首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolonged intrathecal (i.t.) administration of morphine results in tolerance to morphine-induced antinociception. We found that co-administration of selective metabotropic glutamate receptor subtype 5 antagonist MPEP with morphine could suppress the loss of morphine-induced antinociception and inhibit the development of tolerance to morphine-induced antinociceptive effect. Whereas, the specific metabotropic glutamate receptor subtype 5 agonist CHPG does the opposite. As the activation of NMDA receptor after chronic morphine administration has been verified, we suppose there is an enhanced activation of mGluR5 during the development of tolerance to morphine-induced antinociception. Activation of mGluR5 may mobilize the release of intracellular Ca2+ and activate PKC, leading to morphine-induced antinociception suppression. We conclude that mGluR5 contributes to the development of tolerance to morphine-induced antinociception after chronic morphine exposure.  相似文献   

2.
N-Methyl-d-aspartate receptor (NMDAR) and Group I metabotropic glutamate receptors (mGluRs) are involved in the process of morphine tolerance. Previous studies have shown that Group I mGluRs can modulate NMDAR functions in the central nervous system. The aim of the present study was to examine the influence of Group I mGluRs antagonists on the expression of NMDA receptor NR1 subunit (NR1) in the rat spinal cord. Morphine tolerance was induced in rats by repeated administration of 10 μg morphine (intrathecal, i.t.) twice a day for 7 consecutive days. Tail flick test was used to assess the effect of Group I mGluRs antagonist, AIDA ((RS)-1-Aminoindan-1,5 dicarboxylic acid) or mGluR5 antagonist, MPEP (2-methyl-6-(phenylethynyl)pyridine) on morphine antinociceptive tolerance. The expression of NR1 was measured by immunofluorescence and Western blot. Behavioral tests revealed that both AIDA and MPEP attenuated the development of morphine tolerance. The expression of NR1 was upregulated in the dorsal horn of spinal cord after chronic morphine treatment. AIDA or MPEP co-administered with morphine attenuated morphine induced upregulation of NR1. These findings suggest that the development of morphine tolerance partly prevented by Group I mGluRs antagonists may due to its inhibitory effect on the expression of NR1 subunit.  相似文献   

3.
Intraspinal injection of quisqualic acid, a mixed kainic acid/2-amino-3(3-hydroxy-5-methylisoxazol-4-yl)propionic acid and metabotropic glutamate receptor agonist, produces an excitotoxic injury that leads to the onset of both spontaneous and evoked pain behavior as well as changes in spinal and cortical expression of opioid peptide mRNA, preprodynorphin and preproenkephalin. What characteristics of the quisqualic acid-induced injury are attributable to activation of each receptor subtype is unknown. This study attempted to define the role of activation of the kainic acid/2-amino-3(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and metabotropic glutamate receptor subtypes in the regulation of opioid peptide expression and the onset of spontaneous and evoked pain-related behavior following excitotoxic spinal cord injury by comparing quisqualic acid-induced changes with those created by co-injection of quisqualic acid and the kainic acid/AMPA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline, (NBQX) or the metabotropic antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Therefore, 42 male Long-Evans adult rats were divided into seven treatment groups and received intraspinal microinjections of saline (sham), 0.5% dimethylsulphoxide (sham), quisqualic acid (1.2 microl, 125 mM), NBQX (1.2 microl, 60 microM), AIDA (1.2 microl, 250 microM), quisqualic acid/NBQX (1.2 microl, 125 mM/60 microM), or quisqualic acid/AIDA (1.2 microl, 125 mM/250 microM) directed at spinal levels thoracic 12-lumbar 2. Behavioral observations of spontaneous and evoked pain responses were completed following surgery. After a 10-day survival period, animals were killed and brain and spinal cord tissues were removed and processed for histologic analysis and in situ hybridization. Both AIDA and NBQX affected the quisqualic acid-induced total lesion volume but only AIDA caused a decrease in the percent tissue damage at the lesion epicenter. Preprodynorphin and preproenkephalin expression is increased in both spinal and cortical areas in quisqualic acid-injected animals versus sham-, NBQX or AIDA-injected animals. NBQX did not affect quisqualic acid-induced spinal or cortical expression of preprodynorphin or preproenkephalin except for a significant decrease in preproenkephalin expression in the spinal cord. In contrast, AIDA significantly decreases quisqualic acid-induced preprodynorphin and preproenkephalin expression within the spinal cord and cortex. AIDA, but not NBQX, significantly reduced the frequency of, and delayed the onset of, quisqualic acid-induced spontaneous pain-related behavior.From these data we suggest that both the kainic acid/AMPA and metabotropic glutamate receptor subtypes are involved in the induction of the excitotoxic cascade responsible for quisqualic acid-induced neuronal damage and changes in opioid peptide mRNA expression, while metabotropic glutamate receptors may play a more significant role in the onset of post-injury pain-related behavior.  相似文献   

