首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L-DOPA stimulated the K(+)-induced [3H]GABA (gamma-aminobutyric acid) release from slices of substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and caudate-putamen isolated from the ipsilateral side of 6-hydroxydopamine-lesioned rats, but the release from ipsilateral subthalamic slices was not affected. In substantia nigra, L-DOPA stimulation (EC50 = 1 microM) of [3H]GABA release was dose-dependently blocked (IC50 = 0.1 microM for the stimulation caused by 10 microM L-DOPA) by the D1 antagonist SCH 23390, but was not affected by (-)-sulpiride, a D2 antagonist. SCH 23390 also blocked the stimulation in the other nuclei. The DOPA decarboxylase inhibitor NSD-1015 (500 microM) did not prevent the stimulation induced by L-DOPA in all of the studied nuclei. The results suggest that L-DOPA is able to activate D1 receptors located on the terminals of striatal projections via the dopamine formed by a decarboxylation mediated by an NSD-1015-resistant enzyme. Activation of the presynaptic D1 receptors results in stimulation of GABA release.  相似文献   

2.
D1 dopamine receptors are present on terminals of striatal neurons to the pars reticulata of the substantia nigra in the rat. Here we have studied the effect of the activation of these receptors on the synthesis of gamma-aminobutyric acid (GABA) in slices of the pars reticulata of the substantia nigra isolated from 6-hydroxydopamine-lesioned rats. The synthesis was judged by the accumulation of GABA after inhibiting GABA transaminase with aminooxyacetic acid. Both dopamine and SCH 23390, a D1 agonist, stimulated the synthesis. The effect of both compounds was blocked by SCH 23390, a D1 antagonist, but not by sulpiride, a D2 antagonist. In the absence of receptor activation, the synthesis was very slow. The results suggest a trophic influence of dopamine upon the synthesis of GABA via D1 receptors.  相似文献   

3.
The effects of several dopaminergic agonists and antagonists on the spontaneous release of [3H]gamma-aminobutyric acid were investigated in the dorsal striatum of halothane-anaesthetized rats. A push-pull cannula was implanted and the tissue was superfused continuously with a physiological medium containing [3H]glutamine, the precursor of [3H]GABA. Drugs were added to the superfusion medium. 2-Amino,6,7-dihydroxy,1,2,3,4-tetrahydro-naphtalene (ADTN, a mixed D1 and D2 receptor agonist) and D-amphetamine (a drug that enhances the release of endogenous dopamine) increased the release of 3H-GABA. The effect of ADTN was blocked by a D1 antagonist [R-(+),8-chloro, 7-hydroxy,2,3,4,5-tetrahydro,3-methyl,5-phenyl,1-H,3-benzazepine (SCH 23390)] but not by a D2 antagonist (S-sulpiride). Furthermore the stimulation of D1 receptors either by 2,3,4,5-tetrahydro,7,8-dihydroxy,1-phenyl,1-H,3-benzazepine or by D-amphetamine in the presence of S-sulpiride also enhanced the release of [3H]GABA. On the other hand, a selective D2 receptor agonist (3-(2-(N-3-hydroxy-phenylethyl)N-propylamino)ethyl-phenol) decreased the release of [3H]GABA. This effect was blocked in the presence of S-sulpiride. By itself the D1 receptor antagonist (SCH 23390) decreased the release of [3H]GABA whereas the D2 receptor antagonist (S-sulpiride) had no effect. It was concluded that stimulation of D1 and D2 receptors produces opposing effects on the spontaneous release of [3H]GABA in the dorsal striatum. Stimulation of D1 receptors facilitates the release of [3H]GABA whilst stimulation of D2 receptors inhibits it. The effect of D1 receptor stimulation appears to be predominant, and endogenous dopamine may activate tonically the release of GABA through these receptors in our experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of dopamine on the 3',5'-cyclic adenosine monophosphate (cAMP) generating system of membrane particles of rat prostate gland was studied. Dopamine increased the concentration of cAMP in a dose-dependent manner. The selective D1 receptor inhibitor SCH 23390 caused a decrease in dopamine-elicited cAMP levels. Any effect of dopamine on prostatic cAMP concentration was abolished by the simultaneous addition to the incubation medium of SCH 23390 and of the D2 receptor blocking agent (-)-sulpiride. Also the D2 receptor agonist bromocriptine decreased cAMP levels. The present data indicate the existence, in the rat prostate gland, of two types of dopamine receptors mediating, respectively, the activation (D1 effect) and the inhibition (D2 effect) of adenylate cyclase activity.  相似文献   

