首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antisera raised against the fixation products of L-glutamate and L-aspartate were used, singly or in combination, to study the ultrastructural localization of the amino acids in the rat dorsal horn, with post-embedding immunogold techniques. Immunostaining for each of the amino acids was also combined with immunolocalization of GABA, an important inhibitory neurotransmitter in the spinal cord, or synaptophysin, a synaptic vesicle glycoprotein. In addition, we examined the localization of glutamate immunoreactivity in relation to that of calcitonin-gene related peptide and substance P, two neuropeptides present in high concentrations in the dorsal horn. Glutamate- and aspartate-immunoreactive neuronal cell bodies, dendrites, axons and terminals were apparent in the first three laminae of the dorsal horn. In somatic and dendritic profiles, the immunolabel was present over the general cytoplasm and mitochondria; in the terminals, it was found over small, agranular vesicles, mitochondria and, at times, synaptic densities. Quantitative estimation indicated that the colloidal gold density in the glutamate-immunoreactive terminals was five-fold more than in any other neuronal profile. Both glutamate- and aspartate-immunopositive terminals made asymmetric synaptic contacts onto unlabelled dendrites; glutamate-positive terminals often formed the core of type I and II glomeruli. After double labelling of the same sections, glutamate and aspartate immunoreactivities consistently occurred in different axonal and terminal profiles. In these preparations, it was clearly seen that glutamate-immunoreactive terminals were far more numerous than (more than 10-fold) those immunoreactive for aspartate. Double labelling for glutamate or aspartate and GABA also revealed distinct staining of different terminals. Simultaneous immunolocalization of each of the amino acids and synaptophysin showed the amino acid and glycoprotein immunoreactivities co-localized in small, agranular vesicles in immunoreactive terminals. Finally, triple labelling of the same sections for glutamate, calcitonin gene-related peptide and substance P revealed that glutamate was often co-localized with either of the two neuropeptides in the same axonal boutons; terminals that showed simultaneous labelling for glutamate, calcitonin gene-related peptide and substance P were also noted. In all cases, the glutamate immunoreactivity was restricted to small, clear vesicles whereas the neuropeptide immunoreactivities were present in larger, dense-cored vesicles. Our observations demonstrate that there is an abundant glutamate immunoreactivity in the superficial layers of the rat dorsal horn, localized in neuronal profiles distinct from those containing aspartate or GABA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Glutamatergic components of the retrosplenial granular cortex in the rat   总被引:3,自引:0,他引:3  
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 microm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V-VI; some were also present in layers I-III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

3.
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 m in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

4.
Electron-microscopic immunocytochemical studies were performed to detect GABA and glycine immunoreactivity in presynaptic axon terminals in the central gray matter of the spinal cord of the lampreyLampetra fluviatilis. The immunopositive presynaptic terminals contacting identified dendrites of motoneurons and unidentified postsynaptic profiles included terminals immunopositive for GABA only (44%) and glycine only (26%), as well as terminals containing GABA and glycine (30%). Glycine-immunopositive presynaptic terminals contained flattened synaptic vesicles. Large synaptic vesicles with dense cores were present along with classical synaptic vesicles in 74% of GABA-immunopositive boutons. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 85, No. 4, pp. 515–522, April, 1999.  相似文献   

5.
Summary In this quantitative electron microscopic study we investigated the distribution of GABA axon terminals on rat abducens motoneurons by combining retrograde labelling of motoneurons with post-embedding immunodetection of GABA. We analysed the synapses on 13 cell bodies and 60 proximal dendritic profiles distributed along the entire rostro-caudal extent of the nucleus. For each of these two compartments, we analysed 1754 and 1176 axon terminals in contact with 6042 and 3299 m of postsynaptic membrane. The axon terminals were classified as Sv-type (containing spherical vesicles) or Pv-type (containing pleomorphic vesicles). The GABAergic terminals contained pleomorphic vesicles and established mainly symmetrical synaptic contacts. Their apposition lengths were greater than those of unlabelled terminals. On cell bodies, the percentage of GABAergic synaptic covering varied from 2.5% to 14.1% and the synaptic frequency of GABAergic axon terminals varied from 0.6% to 8.9%. These two parameters were significantly correlated with the diameter of the motoneurons. The percentage of synaptic covering and synaptic frequency were smaller on dendrites of small motoneurons than on those of large ones. The proximal dendrites of small motoneurons had a lesser GABAergic innervation than large ones. The total synaptic covering and frequency were smaller on somata than on dendrites. However, the percentage of synaptic covering by GABA terminals was higher on cell bodies than on proximal dendrites.  相似文献   