4.
It is well known that prolonged exposure to morphine results in tolerance to morphine-induced antinociception. In the present study, we found that mice that were tolerant to morphine-induced antinociception exhibited an increase in immunoreactivity for the neural cell adhesion molecule in the dorsal horn of the spinal cord, which was highly overlapped with immunoreactivity for the increased metabotropic glutamate receptor 5 induced by morphine. These findings support the idea that repeated stimulation of μ-opioid receptors increases the expression of neural cell adhesion molecule and metabotropic glutamate receptor 5. This phenomenon leads to the enhanced excitatory synaptic transmission in the dorsal horn of the spinal cord, and in turn suppresses the morphine-induced antinociception.  相似文献   

5.
The stimulation of glutamate receptors plays a relevant role in the development of behavioral sensitization to psychostimulants, while less clear results have been obtained on their role in morphine sensitization. We addressed this issue by comparing the development of cocaine and morphine sensitization under a continuous s.c. infusion of the N-methyl-D-aspartate (NMDA) antagonist dizocilpine (0.1 mg/kg/24 h). Moreover, we studied the expression of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits in discrete limbic areas of rats sensitized to morphine or cocaine with or without the concomitant dizocilpine infusion. It was observed that dizocilpine infusion did not prevent the development of morphine sensitization, while it prevented the development of tolerance to morphine-induced analgesia. Finally, morphine-sensitized animals did not present any modification in the subunit expression of glutamate receptors in the brain areas examined. In agreement with previous results, we found that dizocilpine infusion prevented the development of cocaine sensitization. Moreover, we observed that rats sensitized to cocaine presented a significant increase in the levels of GLUR1, NR1 and NR2B, in the nucleus accumbens, and of NR2B in the hippocampus compared to control animals. Such modifications were absent in rats administered cocaine under dizocilpine infusion.We conclude that: (i) morphine sensitization is a neuroadaptive phenomenon which does not appear to require NMDA receptor activity in order to develop; (ii) cocaine sensitization is clearly dependent on NMDA receptor activity, as dizocilpine infusion prevented the occurrence of glutamate receptors modifications as well as the development of sensitization.  相似文献   

6.
The medial thalamus contains abundant mu-opioid receptors and is activated by acute morphine administration. However, the role of the medial thalamus in the rewarding effects of morphine is unclear. The present study examined whether mu-opioid receptors of the medial thalamus influenced the acquisition and expression of morphine-induced conditioned place preference (CPP) in rats. An unbiased apparatus and biased subject assignment were used. Administration of morphine in increasing doses (2 mg/kg, 4 mg/kg, 6 mg/kg, 10 mg/kg, s.c.) was paired with an initially non-preferred chamber and saline administration was paired with an initially preferred chamber. Conditioning trials were conducted twice daily for 4 days. Microinjection of the irreversible mu-opioid receptor antagonist, beta-funaltrexamine (5 microg/rat), into the medial thalamus 23 h prior to each morphine conditioning completely blocked the acquisition of CPP. However, microinjection of beta-funaltrexamine into the medial thalamus after morphine conditioning trials, but 23 h prior to a test session, had no effect on the expression of CPP. It is concluded that mu-opioid receptors in the rat medial thalamus are involved in the acquisition, but not expression, of morphine-induced CPP.  相似文献   

