首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus (31P) MRS is a powerful tool for the non‐invasive investigation of human liver metabolism. Four in vivo 31P localization approaches (single voxel image selected in vivo spectroscopy (3D‐ISIS), slab selective 1D‐ISIS, 2D chemical shift imaging (CSI), and 3D‐CSI) with different voxel volumes and acquisition times were demonstrated in nine healthy volunteers. Localization techniques provided comparable signal‐to‐noise ratios normalized for voxel volume and acquisition time differences, Cramer–Rao lower bounds (8.7 ± 3.3%1D‐ISIS, 7.6 ± 2.5%3D‐ISIS, 8.6 ± 4.2%2D‐CSI, 10.3 ± 2.7%3D‐CSI), and linewidths (50 ± 24 Hz1D‐ISIS, 34 ± 10 Hz3D‐ISIS, 33 ± 10 Hz2D‐CSI, 34 ± 11 Hz3D‐CSI). Longitudinal (T1) relaxation times of human liver metabolites at 7 T were assessed by 1D‐ISIS inversion recovery in the same volunteers (n = 9). T1 relaxation times of hepatic 31P metabolites at 7 T were the following: phosphorylethanolamine – 4.41 ± 1.55 s; phosphorylcholine – 3.74 ± 1.31 s; inorganic phosphate – 0.70 ± 0.33 s; glycerol 3‐phosphorylethanolamine – 6.19 ± 0.91 s; glycerol 3‐phosphorylcholine – 5.94 ± 0.73 s; γ‐adenosine triphosphate (ATP) – 0.50 ± 0.08 s; α‐ATP – 0.46 ± 0.07 s; β‐ATP – 0.56 ± 0.07 s. The improved spectral resolution at 7 T enabled separation of resonances in the phosphomonoester and phosphodiester spectral region as well as nicotinamide adenine dinucleotide and uridine diphosphoglucose signals. An additional resonance at 2.06 ppm previously assigned to phosphoenolpyruvate or phosphatidylcholine is also detectable. These are the first 31P metabolite relaxation time measurements at 7 T in human liver, and they will help in the exploration of new, exciting questions in metabolic research with 7 T MR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In vivo 31P MRS provides a unique tool for studying bioenergetics of living organs. Although its utility has been limited by the relatively low 31P NMR sensitivity, increasing magnetic field strength (B0) could significantly improve the quality and reliability of the 31P MR spectra for biomedical research. To quantitatively understand the field dependence of in vivo 31P MRS for brain applications, 31P NMR sensitivity of phosphocreatine (PCr) in rat brains was measured and compared at 9.4 T and 16.4 T. Additionally, the linewidths and T1 relaxation times of PCr and adenosine triphosphate (ATP) resonances obtained from human and animal brains over a wide B0 range from 4 T, 7 T, and 9.4 T to 16.4 T were examined and their field dependences were quantified. The results indicate an approximate 1.74‐fold 31P signal‐to‐noise ratio (SNR) gain for PCr at 16.4 T compared with 9.4 T. An approximate power 1.4 dependence of 31P SNR on B0 was concluded. Substantial improvements in spectral resolution and significantly shortened T1 values of brain PCr and ATP were observed at high/ultrahigh fields, contributing to an additional sensitivity gain and spectral improvement. In summary, the overall findings from this study suggest that in vivo 31P MRS should greatly benefit from high/ultrahigh fields for noninvasive assessment of altered bioenergetics and metabolic processes associated with brain function and neurological diseases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Adenosine triphosphate (ATP) is absolutely required to fuel normal cyclic contractions of the heart. The creatine kinase (CK) reaction is a major energy reserve reaction that rapidly converts creatine phosphate (PCr) to ATP during the cardiac cycle and at times of stress and ischemia, but is significantly impaired in conditions such as hypertrophy and heart failure. Because the magnitudes of possible in vivo cyclic changes in cardiac high‐energy phosphates (HEPs) during the cardiac cycle are not well known from previous work, this study uses mathematical modeling to assess whether, and to what extent, cyclic variations in HEPs and in the rate of ATP synthesis through CK (CK flux) could exist in the human heart, and whether they could be measured with current in vivo 31P MRS methods. Multi‐site exchange models incorporating enzymatic rate equations were used to study the cyclic dynamics of the CK reaction, and Bloch equations were used to simulate 31P MRS saturation transfer measurements of the CK reaction. The simulations show that short‐term buffering of ATP by CK requires temporal variations over the cardiac cycle in the CK reaction velocities modeled by enzymatic rate equations. The maximum variation in HEPs in the normal human heart beating at 60 min–1 was approximately 0.4 m m and