首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Subcutaneous (SAT) and visceral adipose tissue (VAT) differ in composition, endocrine function and localization in the body. VAT is considered to play a role in the pathogenesis of insulin resistance, type 2 diabetes, fatty liver disease, and other obesity‐related disorders. It has been shown that the amount, distribution, and (cellular) composition of adipose tissue (AT) correlate well with metabolic conditions. In this study, T1 relaxation times of AT were measured in severely obese subjects and compared with those of healthy lean controls. Here, we tested the hypothesis that T1 relaxation times of AT differ between lean and obese individuals, but also between VAT and SAT as well as superficial (sSAT) and deep SAT (dSAT) in the same individual. Twenty severely obese subjects (BMI 41.4 ± 4.8 kg/m2) and ten healthy lean controls matched for age (BMI 21.5 ± 1.9 kg/m2) underwent MRI at 1.5 T using a single‐shot fast spin‐echo sequence (short‐tau inversion recovery) at six different inversion times (TI range 100–1000 ms). T1 relaxation times were computed for all subjects by fitting the TI‐dependent MR signal intensities of user‐defined regions of interest in both SAT and VAT to a model function. T1 times in sSAT and dSAT were only measured in obese patients. For both obese patients and controls, the T1 times of SAT (275 ± 14 and 301 ± 12 ms) were significantly (p < 0.01) shorter than the respective values in VAT (294 ± 20 and 360 ± 35 ms). Obese subjects also showed significant (p < 0.01) T1 differences between sSAT (268 ± 11 ms) and dSAT (281 ± 19 ms). More important, T1 differences in both SAT and VAT were highly significant (p < 0.001) between obese patients and healthy subjects. The results of our pilot study suggest that T1 relaxation times differ between severely obese patients and lean controls, and may potentially provide an additional means for the non‐invasive assessment of AT conditions and dysfunction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
As developments in RF coils and RF management strategies make performing ultra‐high‐field renal imaging feasible, understanding the relaxation times of the tissue becomes increasingly important for tissue characterization, sequence optimization and quantitative functional renal imaging, such as renal perfusion imaging using arterial spin labeling. By using a magnetization‐prepared single‐breath‐hold fast spin echo imaging method, human renal T1 and T2 imaging studies were successfully performed at 7 T with 11 healthy volunteers (eight males, 45 ± 17 years, and three females, 29 ± 7 years, mean ± standard deviation, S.D.) while addressing challenges of B1+ inhomogeneity and short‐term specific absorption rate limits. At 7 T, measured renal T1 values for the renal cortex and medulla (mean ± S.D.) from five healthy volunteers who participated in both 3 T and two‐session 7 T studies were 1661 ± 68 ms and 2094 ± 67 ms, and T2 values were 108 ± 7 ms and 126 ± 6 ms. For comparison, similar measurements were made at 3 T, where renal cortex and medulla T1 values of 1261 ± 86 ms and 1676 ± 94 ms and T2 values of 121 ± 5 ms and 138 ± 7 ms were obtained. Measurements at 3 T and 7 T were significantly different for both T1 and T2 values in both renal tissues. Reproducibility studies at 7 T demonstrated that T1 and T2 estimations were robust, with group mean percentage differences of less than 4%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In vivo water‐ and fat‐suppressed 1H magnetic resonance spectroscopy (MRS) and 31P magnetic resonance adiabatic multi‐echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31P metabolites were determined, and the reproducibility of 1H and 31P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi‐exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi‐exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ‐ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono‐exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1H total choline (tChol) and the 31P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31P MRS imaging was superior to the reproducibility of 1H MRS for tChol. 1H and 31P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.  相似文献   

4.