7.
Modulation of glutamatergic transmission by neuropeptides is an essential aspect of neuronal network activity. Activation of the hypothalamic somatostatin sst2 receptor subtype by octreotide decreases AMPA glutamate responses, indicating a central link between a neurohormonal and neuromodulatory peptide and the main hypothalamic fast excitatory neurotransmitter. In mediobasal hypothalamic slices, sst2 activation inhibits the AMPA component of glutamatergic synaptic responses but is ineffective when AMPA currents are pharmacologically isolated. In mediobasal hypothalamic cultures, the decrease of AMPA currents induced by octreotide requires a concomitant activation of sst2 receptors with either NMDA and/or metabotropic glutamate receptors. This modulation depends on changes in intracellular calcium concentration induced by calcium flux through NMDA receptors or calcium release from intracellular stores following metabotropic glutamate receptor activation. These results highlight an unusual regulatory mechanism in which the simultaneous activation of at least three different types of receptor is necessary to allow somatostatin-induced modulation of fast synaptic glutamatergic transmission in the hypothalamus.  相似文献   

8.
Glutamate receptor expression in multiple sclerosis lesions   总被引:3,自引:0,他引:3  
Blockade of receptors for the excitatory neurotransmitter glutamate ameliorates neurological clinical signs in models of the CNS inflammatory demyelinating disease multiple sclerosis (MS). To investigate whether glutamate excitoxicity may play a role in MS pathogenesis, the cellular localization of glutamate and its receptors, transporters and enzymes was examined. Expression of glutamate receptor (GluR) 1, a Ca(++)-permeable ionotropic AMPA receptor subunit, was up-regulated on oligodendrocytes in active MS lesion borders, but Ca(++)-impermeable AMPA GluR2 subunit levels were not increased. Reactive astrocytes in active plaques expressed AMPA GluR3 and metabotropic mGluR1, 2/3 and 5 receptors and the GLT-1 transporter, and a subpopulation was immunostained with glutamate antibodies. Activated microglia and macrophages were immunopositive for GluR2, GluR4 and NMDA receptor subunit 1. Kainate receptor GluR5-7 immunostaining showed endothelial cells and dystrophic axons. Astrocyte and macrophage populations expressed glutamate metabolizing enzymes and unexpectedly the EAAC1 transporter, which may play a role in glutamate uptake in lesions. Thus, reactive astrocytes in MS white matter lesions are equipped for a protective role in sequestering and metabolizing extracellular glutamate. However, they may be unable to maintain glutamate at levels low enough to protect oligodendrocytes rendered vulnerable to excitotoxic damage because of GluR1 up-regulation.  相似文献   

9.
The interactions of dopaminergic receptors and nitric oxide (NO) with morphine-induced memory of passive avoidance have been investigated in mice. Pre-training administration of morphine (1, 3 and 5 mg/kg, s.c.) dose-dependently decreased the learning of a one-trial passive avoidance task. Pre-training administration of L-arginine, a nitric oxide precursor (50, 100 and 200 mg/kg, i.p.), alone did not affect memory formation. The drug (100 and 200 mg/kg) decreased significantly amnesia induced by pre-training morphine (5 mg/kg). Pre-training administration of L-NAME (N(G)-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (20 and 30 mg/kg, i.p.), dose-dependently impaired memory formation. In addition, co-pretreatment of different doses of L-NAME (10, 20 and 30 mg/kg) with lower dose of morphine (1 mg/kg), which did not induce amnesia by itself, caused inhibition of memory formation. Pre-training administration of apomorphine, a dopaminergic receptor agonist (0.25, 0.5 and 1 mg/kg, i.p.), alone also did not affect memory formation, but morphine-induced amnesia was significantly inhibited by pretreatment with apomorphine (0.5 and 1 mg/kg, 5 min, i.p.). On the other hand, the inhibition of morphine-induced amnesia by L-arginine (200 mg/kg, i.p.) was significantly decreased by pretreatment with different doses of dopamine D1 receptor antagonist, SCH 23390 (0.001, 0.01 and 0.1 mg/kg, i.p.) or D2 receptor antagonist, sulpiride (12.5, 25, 50 and 100 mg/kg, i.p.). However, the dopamine receptor antagonists could not affect memory formation by themselves. It may be concluded that the morphine-induced impairment of memory formation can be prevented by nitric oxide donor and, in this effect, dopaminergic mechanism is involved.  相似文献   

