选用海藻酸钠、氯化钙、壳聚糖为囊材采用复凝聚法制备桃金娘油微囊,用扫描电子显微镜(scanning electron microscope,SEM),Beckman Coulter LS 230激光粒度仪表征了微囊表面形态及粒径,采用顶空进样-GC色谱法测定了载药量和包封率。结果正交设计优化处方和工艺如下:海藻酸钠质量浓度为25g.L-1、壳聚糖质量浓度为3 g.L-1、凝聚速度为5 mL.min-1和凝聚时间为60 min,所得微囊粒径为(14.23±1.45)μm,载药质量分数为(11.3±0.4)%,包封率为(73.6±2.5)%。微囊具有耐酸和肠溶性能,表面褶皱,粒径分布均匀。结论复凝聚法可用于桃金娘油肠溶微囊的制备。  相似文献   

3.
酮康唑海藻酸钙凝胶小球的制备工艺研究   总被引:1,自引:0,他引:1  
目的:考察酮康唑海藻酸钙凝胶小球的制备工艺和最优处方。方法:采用滴制法制备海藻酸钙凝胶小球,以酮康唑的包封率和载药量作为制备工艺优化指标,设计正交试验优选最佳处方;测定最佳处方所制制剂的包封率(EE)和载药量(LD)并与原料药比较体外释放作用。结果:最优处方为海藻酸钠浓度2.0%,海藻酸钠与酮康唑质量比2∶1,氯化钙浓度0.3mol.L-1;EE和LD平均值分别为(90.53±2.32)%、(31.51±2.08)%,与原料药比较缓释性较好。结论:本法工艺简单、可行、稳定,重现性好。  相似文献   

4.
正交法研究盐酸克林霉素-乙基纤维素微囊的处方工艺   总被引:3,自引:1,他引:2  
目的 制备盐酸克林霉素微囊,选择最优处方工艺。方法 以乙基纤维素为囊材,采用液中干燥法制备盐酸克林霉素微囊。采用四因素三水平正交实验设计考察药物与囊材的比例、油水相比例、表面活性剂用量、抗粘剂用量对微囊粒径、载药量和包封率的影响。结果 确定处方药物与囊材的比例为3:2,油水相比例为3:1,司盘用量为0.5%.滑石粉与囊材的质量比为1:1为最佳处方工艺。结论 本法处方合理,制备工艺可行,有良好的应用前景。  相似文献   

5.
以微囊的载药量和包封率为指标,采用均匀设计,结合非线性规划法优化酮咯酸氨丁三醇海藻酸钠-壳聚糖微囊的制备工艺.结果表明,按优化条件制得的微囊包封率90%,载药量44%,在水中的释药行为符合Higuchi方程.  相似文献   

6.
奥沙普秦壳聚糖-海藻酸钠缓释微球的制备   总被引:1,自引:0,他引:1  
目的:目的:选择奥沙普秦作为模型药制备壳聚糖-海藻酸钠缓释微球。方法:采用滴制法制备奥沙普秦壳聚糖-海藻酸钠缓释微球,通过正交试验设计优化了处方和工艺,考察其理化特征及体外释药行为。结果:优化处方制得的微球包封率及载药量分别为98.36%和16.26%,平均粒径为(346.6±164.1)μm;1h药物释放达到36%,随后药物的释药行为是一个缓释过程。结论:制得了载药量较大,包封率较高的奥沙普秦壳聚糖-海藻酸钠缓释微球。  相似文献   

7.
盐酸黄连素肠溶微囊的制备及评价   总被引:1,自引:0,他引:1  
目的:以聚丙烯酸树脂Ⅱ号为囊材,制备盐酸黄连素肠溶微囊,并测定其体外溶出度。方法:采用溶剂挥发法制备盐酸黄连素肠溶微囊,通过正交实验进行优化,以微囊的包封率及栽药量为指标。结果:应用优化工艺制备的盐酸黄连素肠溶微囊,栽药量为11.18%,包封率为85.00%,盐酸黄连素肠溶微囊在pH为6.8、7.4的溶出介质中60min内溶出度超过70%。结论:采用溶剂挥发法制备盐酸黄连素肠溶微囊,工艺稳定可靠,操作简便,栽药量高,具有肠溶特性,显示出良好的应用前景。  相似文献   