The protons in collagen‐rich musculoskeletal (MSK) tissues such as the Achilles tendon are subject to strong dipolar interactions which are modulated by the term (3cos2θ‐1) where θ is the angle between the fiber orientation and the static magnetic field B0. The purpose of this study was to investigate the magic angle effect in three‐dimensional ultrashort echo time Cones Adiabatic T (3D UTE Cones‐AdiabT) imaging of the Achilles tendon using a clinical 3 T scanner. The magic angle effect was investigated by Cones‐AdiabT imaging of five cadaveric human Achilles tendon samples at five angular orientations ranging from 0° to 90° relative to the B0 field. Conventional Cones continuous wave T (Cones‐CW‐T) and Cones T2* (Cones‐T2*) sequences were also applied for comparison. On average, Cones‐AdiabT increased 3.6‐fold from 13.6 ± 1.5 ms at 0° to 48.4 ± 5.4 ms at 55°, Cones‐CW‐T increased 6.1‐fold from 7.0 ± 1.1 ms at 0° to 42.6 ± 5.2 ms at 55°, and Cones‐T2* increased 12.3‐fold from 2.9 ± 0.5 ms at 0° to 35.8 ± 6.4 ms at 55°. Although Cones‐AdiabT is still subject to significant angular dependence, it shows a much‐reduced magic angle effect compared to Cones‐CW‐T and Cones‐T2*, and may be used as a novel and potentially more effective approach for quantitative evaluation of the Achilles tendon and other MSK tissues.  相似文献   

5.
An adiabatic multi‐echo spectroscopic imaging (AMESING) sequence, used for 31P MRSI, with spherical k‐space sampling and compensated phase‐encoding gradients, was implemented on a whole‐body 7‐T MR system. One free induction decay (FID) and up to five symmetric echoes can be acquired with this sequence. In tissues with low T2* and high T2, this can theoretically lead to a potential maximum signal‐to‐noise ratio (SNR) increase of almost a factor of three, compared with a conventional FID acquisition with Ernst‐angle excitation. However, with T2 values being, in practice, ≤400 ms, a maximum enhancement of approximately two compared with low flip Ernst‐angle excitation should be feasible. The multi‐echo sequence enables the determination of localized T2 values, and was validated with 31P three‐dimensional MRSI on the calf muscle and breast of a healthy volunteer, and subsequently applied in a patient with breast cancer. The T2 values of phosphocreatine, phosphodiesters (PDE) and inorganic phosphate in calf muscle were 193 ± 5 ms, 375 ± 44 ms and 96 ± 10 ms, respectively, and the apparent T2 value of γ‐ATP was 25 ± 6 ms. A T2 value of 136 ± 15 ms for inorganic phosphate was measured in glandular breast tissue of a healthy volunteer. The T2 values of phosphomonoesters (PME) and PDE in breast cancer tissue (ductulolobular carcinoma) ranged between 170 and 210 ms, and the PME to PDE ratios were calculated to be phosphoethanolamine/glycerophosphoethanolamine = 2.7, phosphocholine/glycerophosphocholine = 1.8 and PME/PDE = 2.3. Considering the relatively short T2* values of the metabolites in breast tissue at 7 T, the echo spacing can be short without compromising spectral resolution, whilst maximizing the sensitivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Phosphorus MRS offers a non‐invasive tool for monitoring cell energy and phospholipid metabolism and can be of additional value in diagnosing cancer and monitoring cancer therapy. In this study, we determined the transverse relaxation times of a number of phosphorous metabolites in a group of breast cancer patients by adiabatic multi‐echo spectroscopic imaging at 7 T. The transverse relaxation times of phosphoethanolamine, phosphocholine, inorganic phosphate (Pi), glycerophosphocholine and glycerophosphatidylcholine were 184 ± 8 ms, 203 ± 17 ms, 87 ± 8 ms, 240 ± 56 ms and 20 ± 10 ms, respectively. The transverse relaxation time of Pi in breast cancer tissue was less than half that of healthy fibroglandular tissue. This effect is most likely caused by an up‐regulation of glycolysis in breast cancer tissue that leads to interaction of Pi with the GAPDH enzyme, which forms part of the reversible pathway of exchange of Pi with gamma‐adenosine tri‐phosphate, thus shortening its apparent transverse relaxation time. As healthy breast tissue shows very little glycolytic activity, the apparent T2 shortening of Pi due to malignant transformation could possibly be used as a biomarker for cancer.  相似文献   

7.