10.
Injections of a broad spectrum glutamate receptor antagonist into the pontine intertrigeminal region (ITR) exacerbate vagal reflex apnea produced by intravenous serotonin infusion. This effect is not reproduced by ITR injections with either NMDA or AMPA receptor antagonists. Here, we tested the hypothesis that ITR injection with a metabotropic glutamate antagonist would alter respiratory responses to serotonin (5-HT) intravenous infusions. In anesthetized adult male rats (N = 20; Sprague–Dawley) AIDA (1-aminoindan-1,5-dicarboxylic acid), a specific antagonist of the type 1 metabotropic glutamate receptor (mGlu1R), was microinjected unilaterally into the ITR to block 5-HT evoked apnea. Respiratory pattern changes evoked by ITR-glutamate injection and by intravenous serotonin (5-HT) infusion (0.5 μl, 0.05 M; or 2.5 × 10−8 mol) were characterized according to apnea expression and duration, as well as coefficients of variation for breath duration (CVTT) and amplitude (CVVT) before and after ITR AIDA injection.Unilateral AIDA blockade of the ITR significantly increased the duration of apnea evoked by 5-HT infusion (p < 0.03 for each dose tested) during the 30 s following infusion in a dose-dependent fashion, with the two highest doses resulting in intermittent apneas for at least 10 min following a bolus 5-HT infusion. Similar prolonged increases in CVTT and CVVT with respect to control were associated with ITR AIDA injections. These findings suggest that brief perturbations of vagal afferent pathways can produce ongoing respiratory dysrhythmia, including spontaneous apnea, and that glutamatergic neurotransmission within ITR may be important for damping such disturbances. The present observations also suggest that such respiratory damping may be mediated by mGlu1 receptors. These findings extend our understanding of the role of the intertrigeminal region in modulating respiratory reflexes.  相似文献   

11.
Activity-dependent insertion of AMPA-type glutamate receptors is thought to underlie long-term potentiation (LTP) at Schaffer collateral fiber synapses on pyramidal cells in the hippocampal CA1 region. Although it is widely accepted that the AMPA receptors at these synapses contain glutamate receptor type 2 (GluR2) subunits, recent findings suggest that LTP in hippocampal slices obtained from 2- to 3-wk-old rodents is dependent on the transient postsynaptic insertion and activation of Ca(2+)-permeable, GluR2-lacking AMPA receptors. Here we examined whether LTP in slices prepared from adult animals exhibits similar properties. In contrast to previously reported findings, pausing synaptic stimulation for as long as 30 min post LTP induction had no effect on LTP maintenance in slices from 2- to 3-mo-old mice. LTP was also not disrupted by postinduction application of a selective blocker of GluR2-lacking AMPA receptors or the broad-spectrum glutamate receptor antagonist kynurenate. Although these results suggest that the role of GluR2-lacking AMPA receptors in LTP might be regulated during postnatal development, LTP in slices obtained from 15- to 21-day-old mice also did not require postinduction synaptic stimulation or activation of GluR2-lacking AMPA receptors. Thus the insertion and activation of GluR2-lacking AMPA receptors do not appear to be fundamental processes involved in LTP at excitatory synapses in the hippocampal CA1 region.  相似文献   

12.
The aim of the study was to examine the influence of the blockade of group I metabotropic glutamate receptors (mGluRs) on the haloperidol-induced catalepsy and proenkephalin mRNA expression in the rat striatum. Bilateral, intrastriatal injection of AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid, 3-15 microg/0.5 microl), a selective antagonist of group I mGluRs, inhibited catalepsy induced by haloperidol (0.5 mg/kg i.p.). Repeated intrastriatal AIDA administrations (3 x 15 microg/0.5 microl, 3 h apart) counteracted the haloperidol-induced (3 x 1.5 mg/kg s.c., 3 h apart) increase in the proenkephalin mRNA expression in that structure. The present study indicates that the blockade of the striatal group I mGluRs may inhibit parkinsonian akinesia by normalizing the function of the striopallidal pathway.  相似文献   