5.
Abnormalities in dopaminergic control of basal ganglia function play a key role in Parkinson's disease. Adenosine appears to modulate the dopaminergic control in striatum, where an inhibitory interaction between adenosine and dopamine receptors has been demonstrated. However the interaction has not been established in substantia nigra pars reticulata (SNr) where density of both receptors is high. Here we have explored the interaction between A1/D1 receptors in SNr. In SNr slices, SKF 38393, a selective D1 receptor agonist, produced a stimulation of depolarization-induced Ca(2+)-dependent [(3)H]GABA release that was inhibited by adenosine. The adenosine inhibition was abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist. DPCPX per se enhanced GABA release, indicating inhibition of the release by endogenous adenosine. When D1 receptors were blocked with SCH 23390 or the slices were depleted of dopamine, the effect of DPCPX was suppressed, showing that activation of dopamine receptors was necessary for the adenosine inhibition. In normal slices, 2-chloro-n(6)-cyclopentyladenosine (CCPA), a selective A1 agonist, inhibited GABA release, but the inhibition was prevented by the blockade of D1 receptors with SCH 23390. Superperfusion with 8-bromo-cAMP produced a stimulation of GABA release that was not blocked by CCPA: this finding indicates that the blockade of D1 effects caused by activation of A1 receptors is specific. To see if these actions on GABA release were correlated with changes in motor behavior we studied the effect of unilateral intranigral injections of modifiers of adenosine A1 and dopamine D1 receptors in rats challenged with systemic methamphetamine. Both the A1 agonist CCPA and the D1 antagonist SCH 23390 produced ipsilateral turning whereas the A1 antagonist DPCPX caused contralateral turning. These motor effects are consistent with the findings on GABA release.The results indicate the presence of an inhibitory A1/D1 receptor interaction in SNr. The inhibition exerted by A1 adenosine receptors on GABAergic striatonigral transmission would be due exclusively to blockade of the facilitation resulting from activation of D1 dopamine receptors. The data permit to better understand the action of adenosine antagonists in the treatment of Parkinson's disease.  相似文献   

6.
Yanovsky Y  Mades S  Misgeld U 《Neuroscience》2003,122(2):317-328
Both endocannabinoids through cannabinoid receptor type I (CB1) receptors and dopamine through dopamine receptor type D1 receptors modulate postsynaptic inhibition in substantia nigra by changing GABA release from striatonigral terminals. By recording from visually identified pars compacta and pars reticulata neurons we searched for a possible co-release and interaction of endocannabinoids and dopamine. Depolarization of a neuron in pars reticulata or in pars compacta transiently suppressed evoked synaptic currents which were blocked by GABA(A) receptor antagonists (inhibitory postsynaptic currents [IPSCs]). This depolarization-induced suppression of inhibition (DSI) was abrogated by the cannabinoid CB1 receptor antagonist AM251 (1 microM). A correlation existed between the degree of DSI and the degree of reduction of evoked IPSCs by the CB1 receptor agonist WIN55,212-2 (1 microM). The cholinergic receptor agonist carbachol (0.5-5 microM) enhanced DSI, but suppression of spontaneous IPSCs was barely detectable pointing to the existence of GABA release sites without CB1 receptors. In dopamine, but not in GABAergic neurons DSI was enhanced by the dopamine D1 receptor antagonist SCH23390 (3-10 microM). Both the antagonist for CB1 receptors and the antagonist for dopamine D1 receptors enhanced or reduced, respectively, the amplitudes of evoked IPSCs. This tonic influence persisted if the receptor for the other ligand was blocked. We conclude that endocannabinoids and dopamine can be co-released. Retrograde signaling through endocannabinoids and dopamine changes inhibition independently from each other. Activation of dopamine D1 receptors emphasizes extrinsic inhibition and activation of CB1 receptors promotes intrinsic inhibition.  相似文献   

