首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the horseradish peroxidase technique on the North American opossum, we were able to locate the neurons within the dorsal column and lateral cuneate nuclei which innervate the cerebellum and thalamus as well as those within the dorsal column nuclei which project spinalward. The medial and lateral cuneate nuclei supply axons to the anterior lobe, the paramedian lobule and the pyramis of the cerebellum and the lateral nucleus provides an additional projection to the uvula. The cerebellar projections from these nuclei arise from neurons located rostral to the obex. The thalamic projections from the gracile and medial cuneate nuclei originate from neurons throughout their rostral to caudal extent, although most of them are located just rostral to the obex. Neurons within the lateral cuneate nucleus which innervate the thalamus are found at intermediate rostrocaudal levels where most of them approximate the medial cuneate nucleus. The medial cuneate also projects to at least lumbar levels of the spinal cord in the opossum and neurons giving rise to such connections are found at the level of the obex and caudal to it. Neurons within the dorsal part of the dorsal column nuclei were labelled only after thalamic injections. Our results in the opossum are compared with those obtained in several placental mammals.  相似文献   

2.
This autoradiographic study demonstrates a topical projection of the dorsal column nuclei to the contralateral nucleus ventralis posterior lateralis thalami and the accessory part of the inferior olive. In contrast to earlier anatomical studies the projections of the gracile nucleus and the internal cuneate nucleus proved to be independent and entirely contralateral. Fibers from the gracile nucleus terminate only in the lateral part of the nucleus ventralis posterior lateralis (VPL1) and from the internal cuneate nucleus only in the medial part of this nucleus (VPLm). Projections of the gracile nucleus to the contralateral inferior olive are restricted to the caudal one-third of the medial accessory olive and the ventrolateral part of the dorsal accessory olive. The internal cuneate nucleus is only connected with the dorsomedial part of the rostral two-thrids of the dorsal accessory olive. Our material does not allow conclusions about projections from the dorsal column nuclei to other thalamic nuclei and about rostrocaudal point to point relationships between the dorsal column nuclei and the thalamus or the inferior olive.  相似文献   

3.
The existence of a cerebellar projection from the dorsal column nuclei (gracile and cuneate nuclei, DCN) has been proposed on electrophysiological grounds but questioned when studied with neuroanatomical techniques. The retrograde transport of horseradish peroxidase (HRP) has been used for the present study and provides anatomical evidence of a DCN-cerebellar pathway. In adult cats, 1 to 6 mul of 30% HRP were injected in pars intermedia of the anterior lobe (lobules IV-V), in paramedial lobule and in vermis of the anterior (lobules IV-V) and of the posterior lobe (lobule VII). After survival of 24 to 48 hours, all animals were perfused with a double aldehyde mixture and serial 40 mu sections through the medulla oblongata were incubated for visualization of HRP. In all cases, medullary nuclei known to project to the injected cortical regions of the cerebellum contained HRP-positive neurons mainly ipsilateral to the injection (e.g., external cuneate nucleus) or mainly contralateral to it (e.g., inferior olivary complex). Following ipsilateral injections in either the paramedian lobule or the pars intermedia, HRP-positive neurons in the cuneate nucleus were concentrated in its rostral portion where multipolar cells with radiating dendrites predominate. In contrast, none of the clusters region, in the caudal part of the cuneate nucleus, displayed HRP-positive granules. In cases in which the anterior vermis was injected a few labelled cells were present in the rostral part of the gracile nucleus but not in the clusters region of this nucleus. No labelling of DCN neurons was evident after posterior vermis injection. To compare the distribution of cells contributing to the DCN-cerebellar pathway with that of thalamic relay cells in the DCN, 0.5 to 3 mul of 30% HRP were injected in the nucleus ventralis posterolateralis of the thalamus in another series of cats. Contralateral to the thalamic injection, labelled cells were concentrated in the clusters region of the gracile and cuneate but rostrally in these nuclei they were scattered among unlabelled neurons. The preferential location in the DCN of cells which project to the cerebellum and of cells which project to the thalamus stresses the heterogeneous organization of these nuclei along the rostrocaudal axis. Further, the results indicate that regions of the DCN which have been distinguished on the basis of cytoarchitectonics (Kuypers and Tuerk, '64) and of afferents (Rustioni, '73, '74) differ also in their efferent projections.  相似文献   