13.
Methamphetamine (METH) is a powerful psychostimulant that increases glutamate (Glu) levels in the mammalian brain and it is currently known that hippocampi are particularly susceptible to METH. Moreover, it is well established that the overactivation of N-methyl-d-aspartate (NMDA) and AMPA ionotropic Glu receptors causes excitotoxicity. In the present study, we investigated the effect of acute (30 mg/kg) versus escalating dose (ED) administration of METH on NMDA receptor 1, NMDA receptor 2 and glutamate receptor 2 (GluR2) subunit expression in the hippocampus and on memory. Adult Sprague-Dawley rats were injected s.c. during six consecutive days with saline (control and acute groups) or with a growing dose of METH (10, 15, 15, 20, 20, 25 mg/kg/day; ED group). On the 7th day, both METH groups were injected with a 'bolus' of 30 mg/kg METH whereas controls received saline. Western blot analysis showed an increase of GluR2 and NR2A expression levels and no alterations on NR1 subunit in the acute group. On the other hand, in the ED group, GluR2 and NR2A expression levels were unaltered and there was a decrease on NR1 levels. Moreover, we did not observe neurodegeneration with both administration paradigms, as assessed by Fluoro-Jade C staining, but we did observe a strong astrogliosis in the acute administration group by using both immunohistochemistry and Western blot analysis. The impact of METH on working memory was evaluated using the Y maze test and revealed significant mnemonic deficit in the rats acutely treated with the drug. Overall, our results suggest a protection mechanism under conditions of METH administration by decreasing permeability and/or functionality of NMDA and AMPA receptors, which has implications on memory. So, the participation of the glutamatergic system should be considered as an important pharmacological target to design new strategies to prevent or diminish the harmful effect of drug consumption.  相似文献   

14.
There is increasing evidence for a role of glutamate receptors in the reinforcing properties of dependence producing drugs such as the psychostimulants and opiates. Activation of AMPA/kainate receptors are implicated in the acquisition of amphetamine-induced reinforcement but a role for this receptor in benzodiazepine-induced reinforcement has not been examined. In the present study the ability of the orally active AMPA/kainate antagonist GYKI 52466 was assessed for its ability to block the reinforcing properties of diazepam in a conditioned place preference paradigm. Diazepam (2.5 and 5.0 mg/kg, i.p.) produced a robust place preference and GYKI 52466 inhibited the acquisition of place preference conditioning-induced by diazepam. These results suggest that glutamatergic pathways are an important component of the circuitry involved in the acquisition of a benzodiazepine induced place preference.  相似文献   

15.
The seizure-induced molecular and functional alterations of glutamatergic transmission in the hippocampus have been investigated. Daily repeated epileptic seizures were induced for 12 days by intraperitoneal administration of 4-aminopyridine (4-AP; 4.5 mg/kg) in adult Wistar rats. The seizure symptoms were evaluated on the Racine's scale. One day after the last injection, the brains were removed for in vitro electrophysiological experiments and immunohistochemical analysis. The glutamate receptor subunits NR1, NR2A, NR2B, GluR1, GluR1flop, GluR2, and KA-2 were studied using the histoblotting method. The semi-quantitative analysis of subunit immunoreactivities in hippocampal layers was performed with densitometry. In the hippocampus, increase of GluR1, GluR1flop and NR2B immunostaining was observed in most of the areas and layers. The significant decrease of GluR2 staining intensity was observed in the CA1 and dentate gyrus. Calcium permeability of hippocampal neurons was tested by a cobalt uptake assay in hippocampal slices. The uptake of cobalt increased in the CA1 area and dentate gyrus, but not in the CA3 region following 4-AP treatment. Effects of AMPA and NMDA (N-methyl-d-aspartate) glutamate receptor antagonists (1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) and D-APV respectively) were measured in hippocampal slices using extracellular recording. Analysis of the population spikes revealed the reduced effectiveness of the AMPA receptor antagonist GYKI 52466, while the effect of the NMDA receptor antagonist d-(2R)-amino-5-phosphonovaleric acid was similar to controls. The results demonstrated that repeated convulsions induced structural and functional changes in AMPA receptor–mediated transmission, while NMDA and kainate receptor systems displayed only alterations in receptor subunit composition.  相似文献   