At ultrahigh magnetic field strengths (B0 ≥ 7.0 T), potassium (39K) MRI might evolve into an interesting tool for biomedical research. However, 39K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of 39K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared 39K and sodium (23Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. 39K relaxation times were markedly shorter than those of 23Na. Compared with the lower field strength, 39K relaxation times were up to 1.9‐ (T1), 1.4‐ (T2S) and 1.9‐fold (T2L) longer at 21.1 T. The increase in the 23Na relaxation times was less pronounced (up to 1.2‐fold). Mono‐exponential fits of the 39K longitudinal relaxation time at 21.1 T revealed T1 = 14.2 ± 0.1 ms for the healthy rat head. The 39K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S) and long (T2L) components, respectively. 23Na relaxation times were markedly longer (T1 = 41.6 ± 0.4 ms; T2S = 4.9 ± 0.2 ms; T2L = 33.2 ± 0.2 ms). 39K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm3 within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for 23Na and 39K MRI at ultrahigh magnetic field strength. Our results demonstrate that 39K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The purpose of this study was to measure the sodium transverse relaxation time T2* in the healthy human brain. Five healthy subjects were scanned with 18 echo times (TEs) as short as 0.17 ms. T2* values were fitted on a voxel‐by‐voxel basis using a bi‐exponential model. Data were also analysed using a continuous distribution fit with a region of interest‐based inverse Laplace transform. Average T2* values were 3.4 ± 0.2 ms and 23.5 ± 1.8 ms in white matter (WM) for the short and long components, respectively, and 3.9 ± 0.5 ms and 26.3 ± 2.6 ms in grey matter (GM) for the short and long components, respectively, using the bi‐exponential model. Continuous distribution fits yielded results of 3.1 ± 0.3 ms and 18.8 ± 3.2 ms in WM for the short and long components, respectively, and 2.9 ± 0.4 ms and 17.2 ± 2 ms in GM for the short and long components, respectively. 23Na T2* values of the brain for the short and long components for various anatomical locations using ultra‐short TEs are presented for the first time.  相似文献   

9.
T2 measurement of J-coupled metabolites in the human brain at 3T   总被引:1,自引:0,他引:1  
Proton T2 relaxation times of metabolites in the human brain were measured using point resolved spectroscopy at 3T in vivo. Four echo times (54, 112, 246 and 374 ms) were selected from numerical and phantom analyses for effective detection of the glutamate multiplet at ~ 2.35 ppm. In vivo data were obtained from medial and left occipital cortices of five healthy volunteers. The cortices contained predominantly gray and white matter, respectively. Spectra were analyzed with LCModel software using volume‐localized calculated spectra of brain metabolites. The estimate of the signal strength vs. TE was fitted to a monoexponential function for estimation of apparent T2 (T2?). T2? was estimated to be similar between the brain regions for creatine, choline, glutamate and myo‐inositol, but significantly different for N‐acetylaspartate singlet and multiplet. T2?s of glutamate and myo‐inositol were measured as 181 ± 16 and 197 ± 14 ms (mean ± SD, N = 5) for medial occipital cortices, and 180 ± 12 and 196 ± 17 ms for left occipital cortices, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A method to measure the T2 relaxation time of GABA with spectral editing techniques is proposed. Spectral editing techniques can be used to unambiguously extract signals of low concentration J‐coupled spins such as γ‐aminobutyric acid (GABA) from overlapping resonances such as creatine and macromolecules. These sequences, however, generally have fixed and relatively long echo times. Therefore, for the absolute quantification of the edited spectrum, the T2 relaxation time must be taken into account. To measure the T2 relaxation time, the signal intensity has to be obtained at multiple echo times. However, on a coupled spin system such as GABA this is challenging, since the signal intensity of the target resonances is modulated not only by T2 decay but also by the J‐coupling, which strongly influences the shapes and amplitudes of the edited signals, depending on the echo time. Here, we propose to refocus the J‐modulation of the edited signal at different echo times by using chemical shift selective refocusing. In this way the echo time can be arbitrarily extended while preserving the shape of the edited signal. The method was applied in combination with the MEGA‐sLASER editing technique to measure the in vivo T2 relaxation time of GABA (87 ± 11 ms, n = 10) and creatine (109 ± 8 ms, n = 10) at 7 T. The T1 relaxation time of these metabolites in a single subject was also determined (GABA, 1334 ± 158 ms; Cr, 1753 ± 