6.
The subnuclear and synaptic distribution of substance P immunoreactivity was examined in the rat interpeduncular nucleus at the light and electron microscope level. The nucleus possessed a prominent substance P-immunoreactive axonal plexus in the lateral and dorsomedial subnuclei, and in the dorsal cap of the rostral subnucleus. The density of substance P-immunoreactive axons in the remaining subnuclear divisions was sparse to moderate. Terminals of immunoreactive axons contained spherical vesicles and formed asymmetric contacts on dendritic processes exclusively. Immunoreactive neurons, restricted to the rostral subnucleus, possessed long, sparsely branched dendrites. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P-immunoreactive dendritic profiles. Axodendritic and axosomatic synapses containing substance P immunoreactivity pre- and postsynaptically were not observed. Ultrastructural evidence for synaptic relationships between substance P-containing profiles and those containing either choline acetyltransferase or glutamate decarboxylase was obtained by means of double antigen immunohistochemistry. Terminals of fasciculus retroflexus axons stained for choline acetyltransferase immunoreactivity formed asymmetric synaptic contacts with substance P-immunoreactive dendritic profiles. Few substance P-positive dendrites in the rostral subnucleus received terminals possessing glutamate decarboxylase activity. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P- and glutamate decarboxylase-immunoreactive dendritic profiles simultaneously. Terminals possessing either substance P or glutamate decarboxylase immunoreactivity formed synaptic contacts with dendritic processes of neurons in the lateral subnucleus. Many of the neurons within this subnuclear division contained glutamate decarboxylase. This study provides direct evidence of synaptic relationships between choline acetyltransferase-immunoreactive axons and substance P-immunoreactive dendritic profiles, and between substance P-positive axons and glutamate decarboxylase-immunoreactive dendrites. These findings reveal that two types of transmitter-specific axons of the fasciculus retroflexus innervate neuronal populations of the interpeduncular nucleus stained immunohistochemically for either substance P or glutamate decarboxylase.  相似文献   

7.
Summary GABA-immunoreactive neuronal elements were detected in the stratum griseum superficiale or superficial gray layer of the rat superior colliculus in an electron microscopic study, using postembedding immunocytochemistry with protein A-gold as a marker. In addition to neuronal somata, two types of GABA-immunoreactive neuronal processes were observed. Numerous profiles of axon terminals (1 m in diameter) with clear round or pleomorphic synaptic vesicles and mitochondria were found to establish mostly symmetrical synaptic contacts with GABA-immunonegative dendrites of various diameters. Some axosomatic synapses could also be observed. The gold particle density in this axon terminal compartment was between seven and 13 times the background level. The stratum griseum superficiale also included GABA-immunoreactive dendrites, some of which contained clear synaptic vesicles. These dendritic profiles always formed the presynaptic component of dendrodendritic synaptic contacts. The density of the gold particles in the dendritic compartment, taken as a whole, was between three and 13 times the background level. Furthermore, the relationship between the GABA-immunoreactive neuronal elements and degenerating retinal nerve endings identified in the left stratum griseum superficiale following enucleation of the right eye was investigated after a 7-day survival period. The profiles of degenerating retinal nerve endings (0.7 m in diameter) were found to be devoid of any specific labelling. Most of the retinal boutons established axodendritic synapses of the asymmetrical type with an immunonegative dendrite, which was also contacted in some cases by a GABA-immunopositive axon terminal. Other retinal endings were presynaptic to GABA-immunopositive dendritic profiles with synaptic vesicles, some of which were found to contact in turn an unlabelled dendrite, thereby completing serial synaptic relationships. More rarely, retinal endings formed the presynaptic component of possible axoaxonic synapses with GABA-positive terminals presumed to be axonic in nature. It can be concluded that the retinal input to the superficial gray layer often converges with a GABAergic axonal input on a dendritic target, the neurotransmitter specificity of which is unknown. In other cases, retinal terminals synaptically contact GABA-immunolabelled conventional and presynaptic dendrites and probably also some axon terminals; this might provide an anatomical substrate for the control of GABA release from these GABAergic processes. These results indicate that transmitter GABA plays an important role in retinocollicular transmission.  相似文献   

