首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Controversy persists concerning the mechanisms and role of general anesthetic inhibition of glutamate release from nerve endings. To determine the generality of this effect and to control for methodologic differences between previous studies, the authors analyzed the presynaptic effects of isoflurane and propofol on glutamate release from nerve terminals isolated from several species and brain regions. METHODS: Synaptosomes were prepared from rat, mouse, or guinea pig cerebral cortex and also from rat striatum and hippocampus. Release of endogenous glutamate evoked by depolarization with 20 microm veratridine (which opens voltage-dependent Na+ channels by preventing inactivation) or by 30 mm KCl (which activates voltage-gated Ca2+ channels by membrane depolarization) was monitored using an on-line enzyme-linked fluorometric assay. RESULTS: Glutamate release evoked by depolarization with increased extracellular KCl was not significantly inhibited by isoflurane up to 0.7 mM ( approximately 2 minimum alveolar concentration; drug concentration for half-maximal inhibition [IC50] > 1.5 mM) [corrected] or propofol up to 40 microm in synaptosomes prepared from rat, mouse, or guinea pig cerebral cortex, rat hippocampus, or rat striatum. Lower concentrations of isoflurane or propofol significantly inhibited veratridine-evoked glutamate release in all three species (isoflurane IC50 = 0.41-0.50 mm; propofol IC50 = 11-18 microm) and rat brain regions. Glutamate release was evoked by veratridine or increased KCl (from 5 to 35 mM) to assess the involvement of presynaptic ion channels as targets for drug actions [corrected]. CONCLUSIONS: Isoflurane and propofol inhibited Na+ channel-mediated glutamate release evoked by veratridine with greater potency than release evoked by increased KCl in synaptosomes prepared from three mammalian species and three rat brain regions. These findings are consistent with a greater sensitivity to anesthetics of presynaptic Na+ channels than of Ca2+ channels coupled to glutamate release. This widespread presynaptic action of general anesthetics is not mediated by potentiation of gamma-aminobutyric acid type A receptors, though additional mechanisms may be involved.  相似文献   

2.
Background: General anesthetics inhibit evoked release of classic neurotransmitters. However, their actions on neuropeptide release in the central nervous system have not been well characterized.

Methods: The effects of representative intravenous and volatile anesthetics were studied on the release of sulfated cholecystokinin 8 (CCK8s), a representative excitatory neuropeptide, from isolated rat cerebrocortical nerve terminals (synaptosomes). Basal, elevated KCl depolarization-evoked and veratridine-evoked release of CCK8s from synaptosomes purified from rat cerebral cortex was evaluated at 35[degrees]C in the absence or presence of extracellular Ca2+. CCK8s released into the incubation medium was determined by enzyme-linked immunoassay after filtration.

Results: Elevation of extracellular KCl concentration (to 15-30 mm) or veratridine (10-20 [mu]m) stimulated Ca2+-dependent CCK8s release. Basal, elevated KCl- or veratridine-evoked CCK8s release was not affected significantly by propofol (12.5-50 [mu]m), pentobarbital (50 and 100 [mu]m), thiopental (20 [mu]m), etomidate (20 [mu]m), ketamine (20 [mu]m), isoflurane (0.6-0.8 mm), or halothane (0.6-0.8 mm).  相似文献   


3.
Background: Previous electrophysiologic studies have implicated voltage-dependent Na+ channels as a molecular site of action for propofol. This study considered the effects of propofol on Na+ channel-mediated Na+ influx and neurotransmitter release in rat brain synaptosomes (isolated presynaptic nerve terminals).

Methods: Purified cerebrocortical synaptosomes from adult rats were used to determine the effects of propofol on Na+ influx through voltage-dependent Na+ channels (measured using22 Na+) and intracellular [Na+] (measured by ion-specific spectrofluorimetry). For comparison, the effects of propofol on synaptosomal glutamate release evoked by 4-aminopyridine (Na+ channel dependent), veratridine (Na (+) channel dependent), and KCl (Na+ channel independent) were studied using enzyme-coupled fluorimetry.