12 ms). The T2 decay curve of coupled spin systems can be sampled in an arbitrary fashion without the need for signal shape correction. Furthermore, the method can be applied with any spectral editing technique. The shortest echo time of the method is limited by the echo time of the spectral editing technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this study was to characterize multiexponential T2 (MET2) relaxation in a rat C6 glioblastoma tumor model. To do this, rats (n = 11) were inoculated with the C6 cells via stereotaxic injection into the brain. Ten days later, MET2 measurements were performed in vivo using a single‐slice, multi‐echo spin‐echo sequence at 7.0 T. Tumor signal was biexponential in eight animals with a short‐lived T2 component (T2 = 20.7 ± 5.4 ms across samples) representing 6.8 ± 6.2% of the total signal and a long‐lived T2 component (T2 = 76.4 ± 9.3 ms) representing the remaining signal fraction. In contrast, signal from contralateral grey matter was consistently monoexponential (T2 = 48.8 ± 2.3 ms). Additional ex vivo studies (n = 3) and Monte Carlo simulations showed that the in vivo results were not significantly corrupted by partial volume averaging or noise. The underlying physiological origin of the observed MET2 components is unknown; however, MET2 analysis may hold promise as a non‐invasive tool for characterizing tumor microenvironment in vivo on a sub‐voxel scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this study was to investigate the influence of fat–water separation and spatial resolution in MRI on the results of automated quantitative measurements of fibroglandular breast tissue (FGT). Ten healthy volunteers (age range, 28–71 years; mean, 39.9 years) were included in this Institutional Review Board‐approved prospective study. All measurements were performed on a 1.5‐T scanner (Siemens, AvantoFit) using an 18‐channel breast coil. The protocols included isotropic (Di) [TR/TE1/TE2 = 6.00 ms/2.45 ms/2.67 ms; flip angle, 6.0°; 256 slices; matrix, 360 × 360; 1 mm isotropic; field of view, 360°; acquisition time (TA) = 3 min 38 s] and anisotropic (Da) (TR/TE1/TE2 = 10.00 ms/2.39 ms/4.77 ms; flip angle, 24.9°; 80 slices; matrix 360 × 360; voxel size, 0.7 × 0.7 × 2.0 mm3; field of view, 360°; TA = 1 min 25 s) T1 three‐dimensional (3D) fast low‐angle shot (FLASH) Dixon sequences, and a T1 3D FLASH sequence with the same resolution (T1) without (TR/TE = 11.00 ms/4.76 ms; flip angle, 25.0°; 80 slices; matrix, 360 × 360; voxel size, 0.7 × 0.7 × 2.0 mm3; field of view, 360°; TA = 50 s) and with (TR/TE = 29.00 ms/4.76 ms; flip angle, 25.0°; 80 slices; matrix, 360 × 360; voxel size, 0.7 × 0.7 × 2.0 mm3; field of view, 360°; TA = 2 min 35 s) fat saturation. Repeating volunteer measurements after 20 min and repositioning were used to assess reproducibility. An automated and quantitative volumetric breast density measurement system was used for FGT calculation. FGT with Di, Da and T1 measured 4.6–63.0% (mean, 30.6%), 3.2–65.3% (mean, 32.5%) and 1.7–66.5% (mean, 33.7%), respectively. The highest correlation between different MRI sequences was found with the Di and Da sequences (R2 = 0.976). Coefficients of variation (CVs) for FGT calculation were higher in T1 (CV = 21.5%) compared with Dixon (Di, CV = 5.1%; Da, CV = 4.2%) sequences. Dixon‐type sequences worked well for FGT measurements, even at lower resolution, whereas the conventional T1‐weighted sequence was more sensitive to decreasing resolution. The Dixon fat–water separation technique showed superior repeatability of FGT measurements compared with conventional sequences. A standard dynamic protocol using Dixon fat–water separation is best suited for combined diagnostic purposes and prognostic measurements of FGT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A critical evaluation of model‐fitted and observed 1H NMR spin‐lattice relaxation time data (T1) of methylaluminoxane (MAO) dissolved in toluene suggests that the relaxation time of MAO is predominantly controlled by rotational motions. Within the Al concentration (CAl) range (10–3 M  < CAl < 1 M ) and the temperature range (90°C > T > 20°C) studied, the diffusion of MAO contributes with less than 20% (at the maximum concentration investigated) to the overall relaxation rate. For concentrations smaller than 0.5 M , the diffusion has no significant impact on the spin‐lattice relaxation time (< 5%). Nevertheless, the diffusion coefficient of MAO can be estimated from the rotational correlation time, as derived from a spin‐lattice relaxation time model discussed thoroughly in this work. This model gives information on the molecular dimension of MAO ((19.4 ± 0.4) Å), the activation energy of the diffusion process ((11.2 ± 0.7) kJ/mol), and the temperature/concentration dependence of the viscosity of the MAO solution.  相似文献   

14.
