首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In March 2015, an atypical G3P[8] rotavirus with an equine-like VP7 gene was detected in Gipuzkoa (Basque Country, Spain) and spread contributing significantly to the seasonal epidemic. The strain was identified in fecal samples collected from 68 patients, mainly children from rural and urban settings with acute gastroenteritis, representing 14.9% of the 455 rotavirus strains genotyped between July 2014 and June 2015. Seven patients (10.3%) were hospitalized. Full genome analysis of six of these strains revealed a DS-1-like genotype constellation, G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and showed that most genome segments shared the highest nucleotide sequence identity with strains isolated in Japan, Thailand, Australia and the Philippines. The strains of Gipuzkoa were similar to novel G3P[8] reassortant rotaviruses with an equine-like VP7 gene and a DS-1-like genetic backbone that emerged in the Asia-Pacific Region in 2013. The study highlights the circulation of these atypical rotaviruses outside the Asia-Pacific Region of origin, and their emergence in a European Region. Due to their unusual genotype constellation, these strains pose a challenge for the rotavirus strain surveillance, since G-/P-typing, the most commonly used classification system, cannot identify this type of intergenogroup reassortants.  相似文献   

2.
Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand.  相似文献   

3.
The human, G1P[8] rotavirus vaccine (Rotarix?) significantly reduced severe rotavirus gastroenteritis episodes in a clinical trial in South Africa and Malawi, but vaccine efficacy was lower in Malawi (49.5%) than reported in South Africa (76.9%) and elsewhere. The aim of this study was to examine the molecular relationships of circulating wild-type rotaviruses detected during the clinical trial in Malawi to RIX4414 (the strain contained in Rotarix?) and to common human rotavirus strains. Of 88 rotavirus-positive, diarrhoeal stool specimens, 43 rotaviruses exhibited identifiable RNA migration patterns when examined by polyacrylamide gel electrophoresis. The genes encoding VP7, VP4, VP6 and NSP4 of 5 representative strains possessing genotypes G12P[6], G1P[8], G9P[8], and G8P[4] were sequenced. While their VP7 (G) and VP4 (P) genotype designations were confirmed, the VP6 (I) and NSP4 (E) genotypes were either I1E1 or I2E2, indicating that they were of human rotavirus origin. RNA-RNA hybridization using 21 culture-adapted strains showed that Malawian rotaviruses had a genomic RNA constellation common to either the Wa-like or the DS-1 like human rotaviruses. Overall, the Malawi strains appear similar in their genetic make-up to rotaviruses described in countries where vaccine efficacy is greater, suggesting that the lower efficacy in Malawi is unlikely to be explained by the diversity of circulating strains.  相似文献   

4.
Rotavirus-A (RVAs), are the major cause of severe gastroenteritis in the young of mammals and birds. RVA strains possessing G6, G8, and G10 genotypes in combination with P[1] or P[11] have been commonly detected in cattle. During a routine surveillance for enteric viruses in a bovine population on North-Western temperate Himalayan region of India, an uncommon bovine RVA strain, designated as RVA/Cow-wt/IND/M1/09/2009 was detected in a diarrhoeic crossbred calf. The examination of nearly complete genome sequence of this RVA strain revealed an unusual G-P combination (G3P[11]) on a typical bovine RVA genotype backbone (I2-R2-C2-M2-A11-N2-T6-E2-H3). The VP7 gene of M1/09 isolate displayed a maximum nucleotide sequence identity of 73.8% with simian strain (RVA/Simian-tc/USA/RRV/1975/G3P[3]). The VP4 and NSP5 genes clustered with an Indian pig strain, RVA/Pig-wt/IND/AM-P66/2012/G10P[11] (99.6%), and a caprine strain, RVA/Goat-tc/BGD/GO34/1999/G6P[1] (98.9%) from Bangladesh, respectively, whilst the, VP6, NSP1, NSP3 and NSP4 genes were identical or nearly identical to Indian bovine strains (RVA/Cow-wt/IND/B-72/2008/G10P[X], RVA/Cow-wt/IND/B85/2010/GXP[X], and RVA/Cow-wt/IND/C91/2011/G6P[X]). The remaining four genes (VP1, VP2, VP3 and NSP2) were more closely related to RVA/Human-wt/ITA/PAI11/1996/G2P[4] (93.5%), RVA/Sheep-wt/CHN/LLR/1985/G10P[15] (88.8%), RVA/Human-tc/SWE/1076/1983/G2P2A[6] (93.2%) and RVA/Human-wt/AUS/CK20003/2000/G2P[4] (91.2%), respectively. Altogether, these findings are suggestive of multiple independent interspecies transmission and reassortment events between co-circulating bovine, porcine, ovine and human rotaviruses. The complete genome sequence information is necessary to establish the evolutionary relationship, interspecies transmission and ecological features of animal RVAs from different geographical regions.  相似文献   