Results: Propofol inhibited veratridine-evoked22 Na+ influx (inhibitory concentration of 50% [IC50] = 46 micro Meter; 8.9 micro Meter free) and changes in intracellular [Na+] (IC50 = 13 micro Meter; 6.3 micro Meter free) in synaptosomes in a dose-dependent manner. Propofol also inhibited 4-aminopyridine-evoked (IC50 = 39 micro Meter; 19 micro Meter free) and veratridine (20 micro Meter)-evoked (IC (50) = 30 micro Meter; 14 micro Meter free), but not KCl-evoked (up to 100 micro Meter) glutamate release from synaptosomes.  相似文献   


4.
Background: Depression of glutamate-mediated excitatory transmission and potentiation of [gamma]-aminobutyric acid (GABA)-mediated inhibitory transmission appear to be primary mechanisms by which general anesthetics produce anesthesia. Since effects on transmitter transport have been implicated in anesthetic actions, the authors examined the sensitivity of presynaptic glutamate and GABA transporters to the effects of a representative volatile (isoflurane) and a representative intravenous (propofol) anesthetic.

Methods: A dual-isotope (l-[3H]glutamate and [14C]GABA) approach allowed simultaneous comparisons of anesthetic effects on three independent assays of glutamate and GABA transporters in adult rat cerebral cortex: transmitter uptake into isolated nerve terminals (synaptosomes), transmitter binding to lysed and washed synaptosomes (synaptic membranes), and carrier-mediated release (reverse transport) of transmitter from preloaded synaptosomes using a modified superfusion system.

Results: Isoflurane produced small but statistically significant inhibition of l-[3H]glutamate and [14C]GABA uptake, while propofol had no effect. Inhibition of uptake by isoflurane was noncompetitive, an outcome that was mimicked by indirectly affecting transporter function through synaptosomal depolarization. Neither isoflurane nor propofol affected l-[3H]glutamate or [14C]GABA binding to synaptic membranes or Ca2+-independent carrier-mediated l-[3H]glutamate or [14C]GABA release (reverse transport).  相似文献   


5.
BACKGROUND: Depression of glutamate-mediated excitatory transmission and potentiation of gamma-aminobutyric acid (GABA)-mediated inhibitory transmission appear to be primary mechanisms by which general anesthetics produce anesthesia. Since effects on transmitter transport have been implicated in anesthetic actions, the authors examined the sensitivity of presynaptic glutamate and GABA transporters to the effects of a representative volatile (isoflurane) and a representative intravenous (propofol) anesthetic. METHODS: A dual-isotope (l-[3H]glutamate and [14C]GABA) approach allowed simultaneous comparisons of anesthetic effects on three independent assays of glutamate and GABA transporters in adult rat cerebral cortex: transmitter uptake into isolated nerve terminals (synaptosomes), transmitter binding to lysed and washed synaptosomes (synaptic membranes), and carrier-mediated release (reverse transport) of transmitter from preloaded synaptosomes using a modified superfusion system. RESULTS: Isoflurane produced small but statistically significant inhibition of l-[3H]glutamate and [14C]GABA uptake, while propofol had no effect. Inhibition of uptake by isoflurane was noncompetitive, an outcome that was mimicked by indirectly affecting transporter function through synaptosomal depolarization. Neither isoflurane nor propofol affected l-[3H]glutamate or [14C]GABA binding to synaptic membranes or Ca(2+)-independent carrier-mediated l-[3H]glutamate or [14C]GABA release (reverse transport). CONCLUSIONS: These findings suggest that isoflurane and propofol at clinical concentrations do not affect excitatory glutamatergic transmission or inhibitory GABAergic transmission directly effects on their presynaptic neuronal transporters.  相似文献   