8.
目的:研究一种制备聚乳酸聚乙醇酸(PLGA)微球的新工艺,即将海藻酸钠与钙离子螯合形成缓释凝胶的原理与复乳法制备微球的工艺相结合。方法:以牛血清白蛋白(BSA)为模型药,以包封率、载药量、产率作为评价指标,研究PLGA黏度、海藻酸钠浓度及外水相1中氯化钙浓度对微球性质的影响,并通过L9(34)正交试验设计优选微球制备的工艺条件。结果:优选的制备工艺重现性好,微球形态圆整,结构致密,平均粒径为67.5μm,载药量、包封率和产率分别为0.669%、53.38%和80.08%。结论:本研究获得了较为满意的制备PLGA微球的新工艺,微球的理化性质良好。  相似文献   

9.
目的以乙基纤维素为囊材,优选左旋多巴微囊的制备工艺。方法以微囊的包封率及载药量为评价指标,采用正交实验优选左旋多巴微囊液中干燥法制备工艺条件,并对制备的微囊进行质量检查。结果优选出的制备工艺为:囊材与药量比例为0.6∶1.4,油水相比例为105∶30,PVP量为0.2g,验证实验表明,优化工艺所制左旋多巴微囊的平均载药量为54.94%,平均包封率为89.2%。质量检查结果表明,微囊外观圆整且无粘连现象,大部分微囊的粒径分布在300~600μm范围内。优选出的左旋多巴微囊在体外具有明显的缓释效果。结论采用液中干燥法制备左旋多巴微囊,工艺稳定可靠,操作简便,工艺条件合理、可行。  相似文献   

10.
采用高压静电成囊装置,以海藻酸钠、壳聚糖为囊材,制备卵黄免疫球蛋白(IgY)-海藻酸钠-壳聚糖微囊。结果表明,所制空白微囊球形圆整,平均粒径为200gm。投药量和CaCl2浓度的优化条件分别为10mg/ml和0.1%,微囊包封率可达90%以上,在模拟胃液中2h累积释放率小于20%,微囊中IgY的生物活性为84.7%。  相似文献   

11.
萘普生微囊的制备及其质量考察   总被引:1,自引:0,他引:1  
杨宜华  赵子明  刘妍  屠佳佳 《中国药房》2010,(45):4271-4273
目的:制备萘普生微囊并考察其制剂质量。方法:以明胶和阿拉伯胶为囊材,采用复凝聚法将萘普生制成微囊;以阿拉伯胶浓度(A)、萘普生与阿拉伯胶的质量比例(B)和成囊温度(C)为考察因素,包封率为指标设计正交试验优化成囊的最佳制备工艺,并对优化工艺所制得微囊的粒径、包封率、载药量、体外释放性进行考察。结果:最佳工艺条件为A2%、B1:1、C50℃;所制微囊的平均囊径48.92μm,包封率(77.03±1.43)%,载药量(35.31±1.02)%,微囊在48h时体外累积溶出百分率达到91.32%。结论:所制萘普生微囊工艺重现性好、稳定,并具有良好的缓释作用。  相似文献   

12.
正辛胺改性海藻酸钠凝胶微球的制备及其性质研究   总被引:1,自引:0,他引:1  
目的:制备正辛胺改性海藻酸钠凝胶微球,并研究其性质。方法:以超声波辅助氧化法制备多醛基海藻酸钠,通过希夫碱反应制备正辛胺改性海藻酸钠,并表征其结构;以乳化-内部凝胶化技术制备负载小分子抗肿瘤药物β-榄香烯的改性海藻酸钠凝胶微球,采用气相色谱法测定其8、15、24、48h时的累积释放率及海藻酸钠和正辛胺改性海藻酸钠凝胶微球中β-榄香烯的包封率。结果:表征并证实了多醛基海藻酸钠和正辛胺改性海藻酸钠的结构;制备得到的改性海藻酸钠凝胶微球中8、15、24、48h时β-榄香烯的累积释放率分别为16%、28%、40%、83%;海藻酸钠和正辛胺改性海藻酸钠凝胶微球中β-榄香烯的包封率分别为36%、73%。结论:制备的正辛胺改性海藻酸钠凝胶微球,具有优良的缓释性能,对β-榄香烯的包封率高。  相似文献   