5.
Group A rotavirus is a leading cause of severe acute gastroenteritis worldwide. In this study, the first complete coding sequences of 11 RNA segments of human group A rotavirus G12P[8] in Japan were determined by an unbiased viral metagenomics. Its genomic constellation (VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes) was identified as G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. When performing the genetic analysis, we discovered an intergenotypic recombination event in the pig group A rotavirus G12P[8] strain BUW-14-A008. The novel recombination was found between two different genotypes G12 and G3 in the VP7 gene, and P[8] and P[13] in the VP4 gene.  相似文献   

6.
Rotavirus is the main cause of acute viral gastroenteritis in infants and young children worldwide. Surveillance of group A rotavirus has been conducted in Chiang Mai, Thailand since 1987 up to 2004 and those studies revealed that group A rotavirus was responsible for about 20-61% of diarrheal diseases in hospitalized cases. In this study, we reported the continuing surveillance of group A rotavirus in 2005 and found that group A rotavirus was detected in 43 out of 147 (29.3%) stool samples. Five different G and P genotype combinations were detected, G1P[8] (27 strains), G2P[4] (12 strains), G9P[8] (2 strains), G3P[8] (1 strain), and G3P[10] (1 strain). In addition, analysis of their genotypic linkages of G (VP7), P (VP4), I (VP6), E (NSP4), and H (NSP5) genotypes demonstrated that the rotaviruses circulating in Chiang Mai, Thailand carried 3 unique linkage patterns. The G1P[8], G3P[8], and G9P[8] strains carried their VP6, NSP4, NSP5 genotypes of I1, E1, H1, respectively. The G2P[4] strains were linked with I2, E2, H2 genotypes, while an uncommon G3P[10] genotype carried unique genotypes of I8, E3 and H6. These findings provide the overall picture of genotypic linkage data of rotavirus strains circulating in Chiang Mai, Thailand.  相似文献   

7.
目的 了解北京地区2007-2008年检测到的G9型A组人轮状病毒外壳蛋白VP7和VP4的基因特征.方法 选取经过轮状病毒核酸杂交方法检测为G9型轮状病毒的12份儿童腹泻患儿的粪便标本,应用针对VP7全长基因的特异引物对进行RT-PCR扩增,对所获得的VP7全长基因进行克隆和测序,将所获得的序列与GenBank中的G9型原型病毒株和近期流行株的VP7基因进行序列和种系进化分析;经巢式PCR对G9型的VP4进行P基因分型.结果 12株G9型轮状病毒经VP7基因的序列比较分析得到确认.P基因分型结果显示北京地区近年来存在G9P[8]和G9P[6]型两种组合的轮状病毒感染.序列和种系进化分析发现北京G9型株VP7基因与世界范围内近期流行的G9型株一样都属于进化分支Ⅲ,彼此间的核苷酸和氨基酸同源性较高,而与国内最早报道的G9型T203进化关系较远,且北京G9P[8]和G9P[6]型株分别与国内近期报道的新疆G9P[8]和G9P[6]型株及相应的武汉G9型株VP7基因,在氨基酸位点上存在一些共同的氨基酸残基取代.结论 北京地区近年存在G9P[8]和G9P[6]两种不同基因组合的G9型轮状病毒感染,需要进一步加强对G9型轮状病毒的分子流行病学监测.  相似文献   