proportional to the velocity of ATP hydrolysis. Such HEP variations are at or below the current limits of detection by in vivo 31P MRS methods. Bloch equation simulations show that 31P MRS saturation transfer estimates the time‐averaged, pseudo‐first‐order forward rate constant, kf,ap′, of the CK reaction, and that periodic short‐term fluctuations in kf and CK flux are not likely to be detectable in human studies employing current in vivo 31P MRS methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Dynamic 31P‐MRS with sufficiently high temporal resolution enables the non‐invasive evaluation of oxidative muscle metabolism through the measurement of phosphocreatine (PCr) recovery after exercise. Recently, single‐voxel localized 31P‐MRS was compared with surface coil localization in a dynamic fashion, and was shown to provide higher anatomical and physiological specificity. However, the relatively long TE needed for the single‐voxel localization scheme with adiabatic pulses limits the quantification of J‐coupled spin systems [e.g. adenosine triphosphate (ATP)]. Therefore, the aim of this study was to evaluate depth‐resolved surface coil MRS (DRESS) as an alternative localization method capable of free induction decay (FID) acquisition for dynamic 31P‐MRS at 7 T. The localization performance of the DRESS sequence was tested in a phantom. Subsequently, two dynamic examinations of plantar flexions at 25% of maximum voluntary contraction were conducted in 10 volunteers, one examination with and one without spatial localization. The DRESS slab was positioned obliquely over the gastrocnemius medialis muscle, avoiding other calf muscles. Under the same load, significant differences in PCr signal drop (31.2 ± 16.0% versus 43.3 ± 23.4%), end exercise pH (7.06 ± 0.02 versus 6.96 ± 0.11), initial recovery rate (0.24 ± 0.13 mm /s versus 0.35 ± 0.18 mm /s) and maximum oxidative flux (0.41 ± 0.14 mm /s versus 0.54 ± 0.16 mm /s) were found between the non‐localized and DRESS‐localized data, respectively. Splitting of the inorganic phosphate (Pi) signal was observed in several non‐localized datasets, but in none of the DRESS‐localized datasets. Our results suggest that the application of the DRESS localization scheme yielded good spatial selection, and provided muscle‐specific insight into oxidative metabolism, even at a relatively low exercise load. In addition, the non‐echo‐based FID acquisition allowed for reliable detection of ATP resonances, and therefore calculation of the specific maximum oxidative flux, in the gastrocnemius medialis using standard assumptions about resting ATP concentration in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a 31P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test–retest reliability of the measured metabolic parameters. The method localizes the 31P signal from the heart using modified one‐dimensional image‐selected in vivo spectroscopy (ISIS), and a time‐dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf) was 0.32 ± 0.05 s?1 and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1, exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1, respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Practical noninvasive methods for the measurement of absolute metabolite concentrations are key to the assessment of the depletion of myocardial metabolite pools which occurs with several cardiac diseases, including infarction and heart failure. Localized MRS offers unique noninvasive access to many metabolites, but is often confounded by nonuniform sensitivity and partial volume effects in the large, poorly defined voxels commonly used for the detection of low‐concentration metabolites with surface coils. These problems are exacerbated at higher magnetic field strengths by greater radiofrequency (RF) field inhomogeneity and differences in RF penetration with heteronuclear concentration referencing. An example is the 31P measurement of cardiac adenosine triphosphate (ATP) and phosphocreatine (PCr) concentrations, which, although central to cardiac energetics, have not been measured at field strengths above 1.5 T. Here, practical acquisition and analysis protocols are presented for the quantification of [PCr] and [ATP] with one‐dimensionally resolved surface coil spectra and concentration referencing at 3 T. The effects of nonuniform sensitivity and partial tissue volumes are addressed at 3 T by the application of MRI‐based three‐dimensional sensitivity weighting and tissue segmentation. The method is validated in phantoms of different sizes and concentrations, and used to measure [PCr] and [ATP] in healthy