6.
BACKGROUND: General anesthetics inhibit evoked release of classic neurotransmitters. However, their actions on neuropeptide release in the central nervous system have not been well characterized. METHODS: The effects of representative intravenous and volatile anesthetics were studied on the release of sulfated cholecystokinin 8 (CCK8s), a representative excitatory neuropeptide, from isolated rat cerebrocortical nerve terminals (synaptosomes). Basal, elevated KCl depolarization-evoked and veratridine-evoked release of CCK8s from synaptosomes purified from rat cerebral cortex was evaluated at 35 degrees C in the absence or presence of extracellular Ca2+. CCK8s released into the incubation medium was determined by enzyme-linked immunoassay after filtration. RESULTS: Elevation of extracellular KCl concentration (to 15-30 mM) or veratridine (10-20 microm) stimulated Ca2+ -dependent CCK8s release. Basal, elevated KCl- or veratridine-evoked CCK8s release was not affected significantly by propofol (12.5-50 microm), pentobarbital (50 and 100 microm), thiopental (20 microm), etomidate (20 microm), ketamine (20 microm), isoflurane (0.6-0.8 mM), or halothane (0.6-0.8 mMm). CONCLUSIONS: Clinically relevant concentrations of several classes of general anesthetics did not affect basal, KCl-evoked, or veratridine-evoked CCK8s release from isolated rat cortical nerve terminals. This is in contrast to the demonstrable effects of certain general anesthetics on the release of amino acid and catecholamine transmitters. These transmitter-specific presynaptic effects of general anesthetics suggest that anesthetic-sensitive presynaptic targets are not common to all transmitter classes.  相似文献   

7.
Background: Experimental data suggest that volatile anesthetics induce significant changes in extracellular dopamine concentrations in the striatum, a restricted but functionally important brain area. In the present study, the authors used a superfused slice preparation to examine the effects of halothane and isoflurane on both spontaneous and N-methyl-D-aspartate (NMDA)-evoked dopamine release in the striatum, and whether these effects involved actions of these anesthetics mediated by [gamma]-aminobutyric acid receptors in this structure.

Methods: Radioactivity collected from 5-min fractions was compared in the absence (basal release) or presence (evoked release) of NMDA alone and combined with various pharmacologic or anesthetic agents in slices of the dorsolateral striatum and synaptosomes of the whole striatum preloaded with 3H-dopamine and superfused with artificial cerebrospinal fluid.

Results: In tetrodotoxin-treated striatal slices, halothane and isoflurane significantly increased dopamine basal release (EC50 = 0.33 mM and 0.41 mM for halothane and isoflurane, respectively). Both agents decreased the NMDA-evoked dopamine release in both the absence (IC50 = 0.15 mM and 0.14 mM for halothane and isoflurane, respectively) and presence (IC50 = 0.15 mM for both halothane and isoflurane) of tetrodotoxin in slices, and in synaptosomes (IC50 = 0.19 mM for both halothane and isoflurane). NMDA-induced dopamine release was significantly enhanced by bicuculline, a [gamma]-aminobutyric acid receptor antagonist. Halothane and isoflurane inhibitory effects on NMDA-evoked dopamine release were significantly reduced in the presence of bicuculline.  相似文献   


8.
Background: Volatile anesthetics can protect the myocardium against ischemic injury by opening the adenosine triphosphate (ATP)-sensitive potassium (KATP) channels. However, direct evidence for anesthetic-channel interaction is still limited, and little is known about the role KATP channel modulators play in this effect. Because pH is one of the regulators of KATP channels, the authors tested the hypothesis that intracellular pH (pHi) modulates the direct interaction of isoflurane with the cardiac KATP channel.

Methods: The effects of isoflurane on sarcolemmal KATP channels were investigated at pHi 7.4 and pHi 6.8 in excised inside-out membrane patches from ventricular myocytes of guinea pig hearts.

Results: At pHi 7.4, intracellular ATP (1-1,000 [mu]m) inhibited KATP channels and decreased channel open probability (Po) in a concentration-dependent manner with an IC50 of 8 +/- 1.5 [mu]m, and isoflurane (0.5 mm) either had no effect or decreased channel activity. Lowering pHi from 7.4 to 6.8 enhanced channel opening by increasing Po and reduced channel sensitivity to ATP, with IC50 shifting from 8 +/- 1.2 to 45 +/- 5.6 [mu]m. When applied to the channels activated at pHi 6.8, isoflurane (0.5 mm) increased Po and further reduced ATP sensitivity, shifting IC50 to 110 +/- 10.0 [mu]m.  相似文献   


9.
Inhibition of Presynaptic Sodium Channels by Halothane   总被引:6,自引:0,他引:6  
Background: Recent electrophysiologic studies indicate that clinical concentrations of volatile general anesthetic agents inhibit central nervous system sodium (Na sup +) channels. In this study, the biochemical effects of halothane on Na sup + channel function were determined using rat brain synaptosomes (pinched-off nerve terminals) to assess the role of presynaptic Na sup + channels in anesthetic effects.