8.
Rotavirus strains with a rearranged 11th genome segment may show super-short RNA electropherotypes. Examples from human strains were limited to seven strains, 69M, 57M, B37, Mc345, AU19, B4106 and BE2001, which have a variety of G and P genotypes. AU19 is a rare G1P[6] human rotavirus strain detected in a Japanese infant with severe acute gastroenteritis. This study was undertaken to better understand the origin of AU19 by determining the genotype constellation of AU19. Upon nearly-full genome sequencing, AU19 had a G1-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H2 genotype constellation. Possession of I5 and A8 genotypes is indicative of its porcine rotavirus origin, whereas possession of H2 genotype is indicative of its DS-1 like human rotavirus origin. At the phylogenetic lineage level for the genome segments that share the genotype between porcine and human rotaviruses, the VP1-4, VP7, NSP3-4 genes were most closely related to those of porcine rotaviruses, but the origin of the NSP2 gene was inconclusive. As to the NSP5 gene, the lineage containing AU19 and the other three super-short human strains, 69M, 57M and B37, carrying the H2 genotype (H2b) clustered with the lineage to which DS-1- like short strains belonged (H2a) albeit with an insignificant bootstrap support. Taken all these observations together, AU19 was likely to emerge as a consequence of interspecies transmission of a porcine rotavirus to a child coupled with the acquisition of a rare H2b genotype by genetic reassortment probably from a co-circulating human strain. The addition of the AU19 NSP5 sequence to much homogeneous H2b genotypes shared by previous super-short rotavirus strains made the genetic diversity of H2b genotypes as diverse as that of the H2a genotype, lending support to the hypothesis that super-short strains carrying H2b genotype have long been circulating unnoticed in the human population.  相似文献   

9.
Community and hospital-acquired cases of human rotavirus are responsible for millions of gastroenteritis cases in children worldwide, chiefly in developing countries, and vaccines are now available. During surveillance activity for human rotavirus infections in Ireland, between 2006 and 2009, a total of 420 rotavirus strains were collected and analysed. Upon either PCR genotyping and sequence analysis, a variety of VP7 (G1-G4 and G9) and VP4 (P[4], P[6], P[8] and P[9]) genotypes were detected. Strains G1P[8] were found to be predominant throughout the period 2006-2008, with slight fluctuations seen in the very limited samples available in 2008-2009. Upon either PCR genotyping and sequence analysis of selected strains, the G1, G3 and G9 viruses were found to contain E1 (Wa-like) NSP4 and I1 VP6 genotypes, while the analysed G2 strains possessed E2 NSP4 and I2 VP6 genotypes, a genetic make-up which is highly conserved in the major human rotavirus genogroups Wa- and Kun-like, respectively. Upon sequence analysis of the most common VP4 genotype, P[8], at least two distinct lineages were identified, both unrelated to P[8] Irish rotaviruses circulating in previous years, and more closely related to recent European humans rotaviruses. Moreover, sequence analysis of the VP7 of G1 rotaviruses revealed the onset of a G1 variant, previously unseen in the Irish population.  相似文献   

10.
Group A rotaviruses (RVAs) are major pathogens associated with acute gastroenteritis in young children and in a wide variety of domestic animals. The full-length genome of a rabbit RVA strain, RVA/Rabbit-tc/CHN/N5/1992/G3P[14], showed a G3-P[14]-I17-R3-C3-M3-A9-N1-T1-E3-H2 genomic configuration. A novel VP6 genotype, I17, was confirmed by the Rotavirus Classification Working Group. Phylogenetic analyses revealed that strain N5 possessed VP1–3, VP7, NSP1–2 and NSP4 genes closely related to those of the simian strain TUCH, NSP3 and NSP5 genes closely related to the human strains Wa and 69M, and a VP4 gene closely related to the rabbit strain 30/96 and sheep strain OVR762. The RRV and TUCH shared their ancestry with canine/feline RVAs and showed a close relationship to the human T152/feline-like RVAs. Comparison with the genotypes of the simian strains TUCH and RRV, canine strains A79-10, CU-1, K9, feline strains Cat2 and Cat97, and human strains T152 and 69M showed that RVA/Rabbit-tc/CHN/N5/1992/G3P[14] was possibly of feline/canine origin, or was a multiple reassortment involving canine, feline and human rotaviruses. The sequencing and phylogenetic analyses of rotavirus genomes is critical to the elucidation of the patterns of virus evolution.  相似文献   