4.
The dorsal column nuclei and the sensory trigeminal nuclei project not only to the ventrobasal thalamus but also to the cerebellum. In this study the numbers and distribution of neurones projecting to these two regions were examined for the following nuclei: the rostral part of the main cuneate nucleus, the external cuneate nucleus, nucleus x, the principal sensory nucleus of the trigeminal nerve, and the oral, interpolar, and caudal subnuclei of the spinal nucleus of the trigeminal nerve. A thalamic projection from nucleus x and from the external cuneate nucleus was confirmed, and a distinct group of neurones projecting to the ventroposteromedial thalamus was distinguished near the ventromedial aspect of the principal sensory nucleus. Of the 165,000 neurones examined, only one was found to be double labelled. It was concluded that the populations of neurones that project to the ventrobasal thalamus and to the cerebellum are separate, and that somatosensory neurones in the brainstem do not send axon collaterals to both regions.  相似文献   

5.
The distributions of cerebellar and somatic lemniscal projections to the ventral nucleus of the thalamus were compared in the opossum to determine the extent of overlap in the terminal field of these two fiber systems. Following lesions of these structures, the degenerated fibers were traced to the thalamus using the Fink-Heimer technique. The results indicate that the cerebellum projects only to the rostral portion of the ventral nucleus, while the gracile and cuneate nuclei project to the caudal portion of the ventral nucleus. We conclude from comparing these two afferent fiber systems that there is no detectable overlap in the cerebellar and lemniscal projections to the ventral thalamic nucleus of the opossum. These results support the hypothesis that the single somatic sensory-motor area of the opossum's cortex receive afferent fibers from at least two separate subdivisions of the ventral nucleus. Outside the border of the ventral nucleus, cerebellar and lemniscal projection fields do overlap, especially in a cell group just dorsal to the ventral posterior nucleus. This is a distinctly different type of organization of these afferent fiber systems. This cell group has recently been shown likewise to project to the parietal somatic sensory-motor cortex. Since the mode of intracortical termination of this projection differs markedly from that of the VP and VAL projections, the somatic sensory-motor cortex of the opossum can be said to receive fundamentally different projections from two thalamic regions both of which are recipients of both cerebellar and somatic-lemniscal information.  相似文献   

6.
The purpose of this study was to determine the topographical organization of cerebellothalamic projections in the rat. Following stereotaxic injections of 3H-leucine or electrolytic lesions in the cerebellar nuclei, efferent fibers were observed to emerge from the cerebellum through two discrete routes. Fibers from the fastigial nucleus decussated within the cerebellum, formed the crossed ascending limb of the uncinate fasciculus, ascended in the dorsal part of the midbrain tegmentum, and entered the thalamus. Cerebellothalamic fibers from the interpositus and dentate nuclei coursed in the ipsilateral brachium conjuctivum, decussated in the caudal midbrain, and ascended to the thalamus via the crossed ascending limb of the brachium conjunctivum. Cerebellar terminations were observed in the intralaminar, lateral, and ventral tier thalamic nuclei as well as in the medial dorsal nucleus. Projections to the intralaminar nuclei were more pronounced from the dentate and posterior interpositus than from the anterior interpositus and fastigial nuclei. The lateral thalamic nuclei received a projection from the dentate and posterior interpositus nuclei while the fastigial nucleus projected to the medial dorsal nucleus. Within the rostral ventral tier nuclei fastigiothalamic terminations were localized in the medial parts of the ventral medial and ventral lateral nuclei, whereas dentatothalamic projections were concentrated in the lateral parts of the ventral medial nucleus and the medial half of the ventral lateral nucleus. Terminations from the posterior interpositus nucleus were observed ventrally and laterally within the caudal two-thirds of the ventral medial nucleus and throughout the ventral lateral nucleus, where they were densest in the lateral part of its lateral wing and within the central part of its cap. The anterior interpositus nucleus also projected to the central and lateral parts of the ventral lateral nucleus, but these terminations were considerably less dense than those from the posterior interpositus. A few fibers from the interpositus nuclei terminated in the medial part of the rostral pole of the ventral posterior nucleus. A prominent recrossing of cerebellothalamic fibers from the fastigial, posterior interpositus, and dentate nuclei occurred through the central medial nucleus of the internal medullary lamina. These terminated within the ipsilateral ventral lateral and intralaminar nuclei. These results show that each of the cerebellar nuclei project to the thalamus and that their terminations are topographically organized in the rostral ventral tier nuclei. The clustering of autoradiographic silver grains or terminal degeneration observed in the thalamic nuclei suggests a medial-to-lateral organization of this cerebellothalamic system.  相似文献   

