首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two components of transient outward current in canine ventricular myocytes   总被引:16,自引:0,他引:16  
Repolarization during phase 1 of cardiac action potential is important in that it may influence both impulse conduction in partially depolarized tissue and action potential duration. Thus, it is important to know the properties and regulation of the underlying currents. In about 50% of canine ventricular myocytes, the actin potential displays a phase 1 of fast repolarization and a prominent notch between phase 1 and the plateau. A transient outward current is responsible for both. This current is composed of two components: one (Ito1) blocked by 4-aminopyridine and the other (Ito2) blocked by manganese. In the present study, we characterized each of the components in isolation from the other. Both had an activation threshold between -30 and -20 mV. At the same voltage, Ito1 was larger than Ito2 and had a shorter time to peak. The peak current-voltage relationship for Ito1 was almost linear, but that for Ito2 was bell-shaped. Ito1 decayed during sustained depolarization with a single exponential time course: tau less than 30 msec at all voltages. It recovered from inactivation with a voltage-dependent time course: tau = 70 msec at -90 mV and 720 msec at -40 mV. Ito2 was augmented by elevating [Ca2+]o or by isoproterenol. It was inhibited by caffeine, ryanodine, or a preceding transient inward current, suggesting that it was activated by intracellular calcium released from sarcoplasmic reticulum. We conclude that Ito1 and Ito2 in canine ventricle are similar to those described for many other cardiac tissues, but the kinetics of Ito1 are significantly faster than in other tissues.  相似文献   

2.
Previous studies have reported that dexamethasone (Dex) prolongs cardiac action potential repolarization in mice and rats. However, the cellular mechanisms of this effect have not been addressed. Because action potential duration is influenced by a complex interplay of both inward and outward currents, this study evaluated the role of K+ currents and the L-type Ca2+ current in response to chronic in vivo Dex treatment. Accordingly, neonatal mice were randomly allocated to treatment with Dex (1 mg/kg per day) or placebo (saline) given subcutaneously for 5 days. At 14 to 15 days of age, the L-type Ca2+ current and K+ currents were recorded in ventricular myocytes using whole-cell patch-clamp techniques. The density of peak outward K+ currents was significantly decreased in the chronic Dex-treated group, but the current measured at the end of a 1-second depolarization pulse was similar in both groups. We further measured the magnitudes of the fast-inactivating (I(to)) and the slowly inactivating (I(slow)) currents that contribute to the peak outward K+ currents. I(to) was reduced from 17.5+/-3.0 pA/pF (control) to 10.6+/-2.5 pA/pF (Dex) at +50 mV (P<0.05), but I(slow) was not significantly different. These data suggest that downregulation of I(to) is responsible for the reduced peak outward current. Time courses of the onset and offset of in vivo Dex effects were also assessed. A period of 3 days of treatment was required to observe the Dex effect on peak outward K(+) currents, whereas a 7-day period after discontinuation of Dex was required to recover the baseline current density. Acute in vitro treatment with Dex (1 micromol/L) had no effect on K+ current densities. In addition, chronic Dex treatment significantly increased the density of the L-type Ca2+ current (I(Ca-L)) from -7.2+/-0.5 pA/pF of control to -8.9+/-0.6 pA/pF of Dex at +10 mV, P<0.05. In conclusion, chronic in vivo Dex treatment decreases I(to) and increases I(Ca-L) in neonatal mouse ventricular myocytes, both of which contribute to the prolongation of cardiac action potential repolarization induced by glucocorticoids.  相似文献   