The various dielectric relaxations in poly(p‐phenylene sulfide) have been investigated using a thermally stimulated discharge current (TSDC) technique. The TSD current spectra in the temperature range 30 to 250°C was analyzed as a function of poling temperature (100–250°C), poling field (5–18 kV/cm), poling time (1–4 h), specimen thickness (0.8–1.6 mm), heating rate (1–4°C/min.) and storage time (2–720 h). From the variation of the properties of peaks appearing in the TSDC spectra, it is concluded that the peak appearing at around 110°C (β‐relaxation) is a dipolar transition due to C–S linkage. Samples poled at higher (Tp > Tg) show a peak at around 170°C (β ′‐relaxation), which has been associated with the formation of cross‐linked ether linkages. The β ′‐relaxation gives all the character of dipolar polarization. The peak at around 210°C (α‐peak) has been ascribed to a space charge transition. A rigid amorphous phase (RAP) and unsaturated phenylene groups provide the deep charge trapping centers. The activation energy obtained from the Bucci plot method confirms the respective nature of these peaks. The observed dependence of peak temperature on poling temperature and poling time indicates the presence of continuous distributed relaxation.  相似文献   

15.
The transverse relaxation times (T2) and concentrations of Ascorbate (Asc) and glutathione (GSH) were measured from a single dataset of double‐edited spectra that were acquired at several TEs at 4 T in the human brain. Six TEs between 102 and 152 ms were utilized to calculate T2 for the group of 12 subjects scanned five times each. Spectra measured at all six TEs were summed to quantify the concentration in each individual scan. LCModel fitting was optimized for the quantification of the Asc and GSH double‐edited spectra. When the fitted baseline was constrained to be flat, T2 was found to be 67 ms (95% confidence interval, 50–83 ms) for GSH and ≤115 ms for Asc using the sum of spectra measured over 60 scans. The Asc and GSH concentrations quantified in each of the 60 scans were 0.62 ± 0.08 and 0.81 ± 0.11 µmol/g [mean ± standard deviation (SD), n = 60], respectively, using 10 µmol/g N‐acetylaspartate as an internal reference and assuming a constant influence of N‐acetylaspartate and antioxidant T2 relaxation in the reference solution and in vivo. The T2 value of GSH was measured for the first time in the human brain. The data are consistent with short T2 for both antioxidants. These T2 values are essential for the absolute quantification of Asc and GSH concentrations measured at long TE, and provide a critical step towards addressing assumptions about T2, and therefore towards the quantification of concentrations without the possibility of systematic bias. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to quantify the response of the myocardial transverse relaxation times (ΔT2*) to hyperoxic respiratory challenge (HRC) at different field strengths in an intra‐individual comparison of healthy volunteers and in a patient with coronary artery disease. Blood oxygenation level‐dependent (BOLD) cardiovascular MR (CMR) data were acquired in 10 healthy volunteers (five women, five men; mean age, 29 ± 3 years; range, 22–35 years) at 1.5 and 3.0 T. Medical air (21% O2), pure oxygen and carbogen (95% O2, 5% CO2) were administered in a block‐design temporal pattern to induce normoxia, hyperoxia and hyperoxic hypercapnia, respectively. Average T2* times were derived from measurements by two independent and blind readers in 16 standard myocardial segments on three short‐axis slices per patient. Inter‐ and intra‐reader correlations of T2* measurements were good [intra‐class correlation coefficient (ICC) = 0.75 and ICC = 0.79, both p < 0.001]. During normoxia, the mean T2* times were 29.9 ± 6.1 ms at 1.5 T and 27.1 ± 6.6 ms at 3.0 T. Both hyperoxic gases induced significant (all p < 0.01) T2* increases (?T2* hyperoxia: 1.5 T, 12.7%; 3.0 T, 11.2%; hyperoxic hypercapnia: 1.5 T, 13.1%; 3.0 T, 17.7%). Analysis of variance (ANOVA) results indicated a significant (both p < 0.001) effect of the inhaled gases on the T2* times at both 1.5 T (F = 17.74) and 3.0 T (F = 39.99). With regard to the patient imaged at 1.5 T, HRC induced significant T2* increases during