首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
Mutations in THAP1, a gene encoding a nuclear pro‐apoptotic protein, have been associated with DYT6 dystonia. First reports on the phenotype of DYT6 dystonia show an early onset dystonia with predominant cranio‐cervical and laryngeal involvement. Here we assessed the frequency and phenotype of THAP1 mutation carriers in a large Dutch cohort of adult‐onset (≥26 years) dystonia (n = 388) and early‐onset dystonia (n = 67) patients. We describe the phenotype of DYT6 dystonia patients and their response on GPi DBS. Overall, 3 nonsynonymous heterozygous mutations were detected in the early‐onset group (4.5%). Two DYT6 families were identified, showing a heterozygous phenotype. All patients had segmental or generalized dystonia, often associated with profound oromandibular and laryngeal involvement. No nonsynonymous mutations were found in patients with adult‐onset focal dystonia. Rare synonymous variants were identified in conserved regions of THAP1, two in the adult‐onset cervical dystonia group and one in the control group. Four DYT6 dystonia patients were treated with GPi DBS with moderate to good response on motor function but marginal benefit on speech. © 2010 Movement Disorder Society  相似文献   

2.
The TOR1A and THAP1 genes were screened for mutations in a cohort of 21 Brazilian patients with Primary torsion dystonia (PTD). We identified a de novo delGAG mutation in the TOR1A gene in a patient with a typical DYT1 phenotype and a novel c.1A > G (p.Met1?) mutation in THAP1 in a patient with early onset generalized dystonia with speech involvement. Mutations in these two known PTD genes, TOR1A and THAP1, are responsible for about 10% of the PTD cases in our Brazilian cohort suggesting genetic heterogeneity and supporting the role of other genes in PTD. © 2010 Movement Disorder Society  相似文献   

3.
Primary dystonia (PrD) is characterized by sustained muscle contractions, causing twisting and repetitive movements and abnormal postures. Besides DYT1/TOR1A gene, DYT6/THAP1 gene is the second gene known to cause primary pure dystonia. We screened 281 Serbian primary dystonia patients and 106 neurologically healthy control individuals for the GAG deletion in TOR1A gene and for mutations in THAP1 gene by direct sequencing. Nine subjects were found to have the GAG deletion in TOR1A gene. Four coding mutations, including two novel mutations, were identified in the THAP1 gene in five unrelated patients. Two mutations were missense, one was nonsense, and one was 24 bp duplication. None of the coding mutations were seen in 106 control individuals. In addition, one novel nucleotide change in the 5′UTR region of THAP1 gene was detected in two unrelated patients. The mutation frequency of THAP1 gene in Serbian patients with primary dystonia was 1.8 %, similar to the mutation frequency in other populations. Most of the patients reported here with THAP1 mutations had the clinical features of predominantly laryngeal or oromandibular dystonia. Our data expand the genotypic spectrum of THAP1 and strengthen the association with upper body involvement, including the cranial and cervical regions that are usually spared in DYT1-PrD.  相似文献   

4.
Mutations localized in THAP1 gene, locus 18p11.21 have been reported as causative of primary dystonia type 6 (DYT6). Disease which is characterized mainly by focal dystonia, frequently involving the craniocervical region, however associated also with early-onset generalized dystonia and spasmodic dysphonia. Here we report a novel mutation in the THAP1 gene identified in a Polish family with DYT6 phenotype – the c.15C > G substitution in exon 1 introducing the missense mutation p.Cys5Trp within the N-terminal THAP domain. The mutation was described in two generations, in patients showing a broad spectrum of focal and generalized dystonia symptoms of variable onset. Our results indicate that certain mutations in the THAP1 gene may lead to primary dystonia with remarkable intrafamilial clinical variability.  相似文献   

5.
6.
Mutations in the THAP1 gene on chromosome 8p21‐p22 (DYT6 locus) have been recently reported as causative of autosomal dominant primary torsion dystonia (PTD) in four Amish–Mennonite families and in 12 additional probands of different ancestry. We sequenced the THAP1 gene in 158 patients with DYT1‐negative PTD who had onset of symptoms below 30 years and/or positive family history. One sporadic Greek male patient, aged 57 years, was found to carry a novel heterozygous missense variant in THAP1 exon 3 (p.Cys170Arg), of likely pathogenic significance. This subject first presented with right writer's cramp at age of 10 years and, subsequently, developed left arm dystonia and an extremely severe left laterocollis, without further spreading to other body districts. Our findings expand the genotypic spectrum of THAP1 and strengthen the association with upper body involvement, including the cranial and cervical districts that are usually spared in DYT1‐PTD. © 2009 Movement Disorder Society  相似文献   