8.
The ultrastructure of the retinorecipient layers of the lamprey optic tectum was analysed using tract tracing techniques combined with GABA and glutamate immunocytochemistry. Two types of neurons were identified; a population of large GABA-immunonegative cells, and a population of smaller, highly GABA-immunoreactive interneurons, some of whose dendrites contain synaptic vesicles (DCSV). Five types of axon terminals were identified and divided into two major categories. The first of these are GABA-immunonegative, highly glutamate-immunoreactive, contain round synaptic vesicles, make asymmetrical synaptic contacts, and can in turn be divided into AT1 and AT2 terminals. The AT1 terminals are those of the retinotectal projection. The origin of the nonretinal AT2 terminals could not be determined. AT1 and AT2 terminals establish synaptic contacts with DCSV, with dendrites of the retinopetal neurons (DRN), and with conventional dendritic (D) profiles. The terminals of the second category are GABA-immunoreactive and can similarly be divided into AT3 and AT4 terminals. The AT3 terminals contain pleiomorphic synaptic vesicles and make symmetrical synaptic contacts for the most part with glutamate-immunoreactive D profiles. The AT4 terminals contain rounded synaptic vesicles and make asymmetrical synaptic contacts with DRN, with DCSV, and with D profiles. A fifth, rarely observed category of terminals (AT5) contain both clear synaptic vesicles and a large number of dense-core vesicles. Synaptic triads involving AT1, AT2 or AT4 terminals are rare. Our findings are compared to these of previous studies of the fine structure and immunochemical properties of the retinorecipient layers of the optic tectum or superior colliculus of Gnathostomes.  相似文献   

9.
Summary The synaptic organization of the sector of the dorsal lateral geniculate nucleus has been examined by electron microscopy in normal adult hamsters and in adult hamsters subjected to unilateral eye enucleation or intravitreal injection of horseradish peroxidase.Two types of neuropil are apparent. Islands of complex neuropil partially enclosed by astrocyte processes (synaptic glomeruli) are surrounded by a sea of simpler non-glomerular neuropil. The latter is dominated by small axon terminals with spherical synaptic vesicles and Gray type 1 axodendritic contacts (SR-boutons) and also contains axon terminals with flattened synaptic vesicles (F-boutons). The glomerular neuropil contains (i) exclusively postsynaptic dendrites and dendritic protrusions of presumptive projection cells; (ii) pre- and postsynaptic pleomorphic-vesiclecontaining P-boutons (interpreted as appendages of the dendrites of interneurons); (iii) large axon terminals containing spherical synaptic vesicles and large pale mitochondria (R-boutons) which were experimentally identified as retinal terminals and which are presynaptic to both projection cell dendrites and P-boutons at Gray type 1 contacts; (iv) F-boutons (minority component). F-boutons and P-boutons are presynaptic to both projection cell dendrites and P-boutons and P-boutons are the intermediate elements of various serial synapses including triplet (triadic) synapses. Medium-large terminals with spherical synatpic vesicles and dark mitochondria (RLD-boutons) which were commonly invaginated by dendritic spines of projection cells in small glomerulus-like formations were also identified. The origin of RLD-boutons is unknown but SR-boutons probably derive chiefly from ipsilateral visual cortex and possibly also from superior colliculus, and non-glomerular F-boutons probably originate in the ipsilateral thalamic reticular nucleus.No differences in synaptic organization were found between the part of the nucleus which receives uncrossed retinal input and the part which receives crossed input, nor were differences seen in the size, fine structure or relationships between the terminals of identified crossed and uncrossed retinal axons.  相似文献   