7.
In order to examine a possible interaction between D1 and D2 receptors in the dopaminergic control of the electrically-evoked release of [3H]GABA in the rat prefrontal cortex, the effects of D1 and D2 dopamine agonists were studied in vitro on cortical slices. The D1 agonist SKF38393 (10(-5) M) inhibited the electrically-evoked release of [3H]GABA. This effect was totally reversed by both the D1 antagonist SCH23390 (10(-7) M) and the D2 antagonist sulpiride (10(-5) M). We previously observed that maximal D2-mediated inhibition of the electrically-evoked release of [3H]GABA was obtained with 10(-7) M RU24926 and 10(-8) M LY171555. Here we showed that the inhibition produced by these two D2 agonists is also abolished by 10(-7) M SCH23390. In dopamine-depleted slices from reserpine-treated animals, it was not possible to detect an effect of either RU24926 (10(-7) M) or SKF38393 (10(-5) M), suggesting a permissive role of endogenous dopamine in the effect of either D2 or D1 agonist. Finally, SKF38393 used at a subliminar concentration (10(-6) M) was able to potentiate the effect of a liminar concentration of RU24926 (1.5 x 10(-8) M). Taken together these results strongly suggest that in the rat prefrontal cortex a D1-D2 receptor synergism is involved in the dopaminergic control of the electrically-evoked release of [3H]GABA.  相似文献   

8.
Dopamine, acting through dopamine D1 receptors and cyclic AMP-dependent protein kinase, has been found to increase the state of phosphorylation of the synaptic vesicle-associated phosphoproteins synapsin I and protein III in slices of rat neostriatum and substantia nigra. In the neostriatum, the effect of dopamine was mimicked by SKF 38393, a D2 receptor agonist, and was abolished by preincubation of the slices with fluphenazine or SCH 23390, antipsychotic drugs which are potent D1 receptor antagonists, but not by the D2 receptor antagonists l-sulpiride or spiroperidol. The maximal effect of dopamine in the neostriatum represented approximately 30-35% of the maximal effect induced by 8-bromo cyclic AMP, suggesting that a similar fraction of nerve terminals in the neostriatum may express the dopamine D1 receptor. Evidence for a small population of beta-adrenergic receptors regulating nerve terminal protein phosphorylation in the neostriatum, distinct from the D1 dopamine receptors, was also obtained. In the substantia nigra, the effect of dopamine also appeared to be mediated through a D1 dopamine receptor, since it was abolished by fluphenazine and SCH 23390. The maximal effect of dopamine in the substantia nigra represented approximately two-thirds of the effect induced by 8-bromo cyclic AMP, suggesting that a similar fraction of nerve terminals in the substantia nigra may express the dopamine D1 receptor. The ability of dopamine D1 receptor activation to stimulate both synapsin I and protein III phosphorylation and GABA release in both the neostriatum and substantia nigra may be causally linked.  相似文献   