7.
Primary dystonias are a clinically and genetically heterogeneous group of movement disorders, but only for two of them, i.e., dystonia 1 and dystonia 6, the disease causing gene has been identified. Dystonia 1 is characterized by an early onset and is caused by a mutation in the TOR1A gene. Only recently, mutations in THAP1 have been shown to be the cause of DYT6 dystonia. We analyzed 610 patients with various forms of dystonia for sequence variants in the THAP1 gene by means of high resolution melting to delineate the prevalence of sequence variants and phenotypic variability. We identified seven sequence variants in patients and one sequence variant in a control. The sequence variants were not detected in 537 healthy controls. Four patients present with generalized dystonia with speech involvement of early onset, another three patients suffered exclusively from cervical dystonia of adult onset. These findings suggest that THAP1 sequence variations seem to be associated with different ages of onset and distribution of symptoms. Consequently, the phenotypic spectrum might be broader than previously assumed. © 2010 Movement Disorder Society  相似文献   

8.
The purpose of the study was to delineate clinical and electrophysiological characteristics as well as laryngoscopical and transcranial ultrasound (TCS) findings in THAP1 mutation carriers (MutC). According to recent genetic studies, DYT6 (THAP1) gene mutations are an important cause of primary early‐onset dystonia. In contrast to DYT1 mutations, THAP1 mutations are associated with primary early‐onset segmental or generalised dystonia frequently involving the craniocervical region and the larynx. Blood samples from twelve individuals of three German families with DYT6 positive index cases were obtained to test for THAP1 mutations. Eight THAP1 MutC were identified. Of these, six (three symptomatic and three asymptomatic) THAP1 MutC could be clinically evaluated. Laryngoscopy was performed to evaluate laryngeal dysfunction in patients. Brainstem echogenicity was investigated in all MutC using TCS. Two of the patients had undergone bilateral pallidal DBS. In all three symptomatic MutC, early‐onset laryngeal dystonia was a prominent feature. Laryngeal assessment demonstrated adductor‐type dystonia in all of them. On clinical examination, the three asymptomatic MutC also showed subtle signs of focal or segmental dystonia. TCS revealed increased substantia nigra (SN) hyperechogenicity in all MutC. Intraoperative microelectrode recordings under general anesthesia in two of the patients showed no difference between THAP1 and previously operated DYT1 MutC. The presence of spasmodic dysphonia in patients with young‐onset segmental or generalised dystonia is a hallmark of DYT6 dystonia. SN hyperechogenicity on TCS may represent an endophenotype in these patients. Pallidal DBS in two patients was unsatisfactory. © 2010 Movement Disorder Society  相似文献   

9.
10.
Dystonia is a movement disorder involving sustained muscle contractions and abnormal posturing with a strong hereditary predisposition and without a distinct neuropathology. In this study the TOR1A (DYT1) gene was screened for mutations in cases of early onset dystonia and early onset parkinsonism (EOP), which frequently presents with dystonic symptoms. In a screen of 40 patients, we identified three variations, none of which occurred in EOP patients. Two infrequent intronic single base pair (bp) changes of unknown consequences were found in a dystonia patient and the mother of an EOP patient. An 18-bp deletion (Phe323_Tyr328del) in the TOR1A gene was found in a patient with early onset dystonia and myoclonic features. This deletion would remove 6 amino acids close to the carboxy terminus, including a putative phosphorylation site of torsinA. This 18-bp deletion is the first additional mutation, beyond the GAG-deletion (Glu302/303del), to be found in the TOR1A gene, and is associated with a distinct type of early onset dystonia. Electronic Publication  相似文献   