7.
An avian "pyramidal tract" was defined in zebra finches and green finches by making injections of neuronal tracers into the hyperstriatum accessorium (HA) of the rostral Wulst. Extratelencephalic projections of rostral HA traveled in the septomesencephalic tract (TSM) and gave rise to nuclear-specific terminal fields in the precerebellar medial spiriform nucleus of the posterior thalamus, the red nucleus in the mesencephalon, the medial pontine nucleus in the pons, and the subtrigeminal, external cuneate, cuneate, gracile, and inferior olivary nuclei in the medulla. Extensive but more diffuse terminal fields were also present in the stratum cellulare externum of the posterior hypothalamus, the central periaqueductal gray, the prerubral field, and the lateral and ventrolateral tegmentum of the pons and medulla. There was also a sparse projection to the dorsal thalamic nucleus intermedius ventralis anterior, which supplies the somatosensory input to the rostral Wulst, and distinct projections to the intercollicular region surrounding the central nucleus of the inferior colliculus, where they partly overlapped the projections of the dorsal column nuclei. Projections from HA to the cerebellum via the TSM are described separately. In the brainstem the ventral ramus of TSM was situated ventral to the medial lemniscus at the base of the brain, entered the spinal cord in the inner margin of the lateral funiculus, predominantly ipsilaterally, and terminated bilaterally but predominantly contralaterally in the medial part of the base of the dorsal horn of the upper six or seven cervical segments. After injections of tracers into putative targets, numerous retrogradely labeled cells were found in the rostral HA, predominantly ventrally. The results confirm the presence of a major descending fiber system in passerine birds that resembles in its brainstem course and several of its terminations the pyramidal tract of mammals. The reciprocal projections of HA with the hypothalamus suggest that rostral HA may also incorporate neuronal components that in mammals would be considered parts of prefrontal cortex.  相似文献   

8.
In raccoons and other mammals, a pathway for kinesthetic sensation (from muscles, fascia, tendons, and joints) reaches the anterodorsal cap of the ventrobasal thalamus and the anteriormost part of the somatic sensory cerebral cortex. To find the medullary component of this kinesthetic pathway in raccoons, small injections of horseradish peroxidase were made in the thalamus under guidance of simultaneous electrophysiological recording from kinesthetic projections. As determined by retrograde labeling following these injections, kinesthetic thalamic subregions receive projections as follows: caudomedial from cells in the external cuneate nucleus and its medial tongue, rostromedial from cells in basal cuneate nucleus, and rostrolateral from cells in cell group z and the reticular division of cell group x. Electrophysiological recording showed kinesthetic representations in each of these medullary regions. Labeled cells were also observed in the infratrigeminal subnucleus of the lateral reticular nucleus. Cats have kinesthetic projections to the thalamus from the basal cuneate and cell group z; raccoons (and monkeys) have these plus projections from the external cuneate and cell group x. This suggests that the kinesthetic projection system in raccoons and monkeys is expanded in correlation with their more dextrous use of the hand.  相似文献   