hyperoxia and hyperoxic hypercapnia in normal myocardial segments, whereas the T2* response was not significant in ischemic segments (p > 0.23). The myocardial ?T2* response to HRC can reliably be imaged and quantified with BOLD CMR at both 1.5 and 3.0 T. During HRC, hyperoxia and hyperoxic hypercapnia induce a significant increase in T2*, with ?T2* being largest at 3.0 T and during hyperoxic hypercapnia in normal myocardial segments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A method for the measurement of temperature in the lateral ventricle using diffusion‐weighted imaging (DWI) has been proposed recently. This method uses predetermined arbitrary thresholds, but a more objective method of calculation would be useful. We therefore compared four different calculation methods, two of which were newly created and did not require predetermined thresholds. A rectangular polyethylene terephthalate bottle (8 × 10 × 28 cm3) was filled with heated water (35.0–38.8 °C) and used as a water phantom. The DWI data of 23 healthy subjects (aged 26–75 years; mean ± standard deviation, 50.13 ± 19.1 years) were used for this study. The temperature was calculated using the following equation: T(°C) = 2256.74/ln(4.39221/D) ? 273.15, where D is the diffusion coefficient. The mean ventricular temperature was calculated by four methods: two thresholding methods and two histogram curve‐fitting methods. As a reference, we used the temperature measured at the tympanic membrane, which is known to be approximately 1 °C lower than the brain temperature. The averaged differences in temperature between mercury thermometry and classical predetermined thresholding methods for the water phantom were 0.10 ± 0.42 and 0.05 ± 0.41 °C, respectively. The histogram curve‐fitting methods, however, yielded temperatures a little lower (averaged differences of ?0.24 ± 0.32 and ?0.14 ± 0.31 °C, respectively) than mercury thermometry. There was very little difference in temperature between tympanic thermometry and classical predetermined thresholding methods (+0.01 and ?0.07 °C, respectively). In humans, however, the histogram curve‐fitting methods yielded temperatures approximately 1 °C higher (+1.04 °C and +1.36 °C, respectively), suggesting that temperatures measured in this way more closely approximate the true brain temperature. The histogram curve‐fitting methods were more objective and better matched the estimated brain temperature than did classical predetermined thresholding methods, although the standard deviation was wider in the former methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Quantitative MRI can detect early biochemical changes in cartilage, but its bilateral use in clinical routines is challenging. The aim of this prospective study was to demonstrate the feasibility of magnetic resonance fingerprinting for bilateral simultaneous T1, T2, and T mapping of the hip joint. The study population consisted of six healthy volunteers with no known trauma or pain in the hip. Monoexponential T1, T2, and T relaxation components were assessed in femoral lateral, superolateral, and superomedial, and inferior, as well as acetabular, superolateral, and superomedial subregions in left and right hip cartilage. Aligned ranked nonparametric factorial analysis was used to assess the side's impact on the subregions. Kruskal–Wallis and Wilcoxon tests were used to compare subregions, and coefficient of variation to assess repeatability. Global averages of T1 (676.0 ± 45.4 and 687.6 ± 44.5 ms), T2 (22.5 ± 2.6 and 22.1 ± 2.5 ms), and T (38.2 ± 5.5 and 38.2 ± 5.5 ms) were measured in the left and right hip, and articular cartilage, respectively. The Kruskal–Wallis test showed a significant difference between different subregions’ relaxation times regardless of the hip side (p < 0.001 for T1, p = 0.012 for T2, and p < 0.001 for T). The Wilcoxon test showed that T1 of femoral layers was significantly (p < 0.003) higher than that for acetabular cartilage. The experiments showed excellent repeatability with CVrms of 1%, 2%, and 4% for T1, T2, and T1ρ, respectively. It was concluded that bilateral T1, T2, and T relaxation times, as well as B1+ maps, can be acquired simultaneously from hip joints using the proposed MRF sequence.  相似文献   

19.