3.
家兔心室肌细胞的非特异性阳离子流   总被引:1,自引:0,他引:1  
目的已知有多种离子流参与动作电位的复极过程,而每种复极电流的特性及大小因动物的种属不同而不同,电流对复极所起作用的大小也不同。家兔心室肌细胞的Ito属于慢失活的电流,它几乎贯穿于整个复极相,这导致兔心室肌的复极过程非常复杂。本研究以家兔为研究对象,探索兔心室肌上是否存在其他复极电流,并研究它的特性,推测其在致、抗心律失常中的作用。方法应用全细胞膜片钳制技术记录兔心室肌单细胞电流。结果研究发现兔的心室肌细胞存在非特异性阳离子流:当电极内外液中的K^+用Cs^+替代后,去极化电位引发一组非时间依赖性电流,这种电流可以被Gd^3+(非特异性阳离子流的有效阻断剂)阻断。当从灌流液中去掉Ca^2+、Mg^2+后,这种电流的幅值在+60mV时增加40%~116%;当在灌流液中加入20μmol/L的胰岛素后,这种电流的幅值在+60mV时增加30%~60%。结论兔的心室肌细胞存在非特异性阳离子流,鉴于它快激活、无失活并呈电压依赖性,我们推测这种电流对动作电位的各个时相包括兔心室肌的静息膜电位都有重要的影响,特别是动作电位的复极阶段。可以设想,在某些病理生理条件下,该通道的通透性可能会发生改变,这将导致心律失常的发生,或者抗心律失常。  相似文献   

4.
The transient outward currents (Ito) play an important role in action potential repolarization in cardiac myocytes. Two components of Ito have been identified as 4-AP-sensitive but Ca2+-insensitive Ito carried by K, and Ca2+-sensitive but 4-AP insensitive Ito carried by Cl- (I(Cl(Ca))). It is known that the amplitudes of Ito change depending on the stimulation frequency. In this study we investigated the beat dependent alteration of I(Cl(Ca)) during rapid stimulation using the whole cell patch clamp technique in rabbit ventricular myocytes. The cells were internally perfused with a solution containing 0.1 microM free Ca2+ to develop I(Cl(Ca)) and all internal K+ was replaced with Cs+ to block 4-AP-sensitive Ito and other K+ currents. By applying depolarizing pulses at a high frequency of 2.5 Hz, the amplitudes of I(Cl(Ca)) gradually increased as the number of pulses increased following a transient decrease in the 2nd pulse and reached a plateau level at the 20th pulse. The shape of the current-voltage curve of I(Cl(Ca)) was not overly different for different numbers of preceding pulses. The recovery from inactivation of I(Cl(Ca)) could be fitted to a single exponential curve and full recovery was achieved after > 1 sec with a time constant of 368 ms. The ramp clamp experiments showed that the conductance of the background I(Cl(Ca)) increased with the preceding pulse numbers, indicating that the resting level of [Ca2]i increased with the pulses applied. From these results, we conclude that beat dependent alteration of I(Cl(Ca)) is determined by not only its apparent kinetic property, but also the resting level of [Ca2+]i during rapid stimulation.  相似文献   

5.
OBJECTIVE: It is unknown whether 4-aminopyridine- (4-AP-) sensitive transient outward K(+) current (I(to1)) and/or Ca(2+)-activated transient outward Cl(-) current (I(Ca.Cl) or I(to2)) contribute(s) to phase 1 repolarization of pig ventricular action potential (AP). The purpose of the present study was to determine ionic contribution of the phase 1 repolarization of AP in pig ventricle. METHODS: We used whole-cell patch techniques to record APs and membrane currents, and Western immunoblotting analysis to detect expression of I(to1) protein (Kv4.2 or Kv4.3) in pig ventricular myocytes. RESULTS: A transient outward current (I(to)) was activated upon depolarization voltage steps to between -10 and +60 mV from -50 mV in pig ventricular cells, and the I(to) was resistant to 4-AP application, but sensitive to the inhibition by ryanodine (10 micromol/l) and the Ca(2+) channel blockade, and the Cl(-) channel blocker 4,4'-diisothiocyanostilben-2,2'disulfonic acid (DIDS, 150 micromol/l). The current was diminished by external Cl(-) (Cl(-)(o)) replacement and showed a 'bell-shaped' I-V relationship at room temperature, typical of I(to2). No difference in I(to2) was observed in the regional cells from epicardium, midmyocardium, and endocardium of left ventricle. APs showed significant phase 1 and 'spike and dome' in pig ventricular myocytes. The phase 1 and 'spike and dome' of APs were not affected by 4-AP (3 mmol/l), but abolished by replacing Cl(-)(o) and by application of 100 micromol/l DIDS, suggesting I(to2) contribution. Western immunoblotting analysis showed no evidence for the expression of 4-AP-sensitive I(to1) channel protein (Kv4.2 or Kv4.3) in pig ventricular cells. CONCLUSION: The results indicate that 4-AP-sensitive I(to1) is not expressed, and only Ca(2+)-activated I(to2) is present in pig cardiac cells, which contributes importantly to the phase 1 repolarization of ventricular APs in this species.  相似文献   