9.
Projection systems from the gracile nucleus and the cuneate nuclear complex to their terminal sites in the mesencephalon, diencephalon, and cerebellum were examined by means of anterograde autoradiography and retrograde horseradish peroxidase methods. Three projection systems emerge from the dorsal column nuclei, decussate via internal arcuate fibers, and form the contralateral medial lemniscus (ML). At the obex, some fibers split off the ML and course dorsolaterally, forming an ascending lateral system which fits the "lemniscal adjunct channel" (LAC) concept of Graybiel ('72). The ML continues rostrally as the "main lemniscal line channel" (MLLC). At the inferior colliculus, some LAC fibers terminate in the pontine nuclei, parabrachial, dorsal reticular nuclei, and the external and ventral medial part of the central nucleus of the inferior colliculus. More rostrally at the level of the superior colliculus, terminal fields are found in the medial nucleus of the medial geniculate body, the suprageniculate, pretectal, and mesencephalic reticular nuclei, marking the end of the LAC. In the diencephalon, gracile fibers leave the MLLC and form a crescentlike terminal field along the extreme lateral border of the ventral posterior lateral nucleus (VPL) of the thalamus. Cuneate MLLC fibers terminate in a bandlike formation in the VPL medial to the gracile termination. The third fiber system, the cuneocerebellar projection, emerges from the cuneate, the external cuneate nuclei, and the "cellular bridge" and immediately enters the ipsilateral inferior cerebellar peduncle. Upon entering the cerebellum, the major fiber component remains ipsilateral and terminates as vertical bands in vermal and paravermal lobules, and lobules I through IVa. The posterior cerebellar lobe contains terminal bands in lobules VII-IX, the copula pyramidis, and the paramedian lobule. It is concluded that the dorsolateral fiber system conforms to Graybiel's LAC. It is more divergent and probably less modality specific, whereas the medial lemniscal system conforms to the MLLC, which is said to be modality specific, less divergent, and locked to specific sensory-motor response characteristics. The topography of cerebellar terminal bands indicates that there is sensory-motor representation from all parts of the body to all parts of the cerebellum, at least in the rat.  相似文献   

10.
Ascending projections to the diencephalon from the pontine reticular formation were studied in the cat by autoradiographic techniques. Projections from both rostral and caudal pontine regions ascend to the caudal diencephalon and divide into two components; a dorsal leaf terminates primarily in the thalamic intralaminar complex and a ventral leaf terminates in the subthalamic region. The relative densities of the two terminal regions vary with the injection site. Fibers originating in the caudal pons (nucleus reticularis pontis caudalis) terminate relatively heavily in the intralaminar nuclei of the dorsal thalamus, particularly the centre median, central lateral, central dorsal and paracentral nuclei, and also the dorsal medial nucleus. Relatively sparse termination occurs in the subthalamic region. In contrast, fibers from the rostral pons (nucleus reticularis pontis oralis) terminate relatively heavily in the subthalamic region, including the zona incerta, the fields of Forel, the ventral part of the thalamic reticular complex, and the lateral hypothalamus. Relatively sparse termination occurs in the dorsal thalamus, but includes the centre median, parafascicular, central lateral, paracentral and dorsal medial nuclei. These data are discussed with regard to reticular control of forebrain activity and the role of the classic dorsal and ventral components of ascending reticular projections.  相似文献   

11.
Subcortical afferent projections to the medial limbic cortex were examined in the rat by the use of retrograde axonal transport of horseradish peroxidase. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the dorsal and ventral cingulate areas, the dorsal agranular and ventral granular divisions of the retrosplenial cortex and the presubiculum. Somata of afferent neurons in the thalamus and basal forebrain were identified by retrograde labeling. Each of the anterior thalamic nuclei was found to project to several limbic cortical areas, although not with equal density. The anterior dorsal nucleus projects primarily to the presubiculum and ventral retrosplenial cortex; the anterior ventral nucleus projects to the retrosplenial cortex and the presubiculum with apparently similar densities; and the anterior medial nucleus projects primarily to the cingulate areas. The projections from the lateral dorsal nucleus to these limbic cortical areas are organized in a loose topographic fashion. The projection to the presubiculum originates in the most dorsal portion of the lateral dorsal nucleus. The projection to the ventral retrosplenial cortex originates in rostral and medial portions of the nucleus, whereas afferents to the dorsal retrosplenial cortex originate in caudal portions of the lateral dorsal nucleus. The projection to the cingulate originates in the ventral portion of the lateral dorsal nucleus. Other projections from the thalamus originate in the intralaminar and midline nuclei, including the central lateral, central dorsal, central medial, paracentral, reuniens, and paraventricular nuclei, and the ventral medial and ventral anterior nuclei. In addition, projections to the medial limbic cortex from the basal forebrain originate in cells of the nucleus of the diagonal band. Projections to the presubiculum also originate in the medial septum. These results are discussed in regard to convergence of sensory and nonsensory information projecting to the limbic cortex and the types of visual and other sensory information that may be relayed to the limbic cortex by these projections.  相似文献   