13.
马素英  尚校军  马伟伟 《中国药房》2010,(33):3135-3137
目的:制备阿奇霉素微囊,并建立其质量控制方法。方法:以明胶为囊材,阿奇霉素为主药制备微囊。采用紫外分光光度法于482nm波长处测定阿奇霉素的含量,同时考察微囊的形态、粒径、载药量、包封率等指标。结果:所制微囊呈圆形,粒径均匀,平均体积径为100.96μm,平均载药量为23.8%,平均包封率为(68.72±0.89)%。阿奇霉素检测浓度的线性范围为7.5~52.5mg·L-1,平均回收率为(99.5±1.02)%,RSD=1.03%。结论:该制剂制备工艺可行,含量测定方法简便、可靠。  相似文献   

14.
陶涛  邢贞建  李祥 《中国药房》2012,(41):3901-3903
目的:制备利福布汀(RB)-聚乳酸-羟基乙酸共聚物(PLGA)纳米粒,并对制备工艺进行优化。方法:采用改良的自乳化溶剂挥发法制备;通过单因素法考察对包封率影响较大的因素,在此基础上以包封率为指标采用正交设计优化纳米粒的制备工艺并进行验证。结果:对纳米粒包封率影响较大的因素是RB与PLGA投药比、PLGA浓度、混合有机相中丙酮比例及油水相比;上述各因素的最佳水平分别是1:2、40mg·mL-1、70%、1:5。验证试验中所制纳米粒平均粒径为(201±19)nm、包封率为(59.1±5)%、载药量为(15.1±2.4)%。结论:本文的制备方法简单,所得纳米粒粒径小、质量稳定。  相似文献   

15.
Edible microcapsule technology has been declared as a newly developed technology in 21st century by some certain authorities in order to preserve food products. Encapsulation of the bioactive materials in edible coatings is a blessing that can eliminate many undesirable situations that might arise when it is used as additive. In this study, olive leaf extract has been evaluated as active material to prepare microcapsules by using alginate as coating. Ionic gelation was used to produce microbeads. The experimental design of the encapsulation system, the effects of the process parameters, the modeling of the experimental data and the optimization of the conditions were carried out with Box-Behnken design of response surface method (Box-Behnken-RSM). Box-Behnken-RSM produced 17 experimental runs. Calcium chloride (2–15%, w/v) and sodium alginate concentrations (1–2%, w/v), and hardening time (15–45 min) were selected as independent variables, while encapsulation efficiency (EE) of the capsules in terms of total phenolic content (TPC) and oleuropein concentration were responses. Impact of chitosan as coating layer was also investigated with three different ratios of chitosan (0.4%, 0.7%, 1% w/v). Accelerated oxidation test was employed to measure the stability of the microcapsules against oxidation by means of Rancimat method. Encapsulation of the olive leaf extract in alginate microbeads was satisfying with >70% and >90% efficiencies with respect to TPC and oleuropein under optimum conditions (2.34% calcium chloride concentration and 2% sodium alginate for 26 min of hardening time).  相似文献   