11.
Although P[6] group A rotaviruses (RVA) cause diarrhoea in humans, they have been also associated with endemics of predominantly asymptomatic neonatal infections. Interestingly, strains representing the endemic and asymptomatic P[6] RVAs were found to possess one of the four common human VP7 serotypes (G1–G4), and exhibited little antigenic/genetic differences with the VP4 proteins/VP4 encoding genome segments of P[6] RVAs recovered from diarrhoeic children, raising interest on their complete genetic constellations. In the present study, we report the overall genetic makeup and possible origin of three such asymptomatic human P[6] RVA strains, RVA/Human-tc/VEN/M37/1982/G1P2A[6], RVA/Human-tc/SWE/1076/1983/G2P2A[6] and RVA/Human-tc/AUS/McN13/1980/G3P2A[6]. G1P[6] strain M37 exhibited an unusual genotype constellation (G1-P[6]-R1-C1-M1-A1-N1-T2-E1-H1), not reported previously, and was found to originate from possible intergenogroup reassortment events involving acquisition of a DS-1-like NSP3 encoding genome segment by a human Wa-like RVA strain. On the other hand, G2P[6] strain 1076 exhibited a DS-1-like genotype constellation, and was found to possess several genome segments (those encoding VP1, VP3, VP6 and NSP4) of possible artiodactyl (ruminants) origin on a human RVA genetic backbone. The whole genome of G3P[6] strain McN13 was closely related to that of asymptomatic human Wa-like G3P[6] strain RV3, and both strains shared unique amino acid changes, which might have contributed to their attenuation. Taken together, the present study provided insights into the origin and complex genetic diversity of P[6] RVAs possessing the common human VP7 genotypes. This is the first report on the whole genomic analysis of a G1P[6] RVA strain.  相似文献   

12.
G12 rotaviruses are globally emergent rotaviruses causing severe childhood gastroenteritis. Little is known about the evolution and diversity of G12P[8] rotaviruses and the possible role that widespread vaccine use, globally, has had on their emergence. In Sicily, Italy, surveillance activity for rotaviruses has been conducted uninterruptedly since 1985, thus representing a unique observatory for the study of human rotaviruses in the pre- and post-vaccine era. G12 rotaviruses were first detected only in 2012 and between 2012 and 2014 they accounted for 8.7% of all rotavirus-associated infections among children, with peaks of 27.8% in 2012/2013 and 21% in 2014. We determined and analyzed the full-genome of 22 G12P[8] rotaviruses collected during the 2012-2014. Although all G12P[8] rotaviruses exhibited a typical Wa-like genotype constellation (G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), phylogenetic analysis allowed distinguishing either two or three (sub)lineages in each genome segment. On the basis of the segregation patterns into lineages/sublineages, 20 G12P[8] rotaviruses could be grouped into three stable major genomic sub-constellations, whilst two strains displayed unique genome architectures, likely due to ressortment with co-circulating strains. Altogether, these findings indicate that the onset and prolonged circulation of G12 rotaviruses was due to repeated introductions of different G12 rotaviruses circulating globally. Importantly, as regional rotavirus vaccination was initiated in 2012 reaching a 45% coverage in newborns in 2014, a correlation between the appearance and spread of G12 rotaviruses and the enacted vaccination program could not be drawn. Constant epidemiologic surveillance remains important to monitor the epidemiological dynamics of human rotaviruses.  相似文献   