12.
The projections of the deep cerebellar nuclei in the pigeon have been delineated using autoradiographic and histochemical (WGA-HRP) tracing techniques. A medial (CbM) and lateral (CbL) cerebellar nucleus are recognized and CbM may be further partitioned into internal, intermediate, and intercalate divisions. As in mammals, most extracerebellar projections of CbM travel in the fasciculus uncinatus (FU); the rest travel with those of CbL in the brachium conjunctivum (BC). In the pigeon, both of these pathways are bilaterally but primarily contralaterally projecting systems. FU is a predominantly descending tract, with terminations within (1) the vestibular complex, (2) a column of contiguous medial reticular nuclei from pontine to caudal medullary levels; (3) the plexus of Horsley portion of the parvicellular reticular formation, continuing through the nucleus centralis medullae oblongatae, pars dorsalis, into intermediate layer VII of the cervical spinal cord, down to cervical segment 8-9; (4) the lateral reticular nucleus and the paragigantocellular reticular nucleus; (5) the dorsal lamella of the inferior olive. Rostrally FU terminals are found in the locus ceruleus and dorsal subcerulean nucleus. Minimal FU projections are also seen to the motor trigeminal nucleus and the subnucleus oralis of the descending trigeminal system. A small projection from the intercalate division of CbM travels in BC and projects upon the midbrain central grey, the intercollicular nucleus, the lateral tectal periventricular grey, the stratum cellulare externum and, sparsely, upon the dorsolateral thalamus. The bulk of BC originates from the lateral cerebellar nucleus and consists of a massive ascending and a small descending branch. The ascending system projects upon the red nucleus and the dorsally adjacent interstitial nucleus of Cajal and midbrain central grey, the prerubral fields continuing into the stratum cellulare externum, the nucleus intercalatus thalami, the ventrolateral thalamic nucleus, the medial spiriform nucleus, the nucleus principalis precommissuralis, the nucleus of the basal optic root, the nucleus geniculatus lateralis pars ventralis, the dorsolateral thalamus, including the dorsal intermediate posterior, and the dorsolateral intermediate and anterior nuclei. BC also contains axons from the infracerebellar nucleus, which projects upon the trochlear and the oculomotor nuclei. The descending branch of BC distributes to the papilioform nucleus, the medial pontine nucleus, the gigantocellular and paramedian reticular nuclei, and, minimally, the rostral portions of the medial column and ventral lamella of the inferior olive. Taken in conjunction with data on amphibia and reptiles the present findings suggest that the fundamental ground plan of vertebrate cerebellar organization involves a medial and lateral cerebellar nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Attempts were made to determine brainstem and cerebellar afferent and efferent projections of the superior vestibular nucleus (SVN) and cell group 'y' ('y') in the cat using axoplasmic tracers. Injections of HRP, WGA-HRP and [3H]amino acids were made into SVN and 'y' using two different infratentorial stereotaxic approaches. Controls were provided by unilateral HRP injections involving the oculomotor nuclear complex (OMC), the interstitial nucleus of Cajal (INC) and the deep cerebellar nuclei (DCN). Large injections of SVN almost invariably involved 'y' and dorsal parts of the lateral vestibular nucleus (LVN). Smaller injections involved central and ventral peripheral parts of SVN. Discrete injections of 'y' involved small dorsal parts of LVN. Afferents to SVN are derived mainly from the vestibular nuclei (VN) and parts of the vestibulocerebellum. SVN receives afferents: bilaterally from caudal portions of the medial (MVN) and inferior (IVN) vestibular nuclei and 'y'; contralaterally from ventral and lateral parts of SVN and rostral MVN; and ipsilaterally from the nodulus, uvula and medial parts of the flocculus. Purkinje cells (PC) in medial parts of the flocculus project to central regions of SVN, while PC in the nodulus and uvula appear to project mainly to dorsal peripheral regions of SVN. SVN receives sparse projections from the ipsilateral INC, the contralateral central cervical nucleus (CCN) and virtually no projections from the reticular formation. SVN projects via the medial longitudinal fasciculus (MLF) to the ipsilateral trochlear nucleus (TN), the inferior rectus subdivision of the OMC, the INC, the nucleus of Darkschewitsch (ND) and the rostral interstitial nucleus of the MLF (RiMLF). Contralateral projections of SVN cross in the ventral tegmentum caudal to most of the decussating fibers of the superior cerebellar peduncle and terminate in the dorsal rim of the TN and the superior rectus and inferior oblique subdivisions of the OMC; sparse crossed projections enter the INC and the ND. Cerebellar projections of SVN end as mossy fibers in the ipsilateral nodulus, uvula and in medial parts of the flocculus bilaterally. Retrograde transport from unilateral injections of the OMC indicate that afferents from SVN arise ipsilaterally from central and dorsal regions and contralaterally from dorsal peripheral regions. Ventral cell group 'y' receives small numbers of afferent fibers from caudal central parts of the ipsilateral flocculus. No fibers from ventral 'y' could be traced to other vestibular nuclei, the OMC or the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The ascending projections of the dorsolateral funiculus of the spinal cord to the brain stem have been determined in five macaque monkeys. Connections to the lateral cervical nucleus and to the reticular nucleus of the cord in the C1 and C2 segments are present. In the medulla the most prominent connections are to the nuclei “Z” and “x” of Brodal and Pompeiano, to the rostral portion of n. gracilis and to the n. proprius of the restiform body. Minor projections reach the rostral part of the medial and lateral cuneate nuclei, the reticular nucleus, the n. centralis dorsalis and the periependymal gray. There were no projections to planes rostral to the medulla. In view of the connections established it is concluded that ascending systems in the DLF to the brain stem of primates are concerned with transmission of mechanoreceptor input to the cerebellum and thalamus and that nociceptive relay appears very unlikely.  相似文献   