10.
Several studies indicate that metabotropic glutamate receptors (mGluRs) participate in the transmission of visual stimuli in optic layers of the superior colliculus (SC). We examined the cellular and subcellular distribution of the group III mGluR4a in superficial layers of the rat SC by means of a specific antiserum and a preembedding immunogold method for electron microscopy. Deposits of mGluR4a immunoparticles were mostly observed on presynaptic membranes of large synaptic terminals, which made asymmetrical synapses and contained abundant spherical, clear synaptic vesicles and numerous electron translucent mitochondria. These characteristic ultrastructural features correspond to retinocollicular synaptic terminals. Also, chains of synaptic retinal terminals along dendrites were labeled for mGluR4a. About 70% of morphologically identified retinal terminals were mGluR4a immunopositive. Furthermore, mGluR4a immunoreactivity in SC greatly disappeared following retinal ablation. About 28% of cortical terminals identified by anterograde tracing showed mGluR4a labeling, whereas only 2% of collicular GABAergic profiles were labeled for mGluR4a. These results reveal that retinal terminals are the major contributors to the mGluR4a immunoreactivity observed in the superior collicular circuitry.  相似文献   

11.
马晓凯  王滨  范凯  付元山 《解剖学报》2007,38(2):139-143
目的 探讨大鼠丘脑前核-海马下托复合体神经元环路的突触结构及谷氨酸分布特征.方法 应用HRP束路追踪结合包埋后胶体金免疫电镜技术.结果 在丘脑前核内,可见HRP顺行标记的海马下托复合体传入轴突终末,终末多为卵圆形,内含圆形透亮突触小泡和数个线粒体.其做为突触前成分与HRP标记的树突或非HRP标记的树突形成非对称性突触.在谷氨酸胶体金免疫反应切片上,胶体金颗粒标记胞体、树突、轴突终末等.HRP标记的轴突终末和一些非HRP标记的与突触后成分形成非对称性突触的轴突终末(Gray Ⅰ型)内,胶体金颗粒密度明显大于背景(胞体、树突、Gray Ⅱ型轴突终末等)的胶体金颗粒密度.其平均胶体金颗粒密度为突触后树突的3倍多,为对称性轴突终末(Gray Ⅱ型)的6倍多.在两张邻近的连续切片,γ-氨基丁酸(GABA)胶体金免疫反应切片上,GABA胶体金颗粒浓重标记Gray Ⅱ型轴突终末,背景标记极少;而非对称性轴突终末(Gray Ⅰ型)胶体金颗粒标记极弱.谷氨酸胶体金免疫反应切片上,Gray Ⅱ型轴突终末胶体金颗粒标记极弱.GABA阳性轴突终末与HRP标记的树突形成对称性突触,在同一树突上可见GABA能轴突终末形成的对称性突触和其他轴突终末形成的非对称性突触.结论 丘脑前核内来自海马下托复合体投射神经元的轴突终末是谷氨酸能的;来自海马下托复合体皮质投射神经元轴突终末,在丘脑前核与投射至海马下托皮质的神经元树突形成非对称性轴-树突触.  相似文献   

12.
An immunogold procedure has been used on ultrathin sections of the parvo- and magnocellular layers of the dorsal lateral geniculate of the rhesus monkey to estimate quantitatively at the electron microscopic level the intensity of immunoreactivity to an antibody against glutamate over profiles of retinal, cortical, GABAergic synaptic terminals and glial cells. GABAergic terminals were identified directly by immunogold reactivity to a GABA antibody or by ultrastructural features. The results showed that in both of the main subdivisions of the geniculate the densities of immunogold particles over cortical and retinal terminals were about two- to three-fold higher than those over GABAergic terminals or glial profiles. In addition, cortical and retinal terminals showed higher positive correlations of glutamate immunogold particle densities to synaptic vesicle densities than did GABAergic terminals. These differences suggest higher and lower concentrations of glutamate corresponding to transmitter and metabolic pools of this amino acid in axon terminals of retinal and cortical origins versus GABAergic terminals, respectively, in the dorsal lateral geniculate nucleus of the macaque.  相似文献   