subjects. In calf muscle (n = 8), [PCr] = 24.7 ± 3.4 and [ATP] = 5.7 ± 1.3 µmol/g wet weight, whereas, in heart (n = 18), [PCr] = 10.4 ± 1.5 and [ATP] = 6.0 ± 1.1 µmol/g wet weight (all mean ± SD), consistent with previous reports at lower fields. The method enables, for the first time, the efficient, semi‐automated quantification of high‐energy phosphate metabolites in humans at 3 T with nonuniform excitation and detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The rate of phosphocreatine (PCr) resynthesis after physical exercise has been extensively studied with phosphorus (31P)‐MRS. Previous studies have used small surface coils that were limited to measuring one superficial muscle per experiment. This study focuses on the development and implementation of a spectrally selective three‐dimensional turbo spin echo (3D‐TSE) sequence at 3T and 7T with temporal resolution of 24 s, using two geometrically identical volume coils. We acquired imaging data of PCr recovery from four healthy volunteers and one diabetic patient, who performed plantar flexions using resistance bands. We segmented the anatomical regions of six different muscles from the lower leg, namely the gastrocnemius [lateral (GL) and medial (GM)], the tibialis [anterior (TA) and posterior (TP)], the soleus (S) and the peroneus (P) and measured the local PCr resynthesis rate constants. During the same examination, we also acquired unlocalized 31P‐MRS data at a temporal resolution of 6 s. At 3T, the PCr resynthesis rate constants were measured at 25.4 ± 3.7 s [n = 4, mean ± standard deviation (SD)] using the MRS method and 25.6 ± 4.4 s using the MRI method. At 7T, the measured rates were 26.4 ± 3.2 s and 26.2 ± 4.7 s for MRS and MRI. Using our imaging method, we measured the local PCr resynthesis rate constants in six individual muscles of the lower leg (min/max 20.2/31.7 s). The recovery rate constants measured for the diabetic patient were 55.5 s (MRS) and 52.7 s (MRI). The successful implementation of our 3D‐method suggests that imaging is possible at both fields with a relatively high spatial resolution (voxel size: 4.2 mL at 3T and 1.6 mL at 7T) using volume coils and that local PCr resynthesis rates can be obtained in a single measurement. The advantage of the imaging method is that it can highlight differences in PCr resynthesis rates between different muscles in a single measurement in order to study spatial gradients of metabolic properties of diseased states for which very little is currently known. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Exercise studies investigating the metabolic response of calf muscles using 31P MRS are usually performed with a single knee angle. However, during natural movement, the distribution of workload between the main contributors to force, gastrocnemius and soleus is influenced by the knee angle. Hence, it is of interest to measure the respective metabolic response of these muscles to exercise as a function of knee angle using localized spectroscopy. Time‐resolved multivoxel 31P MRS at 7 T was performed simultaneously in gastrocnemius medialis and soleus during rest, plantar flexion exercise and recovery in 12 healthy volunteers. This experiment was conducted with four different knee angles. PCr depletions correlated negatively with knee angle in gastrocnemius medialis, decreasing from 79±14 % (extended leg) to 35±23 %(~40°), and positively in soleus, increasing from 20±21 % to 36±25 %; differences were significant. Linear correlations were found between knee angle and end‐exercise PCr depletions in gastrocnemius medialis (R2=0.8) and soleus (R2=0.53). PCr recovery times and end‐exercise pH changes that correlated with PCr depletion were consistent with the literature in gastrocnemius medialis and differences between knee angles were significant. These effects were less pronounced in soleus and not significant for comparable PCr depletions. Maximum oxidative capacity calculated for all knee angles was in excellent agreement with the literature and showed no significant changes between different knee angles. In conclusion, these findings confirm that plantar flexion exercise with a straight leg is a suitable paradigm, when data are acquired from gastrocnemius only (using either localized MRS or small surface coils), and that activation of soleus requires the knee to be flexed. The present study comprises a systematic investigation of the effects of the knee angle on metabolic parameters, measured with dynamic multivoxel 31P MRS during muscle exercise and recovery, and the findings should be used in future study design.  相似文献   

9.