13.
RNA–RNA hybridization assays and complete genome sequence analyses have shown that feline rotavirus (FRV) and canine rotavirus (CRV) strains display at least two distinct genotype constellations (genogroups), represented by the FRV strain RVA/Cat-tc/AUS/Cat97/1984/G3P[3] and the human rotavirus (HRV) strain RVA/Human-tc/JPN/AU-1/1982/G3P3[9], respectively. G3P[3] and G3P[9] strains have been detected sporadically in humans. The complete genomes of two CRV strains (RVA/Dog-tc/ITA/RV198-95/1995/G3P[3] and RVA/Dog-tc/ITA/RV52-96/1996/G3P[3]) and an unusual HRV strain (RVA/Human-tc/ITA/PA260-97/1997/G3P[3]) were determined to further elucidate the complex relationships among FRV, CRV and HRV strains. The CRV strains RV198-95 and RV52-96 were shown to possess a Cat97-like genotype constellation. However, 3 and 5 genes of RV198-95 and RV52-96, respectively, were found in distinct subclusters of the same genotypes, suggesting the occurrence of reassortment events among strains belonging to this FRV/CRV/HRV genogroup. Detailed phylogenetic analyses of the HRV strain PA260-97 showed that (i) 8 genome segments (VP3, VP4, VP6, VP7 and NSP2-5) clustered closely with RV198-95 and/or RV52-96; (ii) 2 genome segments (VP1 and VP2) were more closely related to HRV AU-1; and (iii) 1 genome segment (NSP1) was distantly related to any other established NSP1 genotypes and was ratified as a new NSP1 genotype, A15. These findings suggest that the human strain PA260-97 has a history of zoonotic transmission and is likely a reassortant among FRV/CRV strains from the Cat97 and AU-1-like genogroups. In addition, a potential third BA222-05-like genogroup of FRV and HRV strains should be recognized, consisting of rotavirus strains with a stable genetic genotype constellation of genes also partially related to bovine rotavirus (BRV) and bovine-like rotaviruses. The detailed phylogenetic analysis indicated that three major genotype constellations exist among FRV, CRV and feline/canine-like HRV strains, and that reassortment and interspecies transmission events contribute significantly to their wide genetic diversity.  相似文献   

14.
After a sporadic detection in 1990s, G3P[8] rotaviruses emerged as a predominant genotype during recent years in many areas worldwide, including parts of Italy. The present study describes the molecular epidemiology and evolution of G3P[8] rotaviruses detected in Italian children with gastroenteritis during two survey periods (2004–2005 and 2008–2013). Whole genome of selected G3P[8] strains was determined and antigenic differences between these strains and rotavirus vaccine strains were analyzed. Among 819 (271 in 2004–2005 and 548 in 2008–2013) rotaviruses genotyped during the survey periods, the number of G3P[8] rotavirus markedly varied over the years (0/83 in 2004, 30/188 in 2005 and 0/96 in 2008, 6/88 in 2009, 4/97 in 2010, 0/83 in 2011, 9/82 in 2012, 56/102 cases in 2013). The genotypes of the 11 gene segments of 15 selected strains were assigned to G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1; thus all strains belonged to the Wa genogroup. Phylogenetic analysis of the Italian G3P[8] strains showed a peculiar picture of segregation with a 2012 lineage for VP1-VP3, NSP1, NSP2, NSP4 and NSP5 genes and a 2013 lineage for VP6, NSP1 and NSP3 genes, with a 1.3–20.2% nucleotide difference from the oldest Italian G3P[8] strains. The genetic variability of the Italian G3P[8] observed in comparison with sequences of rotaviruses available in GenBank suggested a process of selection acting on a global scale, rather than the emergence of local strains, as several lineages were already circulating globally. Compared with the vaccine strains, the Italian G3P[8] rotaviruses segregated in different lineages (5–5.3% and 7.2–11.4% nucleotide differences in the VP7 and VP4, respectively) with some mismatches in the putative neutralizing epitopes of VP7 and VP4 antigens. The accumulation of point mutations and amino acid differences between vaccine strains and currently circulating rotaviruses might generate, over the years, vaccine-resistant variants.  相似文献   

15.
Group A rotaviruses (RV-A) are the leading cause of viral gastroenteritis in children worldwide and genotype G9P[8] is one of the five most common genotypes detected in humans. In order to gain insight into the degree of genetic variability of G9P[8] strains circulating in Cameroon, stool samples were collected during the 1999–2000 rotavirus season in two different geographic regions in Cameroon (Southwest and Western Regions). By RT-PCR, 15 G9P[8] strains (15/89 = 16.8%) were identified whose genomic configurations was subsequently determined by complete or partial gene sequencing. In general, all Cameroonian G9 strains clustered into current globally-spread sublineages of the VP7 gene and displayed 86.6–100% nucleotide identity amongst themselves and 81.2–99.5% nucleotide identity with global G9 strains. The full genome classification of all Cameroonian strains was G9-P[8]-I1–R1–C1–M1–A1–N1–T1–E1–H1 but phylogenetic analysis of each gene revealed that the strains were spread across 4 or more distinct lineages. An unusual strain, RVA/Human-wt/CMR/6788/1999/G9P[8], which shared the genomic constellation of other Cameroonian G9P[8] strains, contained a novel G9 subtype which diverged significantly (18.8% nucleotide and 19% amino acid distance) from previously described G9 strains. Nucleotide and amino acid alignments revealed that the 3′ end of this gene is highly divergent from other G9 VP7 genes suggesting that it arose through extensive accumulation of point mutations. The results of this study demonstrate that diverse G9 strains circulated in Cameroon during 1999–2000.  相似文献   