13.
Corticotropin-releasing factor(CRF)-immunoreactive terminals form synaptic specializations with locus coeruleus (LC) dendrites in rat brain. Within these terminals, CRF-immunoreactive dense core vesicles are colocalized with non-labeled dense core vesicles and clear vesicles, implicating other neuromodulators in the actions of CRF on LC neurons. Excitatory (glutamate) and inhibitory (GABA) amino acid afferents to the LC, have been identified which regulate noradrenergic responses to sensory stimuli. This study was designed to determine whether these amino acid neurotransmitters are colocalized with CRF in terminals within the LC/peri-LC region in the rat. Sections through the LC region that were dually labeled using immunohistochemical techniques to visualize either CRF and glutamate or CRF and GABA were examined using electron microscopy. Numerous terminals that contained immunolabeling for both CRF and glutamate (e.g. 30% of 106 CRF-immunoreactive terminals and 13% of 232 glutamate-immunolabeled terminals) were observed in the peri-LC. Additionally, single labeled CRF and glutamate terminals were often apposed to one another or found to converge on common dendritic targets. In contrast, relatively few terminals exhibited immunolabeling for both GABA and CRF (5% of 317 CRF-immunoreactive terminals). However, evidence for a postsynaptic effect of CRF on GABA-containing profiles included synapses between CRF axon terminals and GABA-labeled dendrites (10% of 317 CRF-labeled terminals), as well as appositions between CRF- and GABA-labeled terminals.These results indicate that CRF is preferentially colocalized with glutamate in the rostrolateral LC region and may impact on glutamate neurotransmission in the LC via presynaptic or postsynaptic actions. They argue against colocalization of CRF with GABA, although CRF may modulate GABA release via postsynaptic effects in the peri-LC region.  相似文献   

14.
The distribution of GABA-immunoreactivity was investigated in the principal retino-recipient layer of the optic tectum in the snake Vipera aspis. This layer, the stratum griseum et fibrosum superficiale, contained an important proportion (approximately 50%) of small GABA-immunoreactive interneurons, characterized by a voluminous invaginated nucleus surrounded by a thin rim of cytoplasm poor in organelles and occasionally showing pleiomorphic synaptic vesicles, which could also be observed in some of the dendrites that contained synaptic vesicles. In the neuropile, the GABA-immunoreactive profiles containing synaptic vesicles could be subdivided into dendrites containing synaptic vesicles and axon terminals with pleiomorphic synaptic vesicles. The dendrites containing synaptic vesicles (23.4% of all profiles containing synaptic vesicles) were postsynaptic either to optic terminals (39.2%), GABA-immunoreactive axon terminals with pleiomorphic synaptic vesicles (48.2%) or to immunonegative (S1) boutons with round synaptic vesicles (12.6%). These dendrites were presynaptic to GABA-immunoreactive (18%) neurons or immunonegative (82%) neurons. The axon terminals with pleiomorphic synaptic vesicles, which represented 47.4% of all profiles, were predominantly (99%) GABA-immunoreactive and four types could be distinguished according to cytological criteria. These axon terminals made synaptic contacts for the most part (78%) with immunonegative profiles, and more rarely (22%) with immunoreactive neurons. These data are compared to those previously obtained in the homologous structure of other vertebrate species, birds and mammals in particular.  相似文献   

15.
Immunocytochemical studies were carried out on the morphological relation between primary afferent central terminals (C-terminals) and GABAergic neurons in the mouse superficial dorsal horn. The superficial dorsal horn is composed of many synaptic glomeruli comprising two types: Type I with centrally located CI-terminals surrounded by several dendrites and few axonal endings, and Type II with centrally located CII-terminals surrounded by several dendrites and a few axonal endings. The CI-terminals are sinuous or scalloped with densely packed agranular synaptic vesicles, a few granular synaptic vesicles and mitochondria, and show an electron dense axoplasm, whereas the CII-terminals are large and round or rectangular with evenly distributed agranular synaptic vesicles, a number of granular synaptic vesicles and mitochondria, and show an electron opaque axoplasm. The immunoreaction of GABA was remarkable in the superficial laminae of the dorsal horn. Many interneuronal somata in the substantia gelatinosa showed GABAergic immunoreactivity. The immunoreaction was seen in the entire GABAergic neuroplasm, but not in the nucleus and its envelope. Most GABAergic features appeared as dendrites making postsynaptic contact with CI- or CII-terminals; i.e., numerous C-terminals made presynaptic contact with GABAergic dendrites. GABA immunoreactivity was seen over round synaptic vesicles and mitochondrial membranes. A few CII-terminals made presynaptic contact with GABAergic interneuronal somata. Previous physiological and anatomical studies have suggested that not only the cutaneous nociceptive primary afferent C-terminals but also mechanoreceptive primary afferent C-terminals make presynaptic contact with the GABAergic dendrites, boutons and soma. The presynaptic relation of these primary afferents with GABAergic neurons seems to provide morphological support for the essential feature of the gate control theory: primary afferent fibers may play a part in the modulation of nociceptive information via GABAergic neurons in the superficial dorsal horn. Small GABAergic terminals were found to make contact with blood capillaries suggesting the release of GABA into circulation.  相似文献   