Phosphorus (31P) MRS, combined with saturation transfer (ST), provides non‐invasive insight into muscle energy metabolism. However, even at 7 T, the standard ST method with T1app measured by inversion recovery takes about 10 min, making it impractical for dynamic examinations. An alternative method, i.e. four‐angle saturation transfer (FAST), can shorten the examination time. The aim of this study was to test the feasibility, repeatability, and possible time resolution of the localized FAST technique measurement on an ultra‐high‐field MR system, to accelerate the measurement of both Pi‐to‐ATP and PCr‐to‐ATP reaction rates in the human gastrocnemius muscle and to test the feasibility of using the FAST method for dynamic measurements. We measured the exchange rates and metabolic fluxes in the gastrocnemius muscle of eight healthy subjects at 7 T with the depth‐resolved surface coil MRS (DRESS)‐localized FAST method. For comparison, a standard ST localized method was also used. The measurement time for the localized FAST experiment was 3.5 min compared with the 10 min for the standard localized ST experiment. In addition, in five healthy volunteers, Pi‐to‐ATP and PCr‐to‐ATP metabolic fluxes were measured in the gastrocnemius muscle at rest and during plantar flexion by the DRESS‐localized FAST method. The repeatability of PCr‐to‐ATP and Pi‐to‐ATP exchange rate constants, determined by the slab‐selective localized FAST method at 7 T, is high, as the coefficients of variation remained below 20%, and the results of the exchange rates measured with the FAST method are comparable to those measured with standard ST. During physical activity, the PCr‐to‐ATP metabolic flux decreased (from FCK = 8.21 ± 1.15 mM s?1 to FCK = 3.86 ± 1.38 mM s?1) and the Pi‐to‐ATP flux increased (from FATP = 0.43 ± 0.14 mM s?1 to FATP = 0.74 ± 0.13 mM s?1). In conclusion, we could demonstrate that measurements in the gastrocnemius muscle are feasible at rest and are short enough to be used during exercise with the DRESS‐localized FAST method at 7 T. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

10.
31P magnetic resonance spectroscopy (31P MRS) can measure intracellular pH (pHi) using the chemical shift difference between pH‐dependent inorganic phosphate (Pi) and a pH‐independent reference peak. This study compared three different frequency reference peaks [phosphocreatine (PCr), α resonance of adenosine triphosphate (αATP) and water (using 1H MRS)] in a cohort of 10 volunteers and eight patients with non‐Hodgkin's lymphoma (NHL). Well‐resolved chemical shift imaging (CSI) spectra were acquired on a 1.5T scanner for muscle, liver and tumour. The pH was calculated for all volunteers and patients using the available methods. The consistency of the resulting pH was evaluated. The direct Pi–PCr method was best for those spectra with a very well‐defined PCr, such as muscle (pH=7.05 ± 0.02). In liver, the Pi–αATP method gave more consistent results (pH=7.30 ± 0.06) than the calibrated water‐based method (pH=7.27 ± 0.11). In NHL nodes, the measured pH using the Pi–αATP method was 7.25 ± 0.12. Given that the measured range includes some biological variation in individual patients, treatment‐related changes of the order of 0.1 pH units should be detectable. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

11.
The aim of this investigation was to examine the adaptation of the muscle phosphates (e.g. phosphocreatine (PCr) and ADP) implicated in regulating oxidative phosphorylation, and oxygenation at the onset of high intensity exercise in children and adults. The hypotheses were threefold: primary PCr kinetics would be faster in children than adults; the amplitude of the PCr slow component would be attenuated in children; and the amplitude of the deoxyhaemoglobin/myoglobin (HHb) slow component would be reduced in children. Eleven children (5 girls, 6 boys, 13 ± 1 years) and 11 adults (5 women, 6 men, 24 ± 4 years) completed two to four constant work rate exercise tests within a 1.5 T MR scanner. Quadriceps muscle energetics during high intensity exercise were monitored using 31P‐MRS. Muscle oxygenation was monitored using near‐infrared spectroscopy. The time constant for the PCr response was not significantly different in boys (31 ± 10 s), girls (31 ± 10 s), men (44 ± 20 s) or women (29 ± 14 s, main effects: age, p = 0.37, sex, p = 0.25). The amplitude of the PCr slow component relative to end‐exercise PCr was not significantly different between children (23 ± 23%) and adults (17 ± 13%, p = 0.47). End‐exercise [PCr] was significantly lower, and [ADP] higher, in females (18 ± 4 mM and 53 ± 16 µM) than males (23 ± 4 mM, p = 0.02 and 37 ± 11 µM, p = 0.02), but did not differ with age ([PCr]: p = 0.96, [ADP]: p = 0.72). The mean response time for muscle tissue deoxygenation was significantly faster in children (22 ± 4 s) than adults (27 ± 7 s, p = 0.01). The results of this study show that the control of oxidative metabolism at the onset of high intensity exercise is adult‐like in 13‐year‐old children, but that matching of oxygen delivery to extraction is more precise in adults. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo 31P MRSI of creatine kinase (CK)‐expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by 1H MRS suffers from low signal‐to‐noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. 