Methods: Synaptosomes from adult rat cerebral cortex were used to determine the effects of halothane on veratridine-evoked Na sup + channel-dependent Na sup + influx (using22 Na sup +), changes in intrasynaptosomal [Na sup +] (using ion-specific spectrofluorometry), and neurotoxin interactions with specific receptor sites of the Na sup + channel (by radioligand binding). The potential physiologic and functional significance of these effects was determined by measuring the effects of halothane on veratridine-evoked Na sup + channel-dependent glutamate release (using enzyme-coupled spectrofluorometry).

Results: Halothane inhibited veratridine-evoked22 Na sup + influx (IC50 = 1.1 mM) and changes in intrasynaptosomal [Na sup +] (concentration for 50% inhibition [IC50] = 0.97 mM), and it specifically antagonized [sup 3 H]batrachotoxinin-A 20-alpha-benzoate binding to receptor site two of the Na sup + channel (IC50 = 0.53 mM). Scatchard and kinetic analysis revealed an allosteric competitive mechanism for inhibition of toxin binding. Halothane inhibited veratridine-evoked glutamate release from synaptosomes with comparable potency (IC50 = 0.67 mM).  相似文献   


10.
Background: Positive modulation of [gamma]-aminobutyric acid type A (GABAA) receptor function is recognized as an important component of the central nervous system depressant effects of many general anesthetics, including propofol. The role for GABAA receptors as an essential site in the anesthetic actions of propofol was recently challenged by a report that the propofol analog 4-iodopropofol (4-iodo-2,6-diisopropylphenol) potentiated and directly activated GABAA receptors, yet was devoid of sedative-anesthetic effects in rats after intraperitoneal injection. Given the important implications of these findings for theories of anesthesia, the authors compared the effects of 4-iodopropofol with those of propofol using established in vivo and in vitro assays of both GABAA receptor-dependent and -independent anesthetic actions.

Methods: The effects of propofol and 4-iodopropofol were analyzed on heterologously expressed recombinant human GABAA [alpha]1[beta]2[gamma]2 receptors, evoked population spike amplitudes in rat hippocampal slices, and glutamate release from rat cerebrocortical synaptosomes in vitro. Anesthetic potency was determined by loss of righting reflex in Xenopus laevis tadpoles, in mice after intraperitoneal injection, and in rats after intravenous injection.

Results: Like propofol, 4-iodopropofol enhanced GABA-induced currents in recombinant GABAA receptors, inhibited synaptic transmission in rat hippocampal slices, and inhibited sodium channel-mediated glutamate release from synaptosomes, but with reduced potency. After intraperitoneal injection, 4-iodopropofol did not produce anesthesia in mice, but it was not detected in serum or brain. However, 4-iodopropofol did produce anesthesia in tadpoles (EC50 = 2.5 +/- 0.5 [mu]m) and in rats after intravenous injection (ED50 = 49 +/- 6.2 mg/kg).  相似文献   


11.
Background: The extracellular concentration of glutamate in the brain increases after oxidative damage. This increase may be caused, in part, by changes in glutamate transport by astrocytes. The authors hypothesized that propofol and hypothermia mitigate the effects on astrocytes of oxidative stress.

Methods: Primary cultures of rat cerebral astrocytes were subjected to oxidative stress by incubation with tert-butyl hydroperoxide for 30 min, followed by a 30-90-min washout period. The effects of prophylactic (simultaneous with tert-butyl hydroperoxide application) and delayed (administered 30 min after the oxidant) propofol or hypothermia were determined by measuring the uptake of glutamate as well as the release of preloaded d-aspartate (a nonmetabolizable analog of glutamate) and endogenous lactate dehydrogenase (a cytosolic marker).