6.
OBJECTIVE: In diabetes mellitus several cardiac electrophysiological parameters are known to be affected. In rodent experimental diabetes models changes in these parameters were reported, but no such data are available in other mammalian species including the dog. The present study was designed to analyse the effects of experimental type 1 diabetes on ventricular repolarization and its underlying transmembrane ionic currents and channel proteins in canine hearts. METHODS AND RESULTS: Diabetes was induced by a single injection of alloxan, a subgroup of dogs received insulin substitution. After the development of diabetes (8 weeks) electrophysiological studies were performed using conventional microelectrodes, whole cell voltage clamp, and ECG. Expression of ion channel proteins was evaluated by Western blotting. The QTc interval and the ventricular action potential duration in diabetic dogs were moderately prolonged. This was accompanied by significant reduction in the density of the transient outward K+ current (I(to)) and the slow delayed rectifier K+ current (I(Ks)), to 54.6% and 69.3% of control, respectively. No differences were observed in the density of the inward rectifier K+ current (I(K1)), rapid delayed rectifier K+ current (I(Kr)), and L-type Ca2+ current (I(Ca)). Western blot analysis revealed a reduced expression of Kv4.3 and MinK (to 25+/-21% and 48+/-15% of control, respectively) in diabetic dogs, while other channel proteins were unchanged (HERG, MiRP1, alpha(1c)) or increased (Kv1.4, KChIP2, KvLQT1). Insulin substitution fully prevented the diabetes-induced changes in I(Ks), KvLQT1 and MinK, however, the changes in I(to), Kv4.3, and Kv1.4 were only partially diminished by insulin. CONCLUSION: It is concluded that type 1 diabetes mellitus, although only moderately, lengthens ventricular repolarization, attenuates the repolarization reserve by decreasing I(to) and I(Ks) currents, and thereby may markedly enhance the risk of sudden cardiac death.  相似文献   

7.
The first recordings of neuron-like electrical activity from endocrine cells were made from fish pituitary cells. However, patch-clamping studies have predominantly utilized mammalian preparations. This study used whole-cell patch-clamping to characterize voltage-gated ionic currents of anterior pituitary cells of Oreochromis mossambicus in primary culture. Due to their importance for control of hormone secretion we emphasize analysis of calcium currents (I(Ca)), including using peptide toxins diagnostic for mammalian neuronal Ca(2+) channel types. These appear not to have been previously tested on fish endocrine cells. In balanced salines, inward currents consisted of a rapid TTX-sensitive sodium current and a smaller, slower I(Ca); there followed outward potassium currents dominated by delayed, sustained TEA-sensitive K(+) current. About half of cells tested from a holding potential (V(h)) of -90 mV showed early transient K(+) current; most cells showed a small Ca(2+)-mediated outward current. I-V plots of isolated I(Ca) with 15 mM [Ca(2+)](o) showed peak currents (up to 20 pA/pF from V(h) -90 mV) at approximately +10 mV, with approximately 60% I(Ca) for V(h) -50 mV and approximately 30% remaining at V(h) -30 mV. Plots of normalized conductance vs. voltage at several V(h)s were nearly superimposable. Well-sustained I(Ca) with predominantly Ca(2+)-dependent inactivation and inhibition of approximately 30% of total I(Ca) by nifedipine or nimodipine suggests participation of L-type channels. Each of the peptide toxins (omega-conotoxin GVIA, omega-agatoxin IVA, SNX482) alone blocked 36-54% of I(Ca). Inhibition by any of these toxins was additive to inhibition by nifedipine. Combinations of the toxins failed to produce additive effects. I(Ca) of up to 30% of total remained with any combination of inhibitors, but 0.1mM cadmium blocked all I(Ca) rapidly and reversibly. We did not find differences among cells of differing size and hormone content. Thus, I(Ca) is carried by high voltage-activated Ca(2+) channels of at least three types, but the molecular types may differ from those characterized from mammalian neurons.  相似文献   