16.
Protein phosphorylation is an important mechanism for the posttranslational modulation of ionotropic glutamate receptors and is subject to regulation by changing synaptic inputs. In this study, we investigated the regulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit phosphorylation by cocaine exposure in the rat dorsal striatum in vivo. We found that acute cocaine challenge followed by 6 days of repeated systemic injections of cocaine (20 mg/kg once daily) enhanced the sensitivity of the GluR1 subunit in its phosphorylation at serine 831 (Ser831) in the dorsal striatum. This enhancement of the sensitivity of Ser831 phosphorylation was reduced, at the receptor and ion channel level, by blocking (1) group I metabotropic glutamate receptors (mGluRs), (2) N-methyl-d-aspartate receptors, and (3) L-type voltage-operated Ca2+ channels. Similar reduction of the enhancement was also induced, at the protein kinase level, by inhibiting (1) protein kinase C, (2) calcium/calmodulin-dependent protein kinases, and (3) c-Jun N-terminal kinases. In addition, inhibition of protein phosphatase 1/2A or calcineurin increased GluR1-Ser831 phosphorylation in the dorsal striatum of normal rats, whereas inhibition of these phosphatases did not further enhance the Ser831 phosphorylation in rats pretreated with 7 daily injections of cocaine. These data suggest that the phosphorylation of AMPA receptor GluR1 subunits at Ser831 is subject to upregulation by acute and repeated cocaine administration. Complex signaling integrations among glutamate receptors, Ca2+ channels, protein kinases, and protein phosphatases participate in this upregulation.  相似文献   

17.
Whether nascent glutamatergic synapses acquire their AMPA receptors constitutively or via a regulated pathway triggered by pre-existing NMDA receptor activation is still an open issue. Here, we provide evidence that some glutamatergic synapses develop without expressing NMDA receptors. Using immunocytochemistry, we showed that synapses between developing rat climbing fibres and Purkinje cells expressed GluR2-containing AMPA receptors as soon as they were formed (i.e. on embryonic day 19) but never carried detectable NMDA receptors. This was confirmed by electrophysiological recordings. Excitatory synaptic currents were recorded in Purkinje cells as early as P0. However, no NMDA receptor-mediated component was found in either spontaneous or evoked synaptic responses. In addition, we ruled out a possible role of extrasynaptic NMDA receptors by showing that AMPA receptor clustering at nascent climbing fibre synapses was not modified by chronic in utero NMDA receptor blockade.  相似文献   

18.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

19.
Neurons in the nucleus cuneiformis (CnF), located just ventrolateral to the periaqueductal gray, project to medullary nucleus raphe magnus (NRM), which is a key medullary relay for descending pain modulation and is critically involved in opioid-induced analgesia. Previous studies have shown that antinociceptive response of CnF-microinjected morphine can be modulated by the specific subtypes of glutamatergic receptors within the CnF. In this study, we evaluated the role of NMDA and kainate/AMPA receptors that are widely distributed within the NRM on morphine-induced antinociception elicited from the CnF. Hundred and five male Wistar rats weighing 250-300 g were used. Morphine (10, 20 and 40 microg) and NMDA receptor antagonist, MK-801 (10 microg) or kainate/AMPA receptor antagonist, DNQX (0.5 microg) in 0.5 microl saline were stereotaxically microinjected into the CnF and NRM, respectively. The latency of tail-flick response was measured at set intervals (2, 7, 12, 17, 22, 27 min after microinjection) by using an automated tail-flick analgesiometer. The results showed that morphine microinjection into the CnF dose-dependently causes increase in tail-flick latency (TFL). MK-801 microinjected into the NRM, just 1 min before morphine injection into the CnF, significantly attenuated antinociceptive effects of morphine. On the other hand, DNQX microinjected into the NRM, significantly increased TFL after local application of morphine into the CnF. We suggest that morphine related antinociceptive effect elicited from the CnF is mediated, in part, by NMDA receptor at the level of the NRM whereas kainite/AMPA receptor has a net inhibitory influence at the same pathway.  相似文献   

20.
Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity , and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号