11.
12.
The GAG deletion in the DYT1 gene usually causes a typical form of primary torsion dystonia (PTD) with early onset in a limb, rapid generalization, and sparing of cranial-cervical muscles, but atypical phenotypes have often been reported. Here, we describe a large DYT1 Italian family with phenotypically heterogeneous PTD that recapitulates all the atypical features associated with the DYT1 mutation, including late age at onset, focal or segmental phenotypes, onset or spreading of dystonia to the cranial-cervical muscles. Of 38 healthy family members, 15 also carried the DYT1 mutation, with an estimated penetrance of 21%. A literature review of atypical familial cases of DYT1-PTD showed that late onset, cervical involvement, and limited progression of dystonia are features frequently seen in DYT1 families. However, nearly all of these atypical patients fall within at least one of the clinical categories that best predict the DYT1 carrier status, namely, early onset, onset in a limb, and family history positive for early-onset dystonia.  相似文献   

13.
Since the advent of widespread testing for the presence of the DYT1 gene mutation, the range of phenotypes that have been associated with this genetic abnormality has expanded. We report on 5 DYT1 gene-positive patients with unusual phenotypes. Two of them had late presentation, one of these after peripheral injury. Three additional patients had late progression of symptoms, onset after exposure to haloperidol, and severe bulbar involvement, respectively. The clinical heterogeneity of this condition raises problems for clinicians in selecting appropriate patients for diagnostic testing. Also, because of the low phenotypic penetrance of DYT1 dystonia, the discovery of the DYT1 mutation in a patient with an atypical clinical syndrome may not necessarily suggest a causal relationship. We have, therefore, analysed all published clinical studies of DYT1 dystonia to guide clinical decision making concerning DYT1 gene testing based on current information.  相似文献   

14.
To identify the underlying genetic cause in a consanguineous family with apparently recessively inherited dystonia, we performed genome‐wide homozygosity mapping. This revealed 2 candidate regions including the THAP1 gene, where heterozygous mutations cause dystonia 6. A homozygous missense mutation in THAP1 (c.95T>A; p.Leu32His) was found in all 3 affected siblings. Symptoms started in childhood in the legs and became generalized within a few years. Three heterozygous mutation carriers were unaffected. Because THAP1 regulates the expression of the DYT1 gene, we used reporter gene assays to show that DYT1 expression was significantly increased for Leu32His. However, this increase was less pronounced than for other THAP1 mutations that cause dystonia in the heterozygous state. Our data suggest that homozygous THAP1 mutations cause dystonia and may be associated with a less severe dysfunction of the encoded protein compared with heterozygous disease‐causing mutations. © 2011 Movement Disorder Society  相似文献   

15.
R. Paudel, J. Hardy, T. Revesz, J. L. Holton and H. Houlden (2012) Neuropathology and Applied Neurobiology38, 520-534 Genetics and neuropathology of primary pure dystonia Neuropathology has been the key to understanding the aetiology of many neurological disorders such as Alzheimer's disease, Parkinson's disease, frontotemporal degeneration and cerebellar ataxias. Dystonia shares many clinical features with these conditions but research in general, has been unrewarding in providing information on disease processes. Neuropathological studies are few in number and only limited morphological abnormalities have been described. In the genetic literature, dystonia loci are represented as DYT and are assigned ascending numerals chronologically as they are identified. This review will concentrate on the neuropathology of primary pure dystonia, focusing on DYT1 and DYT6 and the correlation between clinical and genetic findings. Research in this area is incomplete and confounded by the rarity of post mortem brain tissue. However, recent findings, indicating a direct interaction between the torsinA (TOR1A) gene responsible for DYT1 and the thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene responsible for DYT6, have important implications in understanding these two entities and also for other members of this group of disorders.  相似文献   

16.
DYT1 primary torsion dystonia is an autosomal dominant disorder caused by deletion of a GAG triplet in exon 5 of the DYT1 gene. A significant proportion of individuals with early-onset generalized dystonia is believed to be DYT1 mutation carriers. We assessed the frequency of the GAG deletion in the DYT1 gene in a group of 61 Polish probands with clinical diagnosis of primary dystonia. The deletion was identified in four probands presenting with early-onset generalized disease (7%). Further studies in probands' families revealed two symptomatic and nine asymptomatic mutation carriers. We tested all mutation-positive individuals for the presence of some common polymorphisms within the DYT1 gene. Two of the 15 mutation-positive individuals additionally carried polymorphisms in 3'-UTR of the gene. Early onset in a limb and progression toward a generalized form, but not family history of dystonia, are indicative of DYT1 dystonia in Polish dystonic individuals.  相似文献   