Results: Delayed administration of an anesthetic concentration of propofol (1-3 [mu]m) prevented the inhibition of high-affinity glutamate uptake, stimulation of d-aspartate release, and increase in lactate dehydrogenase release caused by tert-butyl hydroperoxide (1 mm, 37[degrees]C). The protective effect of propofol (EC50 = 2 [mu]m) on glutamate uptake was 20-fold more potent than that of [alpha]-tocopherol (EC50 = 40 [mu]m). Prophylactic hypothermia (28 and 33[degrees]C) also protected astrocytes from tert-butyl hydroperoxide. Delayed hypothermia was not protective but did not compromise rescue by propofol.  相似文献   


12.
Background: Renal impairment often follows cardiac surgery. The authors investigated whether sevoflurane produces greater increases in plasma creatinine concentration than isoflurane or propofol after elective coronary artery surgery.

Methods: As part of maintenance anesthesia, including during cardiopulmonary bypass, patients were randomly allocated to receive one of three agents: isoflurane (n = 118), sevoflurane (n = 118), or propofol (n = 118). Fresh gas flows were 3 l/min. The preoperative plasma creatinine concentration was subtracted from the highest creatinine concentration in the first 3 postoperative days. A median maximum increase greater than 44 [mu]m (0.5 mg/dl) was regarded as clinically important. Data were analyzed on an intention-to-treat basis. Subgroup analyses were performed on per-protocol patients and those with preoperative renal impairment (creatinine concentration > 130 [mu]m [1.47 mg/dl] or urea > 7.7 mm [blood urea nitrogen, 21.6 mg/dl]).

Results: The differences between the groups were small, clinically unimportant, and not statistically significant for the primary analysis and subgroups. The proportions of patients with creatinine increases greater than 44 [mu]m were 15% in the isoflurane group, 17% in the sevoflurane group, and 11% in the propofol group (P = 0.45). The median increases were 8 [mu]m in the isoflurane group, 4 [mu]m in the sevoflurane group, and 6 [mu]m in the propofol group. The differences between the three median maximum increases were 1-4 [mu]m (P > 0.45). In the subgroup with preoperative renal impairment, the median increases were 10 [mu]m in the isoflurane group, 15 [mu]m in the sevoflurane group, and 5 [mu]m in the propofol group (P = 0.72).  相似文献   


13.
Background: The authors determined whether desflurane altered myocardial excitation-contraction coupling and electrophysiologic behavior in the same manner as isoflurane and sevoflurane.

Methods: The effects of desflurane on isometric force in guinea pig ventricular papillary muscles were studied in modified standard and in 26 mm K+ Tyrode solution with 0.1 [mu]m isoproterenol. Desflurane effects on sarcoplasmic reticulum Ca2+ release were also determined by examining its actions on rat papillary muscles, guinea pig papillary muscles in low-Na+ Tyrode solution, and rapid cooling contractures. Normal and slow action potentials were recorded using a conventional microelectrode technique. Ca2+ and K+ currents of guinea pig ventricular myocytes were examined.

Results: Desflurane (5.3% and 11.6%) decreased peak force to approximately 70% and 40% of the baseline, respectively, similar to the effects of equianesthetic isoflurane concentrations. With isoproterenol in 26 mm K+ Tyrode solution, desflurane markedly depressed late peaking force and modestly depressed early peak force. The rested state contractions of rat myocardium or guinea pig myocardium in low-Na+ Tyrode solution were modestly depressed, whereas rapid cooling contractures were virtually abolished after desflurane administration. Desflurane significantly prolonged the action potential duration. Desflurane reduced L-type Ca2+ current and the delayed outward K+ current but did not alter the inward rectifier K+ current.  相似文献   


14.
Background: Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods.

Methods: Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording.