16.
A genotype G3P[14] rotavirus strain was identified in a 12 year old child presenting to the Emergency Department of the Royal Children’s Hospital, Melbourne, with gastroenteritis. G3P[14] strains have been previously identified in rabbits in Japan, China, the USA and Italy and a single lapine-like strain from a child in Belgium.Full genome sequence analysis of RVA/Human-wt/AUS/RCH272/2012/G3P[14] (RCH272) revealed that the strain contained the novel genome constellation G3-P[14]-I2-R3-C3-M3-A9-N2-T6-E2-H3. The genome was genetically divergent to previously characterized lapine viruses and the genes were distantly related to a range of human bovine-like strains and animal strains of bovine, bat and canine/feline characteristics. The VP4, VP6, NSP2, NSP3, NSP4 and NSP5 genes of RCH272 clustered within bovine lineages in the phylogenetic analysis and shared moderate genetic similarity with an Australian bovine-like human strain RVA/Human-tc/AUS/MG6/1993/G6P[14]. Bayesian coalescent analysis suggested these genes of RCH272 and RVA/Human-tc/AUS/MG6/1993/G6P[14] were derived from a population of relatively homogenous bovine-like ancestral strains circulating between 1943 and 1989. The VP7, VP1, VP2 and NSP1 genes shared moderate genetic similarity with the Chinese strain RVA/Bat-tc/CHN/MSLH14/2011/G3P[3] and the VP3 gene clustered within a lineage comprised of canine and feline strains.This strain may represent the direct transmission from an unknown host species or be derived via multiple reassortment events between strains originating from various species. The patient lived in a household containing domesticated cats and dogs and in close proximity to a colony of Gray-headed Flying-foxes. However, without screening numerous animal populations it is not possible to determine the origins of this strain.  相似文献   

17.
Group A rotaviruses (RVA) are the leading cause of severe gastroenteritis in infants and young children worldwide. Due to their epidemiological complexity, it is important to compare the genetic characteristics of vaccine strains with the RVA strains circulating before the introduction of the vaccine in the Tunisian immunization program. In the present study, the nucleotide sequences of VP7 and VP81 (n = 31), the main targets for neutralizing antibodies, were determined. Comparison of antigenic epitopes of 11 G1P[8], 12 G2P[4], 4 G3P[8], 2 G4P[8], 1 G6P[9] and 1 G12P[8] RVA strains circulating in Tunisia from 2006 to 2011 with the RVA strains present in licensed vaccines showed that multiple amino acid differences existed in or near putative neutralizing domains of VP7 and VP81. The Tunisian G3 RVA strains were found to possess a potential extra N-linked glycosylation site. The Tunisian G4 RVA were closely related to the G4 vaccine strain in RotaTeq, belonging to the same lineage, but the alignment of their VP7 amino acids revealed an insertion of an asparagine residue at position 76 which is close to a glycosylation site (aa 69–71). Despite several differences detected between Tunisian and vaccine strains, which may affect binding of neutralizing antibodies, both vaccines are known to protect against the vast majority of the circulating genotypes, providing an indication of the high vaccine efficiency that can be expected in a future rotavirus immunization program.  相似文献   