9.
We have previously shown that stimulation of striatal D1 receptors affects dopaminergic nigrostriatal terminal excitability, which is thought to be an index of biophysical events resulting from the activation of receptors on the presynaptic membrane. The experiments presented here further examine the locus and bases of these D1 effects in the rat. We now report that striatal administration of the D1 receptor selective antagonist R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazapine+ ++-7-ol-HCl (SCH 23390) produces a paradoxical agonist-like decrease in dopaminergic terminal excitability. This effect is blocked by pretreatment with the dopamine synthesis inhibitor, alpha-methyl-paratyrosine, suggesting that the action of SCH 23390 is dependent upon endogenous dopamine. Further, haloperidol pretreatment also prevents the SCH 23390-induced decrease in terminal excitability, confirming that dopamine, acting through a dopamine receptor, is responsible for this agonist-like action. Striatal application of the active R-(+) enantiomer of the dopaminergic D1-selective agonist 1-phenyl-2,3,4,5-tetrahydrol-(1H)-3-benzazepine-7,8-diol-HCl (R-SKF 38393) decreases terminal excitability in the alpha-methyl-paratyrosine pretreated animal, indicating that dopamine is not required for the agonist action. In an effort to ascertain the presynaptic or postsynaptic location of these actions, an extensive destruction of postsynaptic neurons in the neostriatum was produced by local administration of the neurotoxin, kainic acid. It was observed that the neurotoxin-induced neostriatal neuronal loss did not disrupt the action of R-SKF 38393 nor its reversal by SCH 23390.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In order to elucidate the role of emetic action, the effects of talipexole and bromocriptine, two antiparkinsonian dopamine receptor agonists, on serotonin (5-HT) release from enterochromaffin (EC) cells were studied by measuring 5-HT concentrations in the perfusate of the isolated rat ileum. Bromocriptine (10(-8)-10(-6) M), which exerts agonistic effects on D1 and D2 receptors, increased 5-HT release in a concentration-dependent manner. No significant increase in 5-HT release was seen after addition of talipexole, which selectively stimulates D2 receptors and blocks 5-HT3 receptors, even at 10(-6) M. The increase in 5-HT release caused by bromocriptine at 10(-6) M was inhibited by administration of 10(-6) M of D1 receptor antagonist SCH 23390, D2 receptor antagonist spiperone, 5-HT3 receptor antagonist granisetron or tetrodotoxin (TTX). These results showed the involvement of both dopaminergic and serotonergic mechanisms in the 5-HT release from EC cells following the administration of dopamine receptor agonists. Bromocriptine might induce 5-HT release by stimulating D1, D2 and 5-HT3 receptors and depolarizing neurons in the ileum. On the other hand, talipexole might weaken 5-HT release from EC cells elicited by D2 receptor stimulation with its 5-HT3 receptor blocking property. It is suggested that the emetic effect of dopamine receptor agonists involves the peripheral gastrointestinal tract as their site of action.  相似文献   

11.
Studies of the effects of dopamine in the basal ganglia have focused on the striatum, whereas the functions of dopamine released in the internal pallidal segment (GPi) or in the substantia nigra pars reticulata (SNr) have received less attention. Anatomic and biochemical investigations have demonstrated the presence of dopamine D1-like receptors (D1LRs) in GPi and SNr, which are primarily located on axons and axon terminals of the GABAergic striatopallidal and striatonigral afferents. Our experiments assessed the effects of D1LR ligands in GPi and SNr on local gamma-aminobutyric acid (GABA) levels and neuronal activity in these nuclei in rhesus monkeys. Microinjections of the D1LR receptor agonist SKF82958 into GPi and SNr significantly reduced discharge rates in GPi and SNr, whereas injections of the D1LR antagonist SCH23390 increased firing in the majority of GPi neurons. D1LR activation also increased bursting and oscillations in neuronal discharge in the 3- to 15-Hz band in both structures, whereas D1LR blockade had the opposite effects in GPi. Microdialysis measurements of GABA concentrations in GPi and SNr showed that the D1LR agonist increased the level of the transmitter. Both findings are compatible with the hypothesis that D1LR activation leads to GABA release from striatopallidal or striatonigral afferents, which may secondarily reduce firing of basal ganglia output neurons. The antagonist experiments suggest that a dopaminergic "tone" exists in GPi. Our results support the finding that D1LR activation may have powerful effects on GPi and SNr neurons and may mediate some of the effects of dopamine replacement therapies in Parkinson's disease.  相似文献   

12.
A Smia?owski  M Bijak 《Neuroscience》1989,28(2):409-412
The functional modification of the D1 dopamine receptor subtype following acute or repeated administration of the D1 receptor antagonist SCH 23390 (0.5 mg/kg s.c.) was studied in the rat hippocampal slice preparation. The activity of the D1 receptor system was evaluated by measuring the effect of the D1 receptor agonist SKF 38393 on the spontaneous firing of CA1 hippocampal neurons. The testing was performed 1, 2 and 7 days after discontinuation of the treatment. Repeated (21 days, once daily), but not acute, administration of SCH 23390 significantly potentiated the inhibitory reaction to SKF 38393. The inhibition evoked by SKF 38393 was blocked by application of SCH 23390 (10(-8) M). The results show that repeated treatment with SCH 23390 enhances the inhibitory effect of SKF 38393 in the rat hippocampus, probably due to an increase in the number of D1 dopamine receptors.  相似文献   