Results: F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [~ 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [~ 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50= 0.5 mM [~ 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70 +/- 9% block at 0.6 mM [~ 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21 +/- 9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16 +/- 2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation.  相似文献   


15.
Background: Synaptic transmission is more sensitive than axonal conduction to the effects of general anesthetics. Previous studies of the synaptic effects of general anesthetics have focused on postsynaptic sites of action. We now provide direct biochemical evidence for a presynaptic effect of volatile anesthetics on neurotransmitter release.

Methods: Rat cerebrocortical synaptosomes (isolated presynaptic nerve terminals) were used to determine the effects of general anesthetics on the release of endogenous L-glutamate, the major fast excitatory neurotransmitter. Basal and evoked (by 4-aminopyridine, veratridine, increased KCl, or ionomycin) glutamate release were measured by continuous enzyme-coupled fluorometry.

Results: Clinical concentrations of volatile halogenated anesthetics, but not of pentobarbital, inhibited 4-aminopyridine-evoked Calcium2+ -dependent glutamate release. Halothane also inhibited veratridine-evoked glutamate release but not basal, KCl-evoked, or ionomycin-evoked glutamate release. Halothane inhibited both the 4-aminopyridine-evoked and the KCl-evoked increase in free intrasynaptosomal [Calcium2+].  相似文献   


16.
Background: Spinally administered clonidine produces analgesia via [alpha]2-adrenergic receptors. The analgesic potency of clonidine and its dependency on muscarinic acetylcholine receptors increase in rats after nerve injury. The authors hypothesized that these changes reflect greater acetylcholine release from the spinal cord by clonidine, either through direct or indirect effects.

Methods: Male Sprague-Dawley rats were divided into two groups: no surgery or left L5 and L6 spinal nerve ligation (SNL). All experiments were performed 3 weeks after SNL. Crude synaptosomes were prepared from the spinal enlargement and loaded with [3H]choline. Samples were incubated with clonidine in the absence or presence of KCl depolarization. The authors also examined the effect of clonidine on KCl evoked acetylcholine release using perfusion of spinal cord slices, in which some spinal circuitry is maintained.

Results: In synaptosomes, clonidine alone induced minimal acetylcholine release, which was actually greater in tissue from normal rats than in tissue from SNL rats. In the presence of KCl depolarization, however, clonidine enhanced acetylcholine release in tissue from SNL rats but inhibited release in tissue from normal rats. Similarly, in spinal cord slices, clonidine enhanced KCl evoked acetylcholine release in tissue from SNL animals but inhibited such release in tissue from normal animals. The [alpha]2-adrenoceptor antagonist idazoxan inhibited the effects of clonidine in slices from SNL rats.  相似文献   


17.
Background: Cardiac adenosine triphosphate-sensitive potassium (KATP) channels and protein tyrosine kinases (PTKs) are mediators of ischemic preconditioning, but the interaction of both and a role in myocardial protection afforded by volatile anesthetics have not been defined.

Methods: Whole cell and single channel patch clamp techniques were used to investigate the effects of isoflurane and the PTK inhibitor genistein on the cardiac sarcolemmal KATP channel in acutely dissociated guinea pig ventricular myocytes.

Results: At 0.5 mm internal ATP, genistein (50 [mu]m) elicited whole cell KATP current (22.5 +/- 7.9 pA/pF). Genistein effects were concentration-dependent, with an EC50 of 32.3 +/- 1.4 [mu]m. Another PTK inhibitor, tyrphostin B42, had a similar effect. The inactive analog of genistein, daidzein (50 [mu]m), did not elicit KATP current. Isoflurane (0.5 mm) increased genistein (35 [mu]m)- activated whole cell KATP current from 14.5 +/- 3.1 to 32.5 +/- 6.6 pA/pF. Stimulation of receptor PTKs with epidermal growth factor, nerve growth factor, or insulin attenuated genistein and isoflurane effects, and the protein tyrosine phosphatase inhibitor orthovanadate (1 mm) prevented their actions on KATP current. In excised inside-out membrane patches, and at fixed 0.2 mm internal ATP, genistein (50 [mu]m) increased channel open probability from 0.053 +/- 0.016 to 0.183 +/- 0.039, but isoflurane failed to further increase open probability (0.162 +/- 0.051) of genistein-activated channels. However, applied in the presence of genistein and protein tyrosine phosphatase 1B (1 [mu]g/ml), isoflurane significantly increased open probability to 0.473 +/- 0.114.  相似文献   