15.
The distribution of nigrothalamic and cerebellothalamic projections was investigated in the dog by a double labeling strategy combining the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and tritiated amino acids. Following tritiated amino acid injections into the substantia nigra pars reticulata (SNr) and WGA-HRP injections into the contralateral cerebellar nuclei, we found that the nigrothalamic and cerebellothalamic afferents distribute to three main targets: the central portion of the ventral anterior nucleus (VA) and the ventral lateral nucleus (VL), the internal medullary lamina (IML) region, which includes the paralaminar VA, the mediodorsal nucleus (MD) and the central lateral nucleus (CL), and finally the ventromedial nucleus (VM). We observed three distribution patterns of labeled fibers: (a) Dense single label was observed in the central portion of VA following the SNr injections and in VL following the cerebellar nuclei injections. (b) A complementary pattern consisting of alternating foci of nigral and cerebellar label was found in the IML region. This pattern was also observed in the caudal intralaminar nuclei where cerebellar label predominated in the centrum medianum (CM), while the parafascicular nucleus (Pf) primarily contained nigral label. (c) An overlapping pattern of autoradiographic and WGA-HRP label was found in the lateral half of the VM. Overall, the distribution of nigrothalamic and cerebellothalamic projections was widespread throughout much of rostrocaudal thalamus. However, the pattern of projections varied along a continuum from lateral to medial thalamus. In lateral thalamus, nigral and cerebellar projections distributed to separate nuclei while in medial thalamus, the projection pattern changed to focal and complementary in the IML and overlapping in VM. Taken together, these thalamic projections may constitute crucial links in different functional channels involved in alerting and orienting mechanisms associated with motor behavior. Our findings also suggest that the organization of motor thalamic afferents in the dog shares similarities with the segregated and parallel circuitry characteristic of primates as well as with the overlapping and converging circuits of rodents and other carnivores.  相似文献   