13.
Mutant dystonic hamsters (dt(sz)), a model of primary paroxysmal dystonia, display attacks of generalized dystonia in response to mild stress in an age-dependent manner. Recent studies in dystonic hamsters have revealed decreased densities of dopamine D(1) and D(2) in the dorsal striatum. This finding has been interpreted as a down-regulation in response to enhanced dopamine release because systemic treatments with neuroleptics reduced the severity of dystonia while levodopa exerted prodystonic effects. Therefore, in the present study we investigated the effects of amphetamine as well as of selective D(1) or D(2) receptor agonists and antagonists on the severity of dystonia after systemic administrations and after microinjections into the dorsal striatum. Amphetamine and the dopamine D(2) agonist quinpirole increased the severity of dystonia after systemic and striatal injections, while the dopamine D(1) agonist SKF 38393 exerted only moderate prodystonic effects after systemic administration of a high dose but not after striatal injections. These results suggest that a predominant overstimulation of D(2) receptors is pathogenetically involved in the dystonic syndrome. Combined systemic or striatal administrations of the D(1) and D(2) receptor agonists did not reveal synergistic prodystonic effects at the examined doses. The selective D(1) antagonist SCH 23390 as well as the D(2) antagonist raclopride tended to decrease the severity of dystonia after systemic administration but failed to exert significant effects after striatal injection. The coadministration of ineffective doses of the antagonists SCH 23390 and raclopride, however, exerted an enormous antidystonic efficacy after both systemic and striatal injections.Since striatal injections of compounds which enhance dopaminergic activity aggravated dystonia, while coinjections of dopamine D1 and D2 receptor antagonists reduced the severity of dystonia, the present findings clearly support the hypothesis that striatal dopaminergic overactivity plays a crucial role for the manifestation of dystonic attacks in the hamster model of paroxysmal dystonia.  相似文献   

14.
On the basis of experiments made on striatal membranes, Leff and Creese [Molec. Pharmac. (1985) 27, 184-192] have proposed that tritiated dopamine binds to a high-affinity agonist state of D1 dopamine receptors (D1h) which adopt this conformation when they are associated with the GTP-binding protein involved in the transduction process. Quantitative autoradiography was thus used to look for the distribution of these D1h sites in the rat brain and to compare it with that of D1 receptors labelled with [3H]7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benz aze pine [( 3H]SCH23390), a D1 antagonist. The effects of unilateral 6-hydroxydopamine lesion of the ascending dopamine pathways on the density of [3H]dopamine D1h and [3H]SCH23390 binding sites in the striatum and the nucleus accumbens were also analysed. In the striatum, when D2 receptors were blocked by spiroperidol (20 nM), [3H]dopamine was found to bind specifically to dopamine receptors of the D1 type. Complementary experiments made with dopamine uptake blockers indicated that high-affinity dopamine uptake sites were not labelled by [3H]dopamine under our experimental conditions. The anatomical distribution of [3H]dopamine D1h binding sites was found to be markedly different from that of [3H]SCH23390 binding sites. This was particularly the case in the substantia nigra, some amygdaloid nuclei and the prefrontal cortex--structures in which the ratios between [3H]SCH23390 and [3H]dopamine binding sites were more than seven-fold higher than that observed in the striatum. [3H]SCH23390 binding was not significantly affected in either the striatum or the nucleus accumbens six weeks after a complete unilateral destruction of ascending dopamine pathways. In contrast, a marked decrease in [3H]dopamine D1h binding sites was found in both structures, but this effect was lower in the medioventral (-60%) than in the laterodorsal (-81%) part of the striatum, even though dopamine denervation was uniform throughout the structure. Preincubation of the sections with dopamine (0.5 microM) led to a partial recovery (+126%) in the lesioned striatum and an increase of [3H]dopamine labelling in the control striatum (+68%). This suggest that the presence of dopamine stabilizes the D1h state of D1 receptors. The absence or low amount of dopamine, either due to dopamine denervation or naturally occurring (prefrontal cortex), would then impair the [3H]dopamine D1h binding. In addition, a lower coupling of D1 receptors with adenylate cyclase was observed in the substantia nigra when compared to that in the striatum: this may explain the relatively weak [3H]dopamine binding in the substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The effects of SCH 23390 (D1 dopamine receptor antagonist), SK&F 38393 (D1 dopamine receptor agonist), raclopride and remoxipride (D2 dopamine receptor antagonists) and ketanserin (5-hydroxytryptamine 2 receptor antagonist) on TSH serum levels (radioimmunoassay) and on brain catecholamine levels (Falck-Hillarp methodology in combination with quantitative histofluorimetry) were studied. SCH 23390 produced a dose-dependent increase in serum TSH levels in the lower dose range (0.01-0.03 mg kg-1, i.p.) administered 30 min before decapitation and in the higher dose range (1.0-3.0 mg kg-1) when given 2 h before decapitation. Following 30 min of treatment with the high doses of SCH 23390, reductions in serum TSH levels were found. The changes observed following SCH 23390 treatment occurred without affecting catecholamine levels in the median eminence and the peri- and paraventricular hypothalamic regions. Raclopride (0.1-10 mg kg-1, i.p.), remoxipride (1.0 mg kg-1, i.p.) or ketanserin (0.3 mg kg-1, i.p.) changed neither serum TSH levels nor brain catecholamine levels, SK&F 38393 (1.0-10 mg kg-1, i.p.) produced an increase in serum TSH levels. The results suggest the existence of inhibitory and facilitatory mechanisms regulating TSH secretion mediated via D1 dopamine receptors.  相似文献   