18.
BACKGROUND: Experimental data suggest that volatile anesthetics induce significant changes in extracellular dopamine concentrations in the striatum, a restricted but functionally important brain area. In the present study, the authors used a superfused slice preparation to examine the effects of halothane and isoflurane on both spontaneous and N-methyl-D-aspartate (NMDA)-evoked dopamine release in the striatum, and whether these effects involved actions of these anesthetics mediated by gamma-aminobutyric acid receptors in this structure. METHODS: Radioactivity collected from 5-min fractions was compared in the absence (basal release) or presence (evoked release) of NMDA alone and combined with various pharmacologic or anesthetic agents in slices of the dorsolateral striatum and synaptosomes of the whole striatum preloaded with 3H-dopamine and superfused with artificial cerebrospinal fluid. RESULTS: In tetrodotoxin-treated striatal slices, halothane and isoflurane significantly increased dopamine basal release (EC50 = 0.33 mM and 0.41 mM for halothane and isoflurane, respectively). Both agents decreased the NMDA-evoked dopamine release in both the absence (IC50 = 0.15 mM and 0.14 mM for halothane and isoflurane, respectively) and presence (IC50 = 0.15 mM for both halothane and isoflurane) of tetrodotoxin in slices, and in synaptosomes (IC50 = 0.19 mM for both halothane and isoflurane). NMDA-induced dopamine release was significantly enhanced by bicuculline, a gamma-aminobutyric acid receptor antagonist. Halothane and isoflurane inhibitory effects on NMDA-evoked dopamine release were significantly reduced in the presence of bicuculline. CONCLUSION: These results indicate that halothane and isoflurane decrease the NMDA-evoked dopamine release by acting directly at dopamine terminals in striatal slices. They support the involvement of both depression of presynaptic NMDA receptor-mediated responses and enhancement of gamma-aminobutyric acid receptor-mediated responses in these effects.  相似文献   

19.
Background: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress.

Methods: Primary cortical neuronal-glial cultures were exposed to N-methyl-d-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mm), sevoflurane (0.1-2.9 mm), halothane (0.1-2.9 mm), or 10 [mu]m (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 [mu]m).

Results: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization.  相似文献   


20.
Background: Many anesthetic agents are known to enhance the [alpha]1[beta]2[gamma]2S[gamma]-aminobutyric acid type A (GABAA) chloride current; however, they also depress excitatory neurotransmission. The authors evaluated two hypotheses: intravenous anesthetic agents inhibit glutamate release and any observed inhibition may be secondary to GABAA receptor activation.

Methods: Cerebrocortical slices were prepared from Wistar rats. After perfusion in oxygenated Krebs buffer for 60 min at 37[degrees]C, samples for glutamate assay were obtained at 2-min intervals. After 6 min, a 2-min pulse of 46 mM K+ was applied to the slices (S1); this was repeated after 30 min (S2). Bicuculline (1-100 [mu]M) was applied when the S1 response returned to basal level, and 10 min later, thiopental (1-300 [mu]M), propofol (10 [mu]M), or ketamine (30 [mu]M) were also applied until the end of S2. Perfusate glutamate concentrations were measured fluorometrically, and the area under the glutamate release curves was expressed as a ratio (S2/S1).

Results: Potassium (46 mM) evoked a monophasic release of glutamate during S1 and S2, with a mean control S2/S1 ratio of 1.07 +/- 0.33 (mean +/- SD, n = 96). Ketamine and thiopental produced a concentration-dependent inhibition of K+-evoked glutamate release with half-maximum inhibition of release values of 18.2 and 10.9 [mu]M, respectively. Release was also inhibited by propofol. Bicuculline produced a concentration dependent reversal of thiopental inhibition of glutamate release with a half-maximum reversal of the agonist effect of 10.3 [mu]M. Bicuculline also reversed the effects of propofol but not those of ketamine.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号