16.
Injections of calcitonin gene-related peptide (CGRP) into the amygdala evoke fear-related behaviors and antinociceptive effects. In the present study we therefore characterized CGRP-containing amygdaloid afferents by injecting the retrograde tracer FluoroGold (FG) into subnuclei of the amygdala and adjacent divisions of the extended amygdala, namely, the lateral (LA) and central (CE) amygdaloid nuclei, interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and the amygdalostriatal area (AStr). The distribution of retrogradely FG-labeled neurons and colocalization of CGRP-immunoreactivity with FG-labeling were mapped in the posterior paralaminar thalamic complex and parabrachial nuclei. The analysis of the posterior thalamus revealed that about 50% of CGRP-containing neurons projected to the AStr, the projections originating in the medial part of the medial geniculate body, posterior intralaminar nucleus, parvicellular subparafascicular nucleus, and peripeduncular nucleus. However, the percentage of CGRP-containing thalamic neurons projecting to the adjacent LA, medial part of the CE, and ventrocaudal part of the caudatoputamen rapidly dropped to 3-9%. There were no double-labeled cells after injections into the lateral and capsular parts of the CE and the IPAC. Thus, the AStr received the heaviest CGRP-containing projection from the posterior thalamus. CGRP-containing parabrachial neurons projected to the AStr and lateral, capsular, and medial parts of the CE, the projections originating in the external, crescent, and central parts of the lateral parabrachial nucleus and external part of the medial parabrachial nucleus. The results demonstrate a distinct projection pattern of CGRP-containing thalamic and parabrachial neurons to subnuclei of the amygdala and extended amygdala.  相似文献   

17.
The afferent and efferent connections of the cerebellar interpositus complex were studied in a capuchin monkey (Cebus apella) that had received a transcannular horseradish peroxidase implant into the caudal portion of the anterior interpositus nucleus and posterior interpositus nucleus. While the heaviest anterogradely labeled ascending projections were observed to the contralateral ventral posterolateral nucleus of the thalamus, pars oralis (VPLo), efferent projections were also observed to the contralateral ventrolateral thalamic nucleus (VLc) and central lateral (CL) nucleus of the thalamic intralaminar complex, magnocellular (and to a lesser extent parvicellular) red nucleus, nucleus of Darkschewitsch, zona incerta, nucleus of the posterior commissure, lateral intermediate layer and deep layer of the superior colliculus, dorsolateral periaqueductal gray, contralateral nucleus reticularis tegmenti pontis and basilar pontine nuclei (especially dorsal and peduncular), and dorsal (DAO) and medial (MAO) accessory olivary nuclei, ipsilateral lateral (external) cuneate nucleus (LCN) and lateral reticular nucleus (LRN), and to a lesser extent the caudal medial vestibular nucleus (MVN) and caudal nucleus prepositus hypoglossi (NPH), and dorsal medullary raphe. The heaviest retrograde labeling was corticonuclear Purkinje cells in the paramedian cerebellar cortex lateral to the vermis of lobules IV-VIII. Otherwise, retrogradely labeled sources of afferents were predominantly contralateral in the dorsal, dorsomedial, paramedian, and peduncular sectors of the basilar pons, NRTP, and dorsal accessory (DAO) and medial accessory (MAO) of olivary nuclei, but were predominantly ipsilateral in the LCN, LRN, and in the medullary reticular formation along the roots of the hypoglossal (XII) cranial nerve. It appeared that the connections with the contralateral dorsal basilar pons, NRTP, DAO and MAO, and ipsilateral LCN and LRN are reciprocal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The projections from the brainstem to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin beta -subunit (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus: the lateral parafascicular, medial parafascicular, central lateral, paracentral, oval paracentral, and central medial nuclei; in the midline thalamic nuclei-the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, and submedius nuclei; and, in the anteroventral, parvicellular part of the ventral posterior, and caudal ventral medial nuclei. The retrograde cell body labeling pattern within the brainstem nuclei was then analyzed. Nearly every thalamic site received a projection from the deep mesencephalic reticular, pedunculopontine tegmental, dorsal raphe, median raphe, laterodorsal tegmental, and locus coeruleus nuclei. Most intralaminar thalamic sites were also innervated by unique combinations of medullary and pontine reticular formation nuclei such as the subnucleus reticularis dorsalis, gigantocellular, dorsal paragigantocellular, lateral, parvicellular, caudal pontine, ventral pontine, and oral pontine reticular nuclei; the dorsomedial tegmental, subpeduncular tegmental, and ventral tegmental areas; and, the central tegmental field. In addition, most intralaminar injections resulted in retrograde cell body labeling in the substantia nigra, nucleus Darkschewitsch, interstitial nucleus of Cajal, and cuneiform nucleus. Details concerning the pathways from the spinal trigeminal, nucleus tractus solitarius, raphe magnus, raphe pallidus, and the rostral and caudal linear raphe nuclei to subsets of midline and intralaminar thalamic sites are discussed in the text. The discussion focuses on brainstem-thalamic pathways that are likely involved in arousal, somatosensory, and visceral functions.  相似文献   