16.
Because activation of D2 dopamine receptors inhibits gamma-aminobutyric acid (GABA) release from intrapallidal nerve terminals, we measured the effects of modifiers of dopamine D2 receptors on the firing rate of single neurons in the globus pallidus (GP) of the anesthetized rat. The predominant effect of intrapallidal administration of the selective D2 agonist quinpirole was an increase in the rate of spontaneous firing while the D2 blocker sulpiride caused a decrease. The spontaneous firing of GP neurons is inhibited by stimulation of the GABAergic striatopallidal projection. We therefore measured the effects of modifiers of D2 receptors on striatal inhibition of GP neurons and found that intrapallidal quinpirole blocked the inhibitory effects of striatal stimulation while sulpiride enhanced them. These experiments show that both the spontaneous rate of firing of pallidal neurons and its modification by striatopallidal inputs is controlled by intrapallidal dopamine D2 receptors. In addition, taken together with other findings in the literature, our results suggest that activation of dopamine D2 receptors within the globus pallidus leads to inhibition of GABA release from presynaptic terminals.  相似文献   

17.
GABAergic modulation of enkephalin, substance P and glutamic acid decarboxylase (GAD67) gene expression and the alterations induced by dopamine receptor blockade were studied in the rat striatum. Following subchronic treatment with the GABA-A agonist muscimol, the GABA-B agonist baclofen or the GABA transaminase inhibitor γ-vinyl GABA there were no significant changes in striatal peptide and GAD67 gene expression. Following repeated administration of the D-2 antagonists, eticlopride and haloperidol, there was an increase in enkephalin and GAD67 mRNA levels and parallel decrease in that of substance P. These were unaffected by co-administration of γ-vinyl GABA. The D-1 antagonist, SCH 23390 administered alone or together with γ-vinyl GABA did not alter peptide or GAD67 mRNA levels. It seems that pharmacological stimulation of GABA receptors has little effect on enkephalin, substance P or GAD67 mRNA expression in striatal output neurons.  相似文献   