16.
A light and electron microscopic study, combining HRP axonal tracing or degeneration and GABA immunocytochemistry, was performed in the lamprey Lampetra fluviatilis in order to analyze retinal and non-retinal inputs upon the retinopetal neurons localized in the reticular mesencephalic area (RMA). The iontophoretic deposit of HRP onto the central stump of the cut optic nerve produced a dense anterograde labeling in the retino-recipient strata marginale and cellulare externum of the optic tectum as well as the retrograde labeling of retinopetal neurons in the mesencephalic tegmentum. The large ascending proximal dendrites of the retinopetal neurons constituted a distinct bundle coursing first dorso-laterally in the dorsal mesencephalic tegmentum, and then dorso-medially in the strata fibrosum centrale and cellulare et fibrosum internum of the optic tectum before their distal portions penetrated the retino-recipient tectal layers. The distribution of GABA immunoreactivity was also investigated in the tectal layers and dorsal mesencephalic tegmentum with both pre- and post-embedding methods. The retinal terminals, identified either following HRP iontophoresis in the optic nerve or in early phases of degeneration after short-term survivals following retinal lesion, contained rounded-shaped synaptic vesicles and were always GABA immunonegative. They established asymmetrical synaptic contacts on the distal dendrites of RMA neurons and represented 11.4% of all terminals contacting such neurons (15% of these neurons were GABA immunopositive). The dense extra-retinal input upon the retinopetal RMA neurons was composed of five types of axon terminal profiles, either GABA-immunopositive or -immunonegative. Considering the different cytochemical types of axon terminals contacting RMA neurons, as well as the characteristics of the retinal targets of these neurons, we suggest that, globally, the effects of RMA neurons upon the retina are mainly inhibitory.  相似文献   

17.
Summary This electron microscopic study, based on serial section analysis, describes the synaptic organization of the interstitial subnucleus of the nucleus of the solitary tract and identifies the terminals of the vagal primary afferents utilizing degeneration and HRP transport. The interstitial subnucleus contains sparsely scattered cell bodies, numerous dendrites and axon terminals, and bundles of unmyelinated and myelinated axons. The cell bodies which are small in diameter have an organelle poor cytoplasm and a large invaginated nucleus.Axon terminals can be classified into two main types according to their vesicular shape. The first type contains clear, round vesicles and can be further subdivided into two subgroups on the basis of their morphology and the size of their vesicles. In the first subgroup the terminals are small, contain a few mitochondria and their vesicles are densely packed with an homogeneous size. In the second subgroup the terminals which vary from small to large, contain many mitochondria and contain round vesicles which are heterogeneous in size. The second main terminal type consists of axon terminals containing pleomorphic vesicles which are associated with asymmetrical or symmetrical synaptic contacts on dendrites. Axo-axonic contacts are present in the interstitial subnucleus. In general, the presynaptic axon terminals contain pleomorphic vesicles and the postsynaptic elements contain round vesicles of varying size. In some dendrites, identified by the presence of ribosomes, groups of round and/or pleomorphic vesicles are found associated with synaptic contacts. These dendrites are presynaptic to conventional dendrites and postsynaptic to axon terminals. After removal of the nodose ganglion, degenerative alterations are seen only at the caudal and middle levels of the interstitial subnucleus. Degeneration occurs in a few myelinated axons and in axon terminals which usually contain a mixture of small and larger round, clear vesicles. After HRP injection into the vagus nerve, the HRP reaction product is visible in axon terminals filled with clear, round vesicles which are heterogeneous in size. The labelled axon terminals establish single or multiple synaptic contacts.This study demonstrates that terminals of vagal primary afferents consist principally of terminals of the second subgroup. The morphology of these terminals are compared to primary afferents in the brainstem and spinal cord.  相似文献   