19.
In order to investigate the existence of anatomical subdivisions within the thalamic reticular nucleus (Rt), the distribution of reticular neurons expressing the calcium binding protein calretinin was investigated in the rat by means of immunocytochemistry. Calretinin immunoreactive (Cr-ir) neurons were mainly distributed in the lateral and ventral regions, and along the medial border of the Rt rostral pole. Caudal to the rostral pole, many neurons were Cr-ir in the more dorsal part of the rostral two-thirds (the “dorsal cap”) of the Rt. Fewer Cr-ir neurons were present more caudally along the lateral and medial borders, and in the caudalmost part of the nucleus, related to the acoustic thalamus. The distribution of Cr-ir neurons in the rostral Rt was compared with that of neurons projecting to the ipsilateral and contralateral anterior, intralaminar, midline, and mediodorsal nuclei, or to the contralateral rostral Rt. The retrograde transport of Fluorogold revealed a remarkably precise topography of the rostral Rt: different reticular areas were found to project to different thalamic nuclei, or to different rostrocaudal or mediolateral portions of the same thalamic nucleus, with a limited degree of overlap. The double-labeling experiments demonstrated that the reticular neurons projecting to the ipsilateral anterodorsal, midline, mediodorsal, and anterior intralaminar nuclei frequently expressed calretinin; by contrast, the majority of the reticular commissural neurons did not express the protein, with the exception of neurons projecting to the contralateral mediodorsal and midline nuclei. The ipsilaterally projecting calretinin-positive neurons were frequently located along the medial edge of the rostral pole and in the dorsal cap of the nucleus, segregated from the commissural calretinin-negative neurons. The combined analysis of calretinin expression patterns and tract tracing data provided further insight in the anatomical organization of the thalamic reticular nucleus, suggesting a different neurophysiological role for the ipsilaterally vs. the contralaterally projecting reticular neurons in the modulation of the synaptic activity of the dorsal thalamus. J. Comp. Neurol. 377:217–233, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Limb specific connections of the cat magnocellular red nucleus   总被引:1,自引:0,他引:1  
Afferent and efferent connections of the limb specific divisions of the cat magnocellular red nucleus (RNm) were traced using the bidirectional transport of wheatgerm agglutinin-horseradish peroxidase complex (WGA-HRP). Injection sites within forelimb or hindlimb RNm regions were identified by microelectrode recording and confirmed by the position of labeled rubrospinal terminals. Additional injections into structures that project to, or receive input from, RNm confirmed the somatotopic organization of these pathways. The forelimb region of RNm receives input from the posteriolateral part of the anterior interpositus nucleus (NIA) and the intermediate part of the posterior interpositus nucleus (NIP). The hindlimb region of RNm receives input from anteriomedial NIA and medial NIP. Terminals of NIA cells densely fill all of RNm, but terminals of NIP cells form a half shell on the medial, ventral, and posterior borders of RNm without encroaching on RNm's lateral edge or central core. Forelimb and hindlimb RNm are reciprocally connected with the caudal cuneate and gracile nuclei respectively. There is little or no input to RNm from the medial or lateral cerebellar nuclei. Forelimb RNm, which also contains a face representation, projects to the lateral reticular nucleus, cell group f of the inferior vestibular nucleus, the facial nucleus, the main sensory nucleus of the trigeminal nerve, the caudal cuneate nucleus, the parvicellular reticular formation, and cervical segments of the spinal cord. A few fibers from forelimb RNm project directly to motor neurons in the lower cervical cord. Hindlimb RNm projects to only the lateral reticular nucleus, gracile nucleus, and lower spinal segments. Forelimb and hindlimb RNm project to different regions of the lateral reticular nucleus with some overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号