18.
The effect of acute dopamine receptor antagonist treatment on cellular prosomatostatin mRNA expression was investigated in the adult rat striatum using the technique of non-radioactive in situ hybridization. Adult female Wistar rats were given a single intraperitoneal injection of either raclopride (D2 antagonist), SCH 23390 (D1 antagonist) or the D1 (S) enantiomer SCH 23388. Animals were killed either 1, 3 or 9 h following the single i.p. injection and their brains rapidly removed. Striatal sections were then processed for in situ hybridization using an alkaline phosphatase-labelled oligonucleotide probe complementary to a portion of the rat somatostatin cDNA. Blockade of dopamine D1 and D2 receptors resulted in a significant decrease in the cellular content of prosomatostatin mRNA. However, no change in the number of prosomatostatin mRNA containing striatal cells was observed following any of the treatments at any time point. These findings demonstrate that the cellular content of prosomatostatin mRNA in the adult rat striatum is influenced by selective dopamine D1 and D2 receptor antagonists. Further, these findings are consistent with a functional interaction between dopamine and somatostatin in the rat striatum.  相似文献   

19.
Near the end of the second postnatal week motor activity is increased soon after ethanol administration (2.5 g/kg) while sedation‐like effects prevail when blood ethanol levels reach peak values. This time course coincides with biphasic reinforcement (appetitive and aversive) effects of ethanol determined at the same age. The present experiments tested the hypothesis that ethanol‐induced activity during early development in the rat depends on the dopamine system, which is functional in modulating motor activity early in ontogeny. Experiments 1a and 1b tested ethanol‐induced activity (0 or 2.5 g/kg) after a D1‐like (SCH23390; 0, .015, .030, or .060 mg/kg) or a D2‐like (sulpiride; 0, 5, 10, or 20 mg/kg) receptor antagonist, respectively. Ethanol‐induced stimulation was suppressed by SCH23390 or sulpiride. The dopaminergic antagonists had no effect on blood ethanol concentration (Experiments 2a and 2b). In Experiment 3, 2.5 g/kg ethanol increased dopamine concentration in striatal tissue as well as locomotor activity in infant Wistar rats. Adding to our previous results showing a reduction in ethanol induced activity by a GABA B agonist or a nonspecific opioid antagonist, the present experiments implicate both D1‐like and D2‐like dopamine receptors in ethanol‐induced locomotor stimulation during early development. According to these results, the same mechanisms that modulate ethanol‐mediated locomotor stimulation in adult rodents seem to regulate this particular ethanol effect in the infant rat. © 2009 Wiley Periodicals, Inc. Dev Psychobiol 52: 13–23, 2010  相似文献   

20.
The mechanism by which dopamine induces or facilitates neurohypophysial hormone release is not completely understood. Because oxytocin- and vasopressin-secreting supraoptic neurons are under the control of a prominent GABAergic inhibition, we investigated the possibility that dopamine exerts its action by modulating GABA-mediated transmission. Whole cell voltage-clamp recordings of supraoptic neurons were carried out in acute hypothalamic slices to determine the action of dopamine on inhibitory postsynaptic currents. Application of dopamine caused a consistent and reversible reduction in the frequency, but not the amplitude, of miniature synaptic events, indicating that dopamine was acting presynaptically to reduce GABAergic transmission. The subtype of dopamine receptor involved in this response was characterized pharmacologically. Dopamine inhibitory action was greatly reduced by two highly selective D4 receptor antagonists L745,870 and L750,667 and to a lower extent by the antipsychotic drug clozapine but was unaffected by SCH 23390 and sulpiride, D1/D5 and D2/D3 receptor antagonists, respectively. In agreement with these results, the action of dopamine was mimicked by the potent D4 receptor agonist PD168077 but not by SKF81297 and bromocriptine, D1/D5 and D2/D3 receptor agonists, respectively. Dopamine and PD168077 also reduced the amplitude of evoked inhibitory postsynaptic currents, an effect that was accompanied by an increase in paired-pulse facilitation. These data clearly indicate that D4 receptors are located on GABA terminals in the supraoptic nucleus and that their activation reduces GABA release in the supraoptic nucleus. Therefore dopaminergic facilitation of neurohypophysial hormone release appears to result, at least in part, from disinhibition of magnocellular neurons caused by the depression of GABAergic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号