18.
Morphological features of nerve fibers and synapses containing GABA and [Met]enkephalin were studied at the light and electron microscopic levels in the superior cervical ganglia of rats by pre- and postembedding immunohistochemistry. Both GABA and [Met]enkephalin immunoreactivities were found in varicose nerve fibers, forming diffuse networks which were denser in the rostral than in the caudal part of each ganglion. For both antigens rich and basket-like innervation was observed around some of the principal neurons. The GABA-immunoreactive fibers were evenly stained, while in case of [Met]enkephalin-positive nerve fibers the varicosities showed intensive immunopositivity only. Postembedding immunochemistry revealed that both inhibitory substances were located in axon varicosities which established asymmetric synapses of Gray I type. Fine structural investigation revealed that GABA-like immunoreactivity was confined in the nerve endings to the clear synaptic vesicles of 40 nm diameter, whereas the immunogold particles, indicating the occurrence of [Met]enkephalin, were located over the large dense-cored vesicles of 120 nm diameter. The clear and dense-cored vesicles were, however, mixed in the nerve endings labeled by either neurotransmitter substance. Interestingly, the [Met]enkephalin-immunopositive axon terminals were found, consequently, in synaptic contacts with dendrites containing dense bodies in a row underlying the postsynaptic membrane thickening. Since nerve terminals with GABA-like immunoreactivity established synapses of Gray I type without such subjunctional bodies, one can reasonably assume that, in spite of similarities in termination pattern, there is no co-existence of GABA and enkephalin in the axons in the superior cervical ganglion.  相似文献   

19.
Summary The perigeniculate nucleus of the cat (PGN) was examined at light and electron microscopic levels after immunocytochemical labeling for the gamma-aminobutyric acid (GABA) synthesizing enzyme, glutamic acid decarboxylase (GAD). In light microscopic sections, virtually all perikarya were found to be labeled (GAD+), as well as proximal dendrites, fibres and punctiform elements. Cells in the thalamic reticular nucleus (TRN) dorsal to PGN were also labeled. Ultrastructural analysis of PGN showed immunoreactivity in all somata, in dendrites and in the following vesicle containing profiles: 1.) F1 terminals, which are characterized by large size, dark mitochondria, and pleomorphic vesicles. These terminals form symmetrical synaptic contacts with somata, somatic spines and with dendrites of GAD+ PGN cells. 2.) F2 terminals, which are smaller than F1 terminals, contain also pleomorphic vesicles and frequently make serial synapses of the symmetric type with other F2 terminals. Presumably, F1 terminals are formed by collaterals of PGN-cell axons and F2 terminals by vesicle containing dendrites of PGN cells. Terminals devoid of immunoreactivity included: 1.) RLD terminals characterized by large size, round vesicles, dark mitochondria, and by asymmetric synaptic contacts with somata, especially with somatic spines, and with dendrites of GAD+ perigeniculate neurons; 2.) RSD terminals, characterized by small size, round vesicles and dark mitochondria, which make asymmetric synapses with GAD+ dendrites of medium and small size; 3.) Multivesicular (MV) terminals with variably shaped vesicles including dense core vesicles synapsing on GAD+ dendrites. There are reasons to believe that RSD terminals belong to corticofugal axons and RLD terminals to collateral axons of LGN relay cells. The origin of MV terminals remains to be determined. The GABAergic nature of the PGN cells conforms with the presumed function of these cells as mediators of inhibition of LGN relay cells. The complex synaptic relations observed between GAD+ elements in the PGN would allow for reciprocal inhibition between perigeniculate cells.Supported in part by NIH grants EY02877 to V.M. Montero and HD 03352 to the Waisman Center  相似文献   

20.
A postembedding immunoperoxidase method for light microscopy was used to localize glutamate-like immunoreactivity in the rabbit basilar pontine nuclei. Labelled fibre bundles, neuronal cell bodies and numerous puncta of diverse size were heavily glutamate immunoreactive throughout all subdivisions of the pontine nuclei. To determine whether some of the glutamate-immunoreactive puncta were synaptic terminals of posterior cingulate cortical neurons, a double-labelling technique involving an anterograde tract-tracing method and a postembedding immunogold procedure for electron microscopy was used. A quantitative evaluation of gold particle densities revealed that anterogradely labelled cingulopontine synaptic terminals were about twice as immunoreactive as their postsynaptic dendrites, perikaryal and glial profiles and about three times more than symmetric synaptic terminals. The present results indicate that the posterior cingulopontine projection contains high levels of glutamate at its synaptic terminals. This observation provides further support to the role for glutamate as a neurotransmitter in the corticopontine pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号