17.
When primary torsion dystonia is caused by a GAG deletion in the TOR1A gene (DYT1 dystonia), it typically presents with an early-onset dystonia involving distal limbs, subsequently spreading to a generalized dystonia. We describe a large family with an unusually broad variability in the clinical features of their dystonia both with regard to severity and age of onset. The proband of this family succumbed in his second decade to malignant generalized dystonia, whereas other family members carrying the same mutation are either asymptomatic or display dystonia that may be focal, segmental, multifocal, or generalized in distribution. One family member had onset of her dystonia at age 64 years, probably the oldest reported in genetically confirmed DYT1 dystonia. We conclude that marked phenotypic heterogeneity characterizes some families with DYT1 dystonia, suggesting a role for genetic, environmental, or other modifiers. These findings have implications for genetic testing and counseling.  相似文献   

18.
BACKGROUND: Dystonia is a heterogenous group of movement disorders whose clinical spectrum is very wide. At least 13 different genes and gene loci have been reported. While a 3-bp deletion in the DYT1 gene is the most frequent cause of early limb-onset, generalized dystonia, it has also been found in non-generalized forms of sporadic dystonia. An 18-bp deletion in the DYT1 gene has also been reported. OBJECTIVES: We screened for the 3-bp and 18-bp deletions in the DYT1 gene among our sporadic, adult-onset primary dystonia patients in Singapore. We reviewed the literature to compare the frequency of DYT1 mutation between the East and the West. METHODS: We screened 54 patients with primary dystonia (focal: n=41; segmental: n=11; multifocal: n=1; generalized: n=1) for the deletions in the DYT1 gene. A careful review of all published literature on DYT1 screening among sporadic, non-familial, non-Ashkenazi Jewish patients was done. RESULTS: We did not detect any mutations in the exon 5 of the DYT1 gene in any of our patients. The frequency of DYT1 mutation amongst Asians (1.0%) was comparable to the West (1.56%) (p=NS). CONCLUSIONS: DYT1 mutations are uncommon amongst adult primary dystonia patients in Singapore.  相似文献   

19.
Primary torsion dystonia (PTD) is a clinically and genetically heterogeneous movement disorder. A GAG deletion at position 946 in the DYT1 gene is responsible for most cases of autosomal dominant early-onset PTD. We analysed the DYT1 mutation in 50 patients from a Serbian population, selected according to the proposed guidelines for diagnostic testing: (a) 38 patients with PTD onset < 26 years, and (b) 12 patients with the disease onset ± 26 years, but with at least one affected family member with early-onset dystonia. Only three apparently sporadic patients among the 50 individuals tested were positive for the GAG deletion in the DYT1 gene: one with typical, generalized, one with long-lasting, non-progressive segmental, and one with multifocal dystonia. Molecular analysis of relatives in 2 families revealed that the lack of family history was due to reduced penetrance. Received: 29 December 2000, Received in revised form: 23 March 2001, Accepted: 10 April 2001  相似文献   

20.
Primary monogenic forms of dystonia manifest solely or mainly with dystonia; they have been linked to a number of genes and loci and assigned "DYT" numbers. The pure dystonia syndrome early-onset primary dystonia (DYT1) manifests with dominantly-inherited generalized dystonia, often with focal onset in a limb. DYT1 is caused by a GAG deletion in the TOR1A gene. Mutations in the THAP1 gene cause DYT6, a form of pure dystonia that primarily involves cranio-cervical and upper limb muscles. Patients with the dystonia plus syndrome DYT5 display levodopa-responsive dystonia sometimes associated with tremor or parkinsonism (DYT5a, mutations in GCH1); a more severe phenotype with psychomotor involvement can be seen in recessive forms (DYT5b with TH mutations, SPR-deficiency syndrome). Other forms of dystonia plus syndromes include myoclonic dystonia (DYT11) and rapid-onset dystonia-parkinsonism (DYT12). Finally, paroxysmal exertion-induced dystonia (DYT18, GLUT1 deficiency) is caused by mutations in the SLC2A1 gene (DYT9 and DYT18). It is part of the paroxysmal dystonia group and manifests with paroxystic movements sometimes associated with seizures and psychomotor developmental delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号