8.
The present work investigated the effects of raising [Ca+2]i levels on action potential (AP) and L-type calcium current (I(Ca.L)) of normal and chronically infarcted rat ventricles. Experiments were performed by conventional electrophysiology and whole-cell patch-clamp techniques. In the former, APs were recorded in ventricular strips subjected to different pacing rates or elevation of [Ca+2]o levels. In the latter, I(Ca.L) was studied in isolated myocytes in the absence of an intracellular Ca+2 chelator. The acceleration of heart rate (6 to 240 beats/min) reduced AP duration measured at 20%, 50%, and 90% repolarization (APD20, APD50, and APD90) in the infarcted group, and increased APD20 and APD50 in the control group. Rising [Ca+]o (1.25 to 5.0 mmol/L) induced a decrease of APD20 and APD50 in both groups. Voltage clamp revealed a smaller I(Ca.L) density at approximately -17 mV in myocytes from infarcted ventricles (-1.86 +/- 0.37 vs -3.98 +/- 0.65 pA/pF, P < .05), and the appearance of a non-K+ outward current coupled to I(Ca.L). The results suggest the participation of a Ca+2-activated outward current in the repolarization of normal and infarcted rat ventricles.  相似文献   

9.
To isolate inward Ca2+ currents in GH3 rat pituitary cells, an inward Na+ current as well as two outward K+ currents, a transient voltage-dependent current (IKV) and a slowly rising Ca2+-activated current (IKCa), must be suppressed. Blockage of these outward currents, usually achieved by replacement of intracellular K+ with Cs+, reveals sustained inward currents. Selective blockage of either K+ current can be accomplished in the presence of intracellular K+ by use of quaternary ammonium ions. When IKCa and Na+ currents are blocked, the net current elicited by stepping the membrane potential (Vm) from -60 to 0 mV is inward first, becomes outward and peaks in 10-30 msec, and finally becomes inward again. Under this condition, in which both IKV and Ca2+ currents should be present throughout the duration of the voltage step, the Ca2+ current was not detected at the time of peak outward current. That is, plots of peak outward current vs. Vm are monotonic and are not modified by nisoldipine or low external Ca2+ as would be expected if Ca2+ currents were present. However, similar plots at times other than at peak current are not monotonic and are altered by nisoldipine or low Ca2+ (i.e., inward currents decrease and plots become monotonic). When K+ channels are first inactivated by holding Vm at -30 mV, a sustained Ca2+ current is always observed upon stepping Vm to 0 mV. Furthermore, substitution of Ba2+ for Ca2+ causes blockage of IKV and inhibition of this current results in inward Ba2+ currents with square wave kinetics. These data indicate that the Ca2+ current is completely inhibited at peak outward IKV and that Ca2+ conductance is progressively disinhibited as the transient K+ current declines due to channel inactivation. This suggests that in GH3 cells Ca2+ channels are regulated by IKV.  相似文献   