This study uses quantitative T2* imaging to track ferumoxides–protamine sulfate (FEPro)‐labeled MDA‐MB‐231BR‐Luc (231BRL) human breast cancer cells that metastasize to the nude rat brain. Four cohorts of nude rats were injected intracardially with FEPro‐labeled, unlabeled or tumor necrosis factor‐related apoptosis‐inducing ligand(TRAIL)‐treated (to induce apoptosis) 231BRL cells, or saline, in order to develop metastatic breast cancer in the brain. The heads of the rats were imaged serially over 3–4 weeks using gradient multi‐echo and turbo spin‐echo pulse sequences at 3 T with a solenoid receive‐only 4‐cm‐diameter coil. Quantitative T2* maps of the whole brain were obtained by the application of single‐exponential fitting to the signal intensity of T2* images, and the distribution of T2* values in brain voxels was calculated. MRI findings were correlated with Prussian blue staining and immunohistochemical staining for iron in breast cancer and macrophages. Quantitative analysis of T2* from brain voxels demonstrated a significant shift to lower values following the intracardiac injection of FEPro‐labeled 231BRL cells, relative to animals receiving unlabeled cells, apoptotic cells or saline. Quartile analysis based on the T2* distribution obtained from brain voxels demonstrated significant differences (p < 0.0083) in the number of voxels with T2* values in the ranges 10–35 ms (Q1), 36–60 ms (Q2) and 61–86 ms (Q3) from 1 day to 3 weeks post‐infusion of labeled 231BRL cells, compared with baseline scans. There were no significant differences in the distribution of T2* obtained from serial MRI in rats receiving unlabeled or TRAIL‐treated cells or saline. Histologic analysis demonstrated isolated Prussian blue‐positive breast cancer cells scattered in the brains of rats receiving labeled cells, relative to animals receiving unlabeled or apoptotic cells. Quantitative T2* analysis of FEPro‐labeled metastasized cancer cells was possible even after the hypointense voxels were no longer visible on T2*‐weighted images. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

20.
We present a technique to measure the longitudinal relaxation time constant of venous blood (T1b) in vivo in a few seconds. The MRI sequence consists of a thick‐slab adiabatic inversion, followed by a series of slice‐selective excitations and single‐shot echo planar imaging readouts. The time intervals between excitations were chosen so that blood in macroscopic vessels is fully refreshed between excitations, making the blood signal follow an unperturbed inversion recovery curve. Static tissue, which experiences the inversion and all excitation pulses, quickly reaches a steady state at a low signal as a result of partial saturation. This allows blood‐filled voxels to be discriminated from those containing static tissue, and to be fitted voxel‐by‐voxel to a simple inversion recovery model. The sequence was tested on a flow phantom with the proposed method, yielding T1 values consistent to within 3% of those obtained using a conventional inversion recovery sequence with a spin‐echo readout. The method was applied to seven adult volunteers and 18 neonates. The blood T1 of the neonates (1799 ± 206 ms; range, 1393–2035 ms) was found to be more variable than that of adults (1717 ± 39 ms; range, 1662–1779 ms). A linear correlation between the inverse of T1b and the haematocrit was established in 12 neonates (R2 = 0.90). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号