18.
Human group A rotaviruses (RVAs) possess a large genetic diversity and new RVA strains and G/P genotype combinations are been identified frequently. Only a few studies reporting the distribution and co-circulation of RVA G and P genotypes are available for Pakistan. This hospital based study showed a RVA prevalence rate of 23.8%, which is similar to RVA detection rates estimated in other Eastern Mediterranean countries. During 2010, the following RVA strains were found to co-circulate: G1P[8] and G2P[4] (both 24.3%), G1P[6] (12.1%), G9P[8] (10.8%), G9P[6] (5.4%), G12P[6] (6.7%), G6P[1] (2.7%) and mixed infections (6.7%). Sequence analyses of selected G1, G2, G9 and G12 RVA strains revealed a close evolutionary relationship with typical human RVA strains. Sequence identities among the Pakistani VP7 RVA genes encoding G1, G2, G9 and G12 ranged between 91.5–98.7%, 99.6–98.9%, 97.7–99.5% and 99.2–99.9%, respectively. Analysis of the VP4 genes revealed co-prevalence of distinct lineages of the P[8] genotype. P[6] and P[4] showed a close relationship with typical human RVA strains detected in several Asian countries. The two G6P[1] RVA strains were closely related to typical bovine RVA strains, suggesting one or multiple interspecies transmission events. Our data provide important baseline data on the burden of RVA disease and genotype distribution in Rawalpindi, Pakistan, which is important with respect to vaccine introduction in national immunization programs.  相似文献   

19.
Group A rotaviruses (RVAs) are important gastroenteric pathogens that infect humans and animals. This study aimed to analyze the complete genome sequence, i.e., 11 genome segments of the lapine rotavirus (LRV) identified in the intestine of a dead rabbit in the Republic of Korea (ROK) and to describe the genetic relationships between this lapine isolate [RVA/Rabbit-wt/KOR/Rab1404/2014/G3P[22] (Rab1404)] and other lapine isolates/strains. Rab1404 possessed the following genotype constellation: G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. The P[22] genotype was found to originate from rabbits and was for the first time identified in the ROK. Phylogenetic analysis showed that Rab1404 possessed VP1-3 and VP7 genes, which were closely related to those of the bat strain LZHP2; NSP1-4 genes, which were closely related to those of the simian strain RRV; and VP4, VP6, and NSP5 genes, which were closely related to the genes obtained from other rabbits. Interestingly, a close relationship between Rab1404 and simian RVA strain RVA/Simian-tc/USA/RRV/1975/G3P[3] for 8 gene segments was observed. RRV is believed to be a reassortant between bovine-like RVA strain and canine/feline RVA strains. Rab1404 and canine/feline RVAs shared the genes encoding VP1, VP3, VP7, NSP3, and NSP4. Additionally, the genome segments VP6 (I2), NSP1 (N2), and NSP5 (H3) of Rab1404 were closely related to those of bovine RVAs. This is the first report describing the complete genome sequence of an LRV detected in the ROK. These results indicate that Rab1404 could be a result of interspecies transmission, possibly through multiple reassortment events in the strains of various animal species and the subsequent transmission of the virus to a rabbit. Additional studies are required to determine the evolutionary source and to identify possible reservoirs of RVAs in nature.  相似文献   

20.
The vast diversity within rotavirus strains circulating in the developing countries continues to be a major challenge for the efficacy of currently used preset rotavirus vaccines. The sequence analysis and phylogeny of multiple genes of rotavirus strains enable identification of reassortant strains and their human or animal origin. The objective of this study was to monitor the genetic linkage between the rotavirus VP4(P), VP6(I), VP7(G) and NSP4(E) encoding genes. The G, P, I and E genotypes of a total of 80 rotavirus strains isolated from adolescent and adult cases of acute gastroenteritis at the two time points [1993–1996 (n = 67) and 2004–2007 (n = 13)] were determined by nucleotide sequencing and phylogenetic analysis. The rotavirus strains from the 1990s and 2000s revealed common combinations of genotypes (G1–P[8]–I1–E1, G2–P[4]–I2–E2, G3–P[8]–I1–E1 and G4–P[8]–I1–E1) in 47.8% and 30.8%, unusual combinations of the same genotypes (G2–P[8]–I2–E2, G9–P[6]–I1–E1, G9–P[6]–I1–E2, G9–P[6]–I2–E1 and G4–P[4]–I1–E2, G1–P[4]–I2–E1, G9–P[4]–I1–E1) in 7.5% and 23% and mixed infections of different G and P genotypes in 31.3% and 46.2%, respectively. Discordance in the association of I with E, G with I and E and P with I and E genotypes was found to be contributed respectively by 23.8–38.5%, 40.3–69.8% and 49.3–61.5% of the rotavirus strains at the two time points.The data suggest relatively high occurrence of intergenogroup reassortment in circulating rotavirus strains emphasizing the need for continuous surveillance and whole genome sequence based characterization of rotavirus strains for better understanding of their evolution and ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号