16.
目的考察单宁酸和氯化钙作为固化剂对微囊的成囊性及体外释药特征的影响,并对其固化机制进行探讨。方法以明胶和海藻酸钠为壁材,单宁酸和氯化钙作为固化剂,采用复凝聚法制备紫草素微囊;用扫描电子显微镜、激光粒径测试仪、红外光谱仪等手段研究微囊微球的形态结构;采用转篮法评价微囊的体外释药特性。结果制备得到了球形良好、缓释效果良好的单宁酸微囊,单宁酸和氯化钙制备的微囊包封率分别为90.34%±1.36%和69.89%±1.28%;平均粒径为241.7±6.94和278.1±4.74 nm,Zeta电位为-27.3±3.6和-24.7±3.2 mV;红外图谱显示单宁酸固化的微囊可以将紫草素包裹得更完全,使紫草素的特征峰完全消失,而氯化钙固化的微囊只能包裹部分紫草素,不能使其特征峰消失。体外释放实验结果表明,单宁酸作固化剂制备的微囊在12 h时释药率达到96.81%;而以氯化钙作固化剂制备的微囊,在6 h时释药率达到97.57%。结论固化剂的选择对微囊的成囊有较大的影响,为微囊固化剂的研究奠定了基础。  相似文献   

17.
A variety of sodium alginates, differing in molar mass and structural composition, have been evaluated in the preparation of multi-component microbeads and microcapsules. Bead formation occurred by gelation with calcium chloride. Capsules were produced by reacting the pre-formed beads with the oligocation poly(methylene-co-guanidine). Despite the equiponderous (1:1) mixing with a second polyanion, sodium cellulose sulphate, the influence of the alginate properties remains evident. Specifically, the effect of the chemical composition was found to be more significant than that of the molar mass for both the mechanical and transport properties. Furthermore, for alginates of 73% α-l-guluronic acid content less shrinking was observed compared to the 38% guluronic materials. This results in the case of the same encapsulator settings in larger microsphere diameters and thicker membranes accompanied by enhanced mechanical resistance though, also, in a higher permeability for the high-G capsules. However, subsequent coating with lower molar mass alginate allows one to adjust the permeability over a broad range, suitable for cell encapsulation and immunoprotection, without compromising the durability.  相似文献   

18.
A variety of sodium alginates, differing in molar mass and structural composition, have been evaluated in the preparation of multi-component microbeads and microcapsules. Bead formation occurred by gelation with calcium chloride. Capsules were produced by reacting the pre-formed beads with the oligocation poly(methylene-co-guanidine). Despite the equiponderous (1:1) mixing with a second polyanion, sodium cellulose sulphate, the influence of the alginate properties remains evident. Specifically, the effect of the chemical composition was found to be more significant than that of the molar mass for both the mechanical and transport properties. Furthermore, for alginates of 73% alpha-l-guluronic acid content less shrinking was observed compared to the 38% guluronic materials. This results in the case of the same encapsulator settings in larger microsphere diameters and thicker membranes accompanied by enhanced mechanical resistance though, also, in a higher permeability for the high-G capsules. However, subsequent coating with lower molar mass alginate allows one to adjust the permeability over a broad range, suitable for cell encapsulation and immunoprotection, without compromising the durability.  相似文献   

19.
Recombinant human insulin was encapsulated within alginate microspheres by the emulsification/internal gelation technique with the objective of preserving protein stability during encapsulation procedure. The influence of process and formulation parameters was evaluated on the morphology and encapsulation efficiency of insulin. The in vitro release of insulin from microspheres was studied under simulated gastrointestinal conditions and the in vivo activity of protein after processing was assessed by subcutaneous administration of extracted insulin from microspheres to streptozotocin-induced diabetic rats. Microspheres mean diameter, ranging from 21 to 287 microm, decreased with the internal phase ratio, emulsifier concentration, mixer rotational speed and increased with alginate concentration. Insulin encapsulation efficiency, near 75%, was not affected by emulsifier concentration, mixer rotational speed and zinc/insulin hexamer molar ratio but decreased either by increasing internal phase ratio and calcium/alginate mass ratio or by decreasing acid/calcium molar ratio and alginate concentration. A high insulin release, above 75%, was obtained at pH 1.2 and under simulated intestinal pH a complete dissolution of microspheres occurred. Extracted insulin from microspheres decreased hyperglycemia of diabetic rats proving to be bioactive and showing that encapsulation in alginate microspheres using the emulsification/internal gelation is an appropriate method for protein encapsulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号