1H MRS and 31P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ‐ATP, pH and Pi/ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using 31P MRS to noninvasively monitor hepatocyte transplant success with CK‐expressing hepatocytes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non‐invasively assessed by 1H‐MRS in vivo. We used 1H‐MRS to characterize the hepatic fatty‐acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra‐short TE of 2.8 ms, confounding effects from T2 relaxation and J‐coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono‐unsaturated (MUFA) and poly‐unsaturated (PUFA) fatty‐acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo 1H‐MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty‐acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty‐acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ‐induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of 1H‐MRS in vivo to monitor changes in the composition of the hepatic fatty‐acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid‐lowering interventions in the scope of metabolic disorders. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Phosphorus magnetic resonance spectroscopy (31P‐MRS) enables the non‐invasive evaluation of muscle metabolism. Resting Pi‐to‐ATP flux can be assessed through magnetization transfer (MT) techniques, and maximal oxidative flux (Qmax) can be calculated by monitoring of phosphocreatine (PCr) recovery after exercise. In this study, the muscle metabolism parameters of 13 overweight‐to‐obese sedentary individuals were measured with both MT and dynamic PCr recovery measurements, and the interrelation between these measurements was investigated. In the dynamic experiments, knee extensions were performed at a workload of 30% of maximal voluntary capacity, and the consecutive PCr recovery was measured in a quadriceps muscle with a time resolution of 2 s with non‐localized 31P‐MRS at 3 T. Resting skeletal muscle metabolism was assessed through MT measurements of the same muscle group at 7 T. Significant linear correlations between the Qmax and the MT parameters kATP (r = 0.77, P = 0.002) and FATP (r = 0.62, P = 0.023) were found in the study population. This would imply that the MT technique can possibly be used as an alternative method to assess muscle metabolism when necessary (e.g. in individuals after stroke or in uncooperative patients). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
We used in vivo proton (1H) Magnetic Resonance Spectroscopy (MRS) to measure the levels of the main excitatory amino acid, glutamate (Glu) and also glutamine (Gln) and GABA in the striatum and cerebral cortex in the MPTP‐intoxicated mouse, a model of dopaminergic denervation, before and after dopamine (DA) replacement. The study was performed at 9.4T on control mice (n = 8) and MPTP‐intoxicated mice (n = 8). In vivo spectra were acquired in a voxel (8 µL) centered in the striatum, and in the cortex (4.6 µL). Three days after basal MRS acquisitions new spectra were acquired in the striatum and cortex, after levodopa (200 mg.kg?1). Glu, Gln and GABA concentrations obtained in the basal state were significantly increased in the striatum of MPTP‐lesioned mice (Glu: 20.2 ± 0.8 vs 11.4 ± 0.9 mM, p < 0.001; Gln: 5.4 ± 1.6 vs 2.0 ± 0.6 mM, p < 0.05; GABA: 3.6 ± 0.8 vs 1.6 ± 0.2 mM, p < 0.05). Levodopa lowered metabolites concentrations in the striatum of MPTP‐lesioned mice (Glu: 20.2 ± 0.8 vs 11.2 ± 0.4 mM (+ Ldopa), p < 0.001; Gln: 5.4 ± 1.6 vs 1.6 ± 0.4 mM (+ Ldopa), p < 0.05; GABA: 3.6 ± 0.8 vs 1.7 ± 0.4 mM (+ Ldopa), p < 0.01). Metabolite levels in the striatum of MPTP‐intoxicated mice + levodopa were not significantly different from those in the striatum of controls. No change was found in the cortex after DA denervation and after DA replacement between the two animals groups. These results strongly support a predominant change in striatal Glu synaptic activity in the cortico‐striatal pathway. Acute levodopa administration reverses the increase of metabolites in the striatum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Evidence suggests that mitochondria undergo functional and morphological changes with age. This study aimed to investigate the relationship of brain energy metabolism to healthy aging by assessing tissue specific differences in metabolites observable by phosphorus (31P) MRS. 31P MRSI at 4 Tesla (T) was performed on 34 volunteers, aged 21–84, screened to exclude serious medical and psychiatric diagnoses. Linear mixed effects models were used to analyze the effects of age on phosphorus metabolite concentrations, intracellular magnesium and pH estimates in brain tissue. A significant age associated decrease in brain pH (?0.53% per decade), increase in PCr (1.1% per decade) and decrease in PME (1.7% per decade) were found in total tissue, with PCr effects localized to the gray matter. An increase in beta NTP as a function of age (1% per decade) approached significance (p = 0.052). There were no effects demonstrated with increasing age for intracellular magnesium, PDE or inorganic phosphate. This study reports the effects of healthy aging on brain chemistry in the gray matter versus white matter using 31P MRS measures of high energy phosphates, pH and membrane metabolism. Increased PCr, increased