10.
INTRODUCTION: Torsades de pointes have been observed during treatment with droperidol, a butyrophenone neuroleptic agent. Our objectives were (1) to characterize the effects of droperidol on cardiac repolarization and (2) to evaluate effects of droperidol on a major time-dependent outward potassium current involved in cardiac repolarization (I(K)r). METHODS AND RESULTS: Isolated, buffer-perfused guinea pig hearts (n = 32) were stimulated at different pacing cycle lengths (150 to 250 msec) and exposed to droperidol in concentrations ranging from 10 to 300 nmol/L. Droperidol increased monophasic action potential duration measured at 90% repolarization (MAPD90) in a concentration-dependent manner by 9.8+/-2.3 msec (7.3%+/-0.7%) at 10 nmol/L but by 32.7+/-3.6 msec (25.7%+/-2.2%) at 300 nmol/L (250-msec cycle length). Increase in MAPD90 also was reverse frequency dependent. As noted previously, droperidol 300 nmol/L increased MAPD90 by 32.7+/-3.6 msec (25.7%+/-2.2%) at a pacing cycle length of 250 msec but by only 14.1+/-1.3 msec (13.6%+/-2.3%) at a pacing cycle length of 150 msec. Patch clamp experiments performed in isolated guinea pig ventricular myocytes demonstrated that droperidol decreases the time-dependent outward K+ current elicited by short depolarizations (250 msec; I(K)250) in a concentration-dependent manner. Estimated IC50 for I(K)250, which mostly underlies I(K)r, was 28 nmol/L. Finally, HERG K+ current elicited in HEK293 cells expressing high levels of HERG protein was decreased 50% by droperidol 32.2 nmol/L. CONCLUSION: Potent block of I(K)r by droperidol is likely to underlie QT prolongation observed in patients treated at therapeutic plasma concentrations (10 to 400 nmol/L) of the drug.  相似文献   

11.
OBJECTIVE: Heart failure in patients and in animal models is associated with action potential prolongation of the ventricular myocytes. Changes in several membrane currents have been already demonstrated to underlie this prolongation. However, information on the two components (I(Kr) and I(Ks)) of the delayed rectifier potassium current (I(K)) in rapid pacing induced heart failure is lacking. METHODS AND RESULTS: Action potentials and whole-cell currents, I(K), I(to1), I(K1), and I(Ca-L) were recorded in apical myocytes of left ventricle from 10 rabbits subjected to left ventricular pacing at 350-380 beats/min for 3-4 weeks and 10 controls with sham operation. Action potential duration at 90% repolarization (APD(90)) was prolonged in myocytes from failing hearts compared to controls at both cycle lengths of 333 and 1000 ms. Both E-4031-sensitive and -resistant components of I(K) (I(Kr), I(Ks)) in myocytes from failing hearts were significantly less than those of control hearts; tail current densities of I(Kr) and I(Ks) following depolarization to +50 mV were 0.62+/-0.05 vs. 0.96+/-0.12 pA/pF (P<0.05), and 0.27+/-0.08 vs. 0.52+/-0.08 pA/pF (P<0.05), respectively. There was no significant difference between control and failing myocytes in the voltage- and time-dependence of activation of total I(K), I(Kr) and I(Ks). The peak of L-type Ca(2+) current (I(Ca-L)) was significantly reduced in myocytes from failing hearts (at +10 mV, -9.29+/-0.52 vs. -12.28+/-1.63 pA/pF, P<0.05), as was the Ca(2+)-independent transient outward current (I(to1); at +40 mV, 4.8+/-0.9 vs. 9.6+/-1.3 pA/pF, P<0.05). Steady state I-V curve for I(K1) was similar in myocytes from failing and control hearts. CONCLUSIONS: Decrease of I(K) (both I(Kr) and I(Ks)) in addition to reduced I(to1), may underly action potential prolongation at physiological cycle length and thereby contribute to arrhythmogenesis in heart failure.  相似文献   

12.
Effects of quinidine on plateau currents of guinea-pig ventricular myocytes   总被引:4,自引:0,他引:4  
Effects of quinidine on membrane currents forming the plateau of action potentials were studied using an isolated single ventricular cell from guinea-pig hearts. Quinidine (5 mg/l) produced a fall and shortening of the early part of the plateau, and delayed its later part and final repolarization, without changes in resting membrane potential. Application of quinidine caused a reversible depression of the peak Ca2+ current by about 30% of the control. Delayed outward K+ current, iK, also decreased to less than 20% of the control. Thus, an outward tail current upon repolarization to -40 mV from depolarizing voltage steps of the plateau ranges became inward. Current values at the end of 200 ms pulses in response to voltage steps to -60-0 mV were always positive and were not changed by the drug. The inward current elicited at potentials negative to resting potential level, also, decreased by 13% to 23% of the control in the presence of the drug, but the effect was not reversible upon wash-out of the drug. These results suggest that quinidine causes a non-specific depression of inward rectifier K+ current, iK1, with minor degree but has little effect on the window sodium current. Therefore, changes in the action potential repolarization produced by quinidine can be explained by its effects on both calcium current and delayed outward K+ current.  相似文献   

13.
犬右室瞬间外向钾电流异质性的研究   总被引:4,自引:2,他引:4  
应用全细胞钳制技术对犬右室心外膜下 (epi)细胞、中层 (M)细胞和心内膜下 (endo)细胞复极 1期瞬间外向钾电流 (Ito1)的强度、密度和动力学过程进行系统定量研究 ,以期从复极 1期主要离子流的角度 ,探讨右室复极 1期跨越室壁的电异质性。结果发现 :犬右室epi细胞和M细胞存在强大的Ito1离子流 ,在刺激频率为 0 .2Hz、37℃和去极化试验电压为 +70mV时 ,epi细胞和M细胞峰值Ito1离子流的强度分别为 46 5 0± 176 0 ,36 2 0± 1880pA ,其激活和失活动力学过程符合Boltzmann分布。与epi细胞和M细胞相比 ,endo细胞Ito1离子流微小 ,同样条件下其平均峰值Ito1离子流仅为 480± 130pA。表明在右室跨越室壁的三层细胞间 ,特别是epi细胞与endo细胞之间、M细胞与endo细胞之间 ,复极 1期存在明显的Ito1离子流强度差异和强大的Ito1离子流梯度 ,此为右室电异质性的一种突出表现 ,它可能是Brugada综合征等疾病所致恶性心律失常的重要离子基础之一  相似文献   

14.
There are 2 types of transient outward currents (Ito) in the hearts of various mammals: a 4-aminopyridine (4-AP) sensitive K+ current and a 4-AP resistant Ca2+ activated current, carried by Cl-, (referred to as I(to1) and I(to2), respectively). However, the I(to) has been considered to be absent in guinea-pig ventricular myocytes and so this study tested the hypothesis that I(to1) is generally absent in guinea-pig ventricular myocytes, but I(to2) appears under the condition of Ca2+ overload. Membrane currents were recorded by the whole-cell patch-clamp technique and Ca2+ overload was achieved by adding internal, and eliminating external, Na+ with subsequent enhancement of Ca2+ influx via the Na+-Ca2+ exchange. Under physiological conditions, I(to) could not be elicited by 300 ms-test pulse from -70 mV to 0 mV (n=32). However, under Ca2+ overload, a biphasic current resulting from the overlap of the L-type Ca2+ channel current and Ito was elicited (n=38). This I(to) was resistant to 4-AP (3 mmol/L, n=30) but sensitive to both anthrancene-9-carboxylic acid (9-AC, 3 mmol/L, n=8) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (100 micromol/L, n=3). Replacing K+ with Cs+ on both sides of the membrane failed to abolish I(to) (n=38). I(to) disappeared by lowering the external Cl- (n=3). The amplitude of I(to) was dependent on that of the L-type Ca2+ channel current (n=4). Because Ca2+ release from the sarcoplasmic reticulum was prevented by caffeine (5 mmol/L), I(to) was negligible (n=6). These results suggest that I(to1) is absent, but Ca2+ overload evokes I(to2) in guinea-pig ventricular myocytes.  相似文献   

15.
INTRODUCTION: Thyroid hormone affects the electrophysiologic properties of the heart. It is not known which of the different subtypes of thyroid hormone receptors mediate these effects. METHODS AND RESULTS: Using standard patch-clamp techniques, we studied time- and voltage-dependent properties of depolarization-activated K+ currents in ventricular heart cells isolated from mice lacking the thyroid hormone receptor alpha1 (TR alpha1) and compared these currents with those in respective wild-type cells. In both groups of cells, the time course of current decay could be described by two inactivating exponential components and a sustained current component. In TR alpha1-deficient cells, the total inactivation time course was accelerated due to both increase of the relative contribution of the fast component and shortening of the slow time constant. The peak amplitude of the total current was not altered. The main component of steady-state inactivation of the voltage-dependent K+ outward current was shifted to more hyperpolarized voltages by 7 mV in TR alpha1-deficient cells compared with that in wild-type cells. Under current-clamp conditions, action potential duration at 90% repolarization was prolonged in TR alpha1-deficient cells compared with that in wild-type cells by 3.6 msec. CONCLUSION: The resulting acceleration of the total inactivation time course is proposed to contribute to action potential prolongation and thus to the increased QTend-time observed previously on ECG of TR alpha1-deficient mice.  相似文献   

16.
OBJECTIVES: The purpose of this study was to isolate chronic ventricular rate as the primary determinant of early bradycardic ventricular electrical remodeling. BACKGROUND: Ventricular repolarization delay predisposing to potentially lethal tachydysrhythmias occurs during chronic bradycardia. Prolonged QT intervals and torsades de pointes are associated with down-regulated ventricular myocyte delayed rectifier potassium (K(+)) currents. METHODS: Transcatheter AV node ablation in rabbits was followed by chronic right ventricular pacing at either 140 bpm (n = 16) or the near-physiologic rate of 280 bpm (n = 9). ECG QT intervals were assessed in vivo at days 0 and 8 of paced AV block. Repolarizing currents in isolated left and right ventricular myocytes were assessed using whole-cell patch clamp technique. RESULTS: Bradycardic rabbits had increased steady-state QT intervals (230 +/- 6 ms vs 206 +/- 7 ms [mean +/- SE], day 8 vs day 0; P < .001). Biventricular myocyte expression of the delayed rectifier K(+) currents I(Kr) and I(Ks) was down-regulated in bradycardic rabbits, with no change in the transient outward current I(to) or inwardly rectifying current I(K1). None of these changes were observed in rabbits paced at 280 bpm. Pause-dependent torsades de pointes was documented in one bradycardic animal on day 8. No heart failure or ventricular hypertrophy was apparent. CONCLUSIONS: Bradycardic ventricular electrical remodeling proceeds independently of structural remodeling, heart failure, or AV synchrony and is prevented by maintenance of near-physiologic ventricular rate.  相似文献   

17.
Summary Distinct differences exist in action potentials and ionic currents between rabbit, rat, and guinea pig ventricular myocytes. Data obtained at room temperature indicate that about half of the rabbit myocytes show prominent phase 1 repolarization and transient outward current. Action potentials in guinea pig ventricular myocytes resemble those from rabbit myocytes not exhibiting phase 1 repolarization; and guinea pig myocytes do not develop transient outward current. Rat ventricular action potentials are significantly shorter than those from rabbit and guinea pig ventricular myocytes. Unlike rabbit and guinea pig myocytes, rat ventricular myocytes also exhibit a prominent phase 1 and lack a well defined plateau phase during repolarization. All rat ventricular myocytes exhibit a transient outward current which can be best fitted by a double exponential relation. There are no significant differences between the amplitude, voltage dependence and inactivation kinetics of the inward calcium currents observed in rabbit, rat and guinea pig. The steady-state current-voltage relations between –120 mV and –20 mV, which mostly represent the inward rectifier potassium current are similar in rabbit and guinea pig. The amplitude of this current is significantly less in rat ventricular myocytes. The outward currents activated upon depolarization to between –10 and +50 mV are different in the three species. Only a negligible, or absent, delayed rectifier outward current has been observed in rabbit and rat; however, a relatively large delayed rectifier current has been found in guinea pig. These large interspecies variations in outward membrane currents help explain the differences in action potential configurations observed in rabbit, rat, and guinea pig.  相似文献   

18.
BACKGROUND: Transient outward current (I(to)) and L-type calcium current (I(Ca)) are important repolarization currents in cardiac myocytes. These two currents often undergo disease-related remodeling while other currents are spared, suggesting a functional coupling between them. Here, we investigated the effects of I(to) channel blockers, 4-aminopyridine (4-AP) and heteropodatoxin-2 (HpTx2), on I(Ca) in cardiac ventricular myocytes. METHODS AND RESULTS: I(Ca) was recorded in enzymatically dissociated mouse and guinea pig ventricular myocytes using the whole-cell voltage clamp method. In mouse ventricular myocytes, 4-AP (2 mM) significantly facilitated I(Ca) by increasing current amplitude and slowing inactivation. These effects were not voltage-dependent. Similar facilitating effects were seen when equimolar Ba2+ was substituted for external Ca2+, indicating that Ca2+ influx is not required. Measurements of Ca2+/calmodulin-dependent protein kinase (CaMKII) activity revealed significant increases in cells treated with 4-AP. Pretreatment of cells with 10 microM KN93, a specific inhibitor of CaMKII, abolished the effects of 4-AP on I(Ca.) To test the requirement of I(to), we studied guinea pig ventricular myocytes, which do not express I(to) channels. In these cells, 2 mM 4-AP had no effect on I(Ca) amplitude or kinetics. In both cell types, Ca2+-induced I(Ca) facilitation, a CaMKII-dependent process, was observed. However, 4-AP abolished Ca2+-induced I(Ca) facilitation exclusively in mouse ventricular myocytes. CONCLUSION: 4-AP, an I(to) blocker, facilitates L-type Ca2+ current through a mechanism involving the I(to) channel and CaMKII activation. These data indicate a functional association of I(Ca) and I(to) in cardiac myocytes.  相似文献   

19.
Verapamil is a widely used Ca(2+) channel antagonist in the treatment of cardiovascular disorders including atrial arrhythmias. However, it is unknown whether the drug would inhibit the repolarization currents transient outward K(+) current (I(to1)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in human atrium. With whole-cell patch configuration, we evaluated effects of verapamil on I(to1) and I(Kur) in isolated human atrial myocytes. It was found that verapamil did not decrease I(to1) at 1-50 microM. However, verapamil reversibly inhibited I(Kur) in a concentration-dependent manner (IC(50) = 3.2 microM). At test potential of +50 mV, 5 microM verapamil decreased I(Kur) by 61.3 +/- 7.5%. Verapamil significantly accelerated inactivation of I(Kur), suggesting an open channel block mechanism. The results indicate that verapamil significantly blocks the repolarization K(+) current I(Kur), but not I(to1), in human atrial atrium, which may account at least in part for the atrial effect of the drug.  相似文献   

20.
INTRODUCTION: Clinical evidence suggests that increased blood levels of homocysteine may be an independent risk factor for the development of cardiovascular disease, but the functional effects of this sulfhydryl amino acid on the myocardium are poorly understood. The present study was conducted to determine the direct effects of homocysteine on the electrophysiologic properties of the heart. METHODS AND RESULTS: Whole-cell voltage-clamp recordings were made in ventricular myocytes isolated from normal rat hearts to analyze the Ca2+-independent, transient outward K+ current (I(to)), a major repolarizing current in these cells. Maximum I(to) density (measured at +60 mV) was decreased approximately 47% from baseline in the presence of 500 microM homocysteine (P < 0.05), but the amount of block varied in a frequency- and voltage-dependent manner. Decreased I(to) density was not accompanied by significant changes in voltage- or time-dependent properties of the current, nor was it affected by pretreating myocytes with the protein kinase inhibitor staurosporine. Because a portion of total extracellular homocysteine is oxidized, we examined the response to homocystine, the oxidized form of homocysteine. In myocytes superfused with 500 microM homocystine, maximum I(to) density was decreased by approximately 40% from baseline (P < 0.05). In contrast, the thiolactone form of homocysteine did not alter I(to) amplitude. CONCLUSION: These data suggest that homocysteine and its oxidized form homocystine acutely inhibit I(to) channels in ventricular myocytes by mechanisms involving the free thiol or disulfide moieties of these compounds. High homocysteine or homocystine levels may contribute to abnormal repolarization and arrhythmogenic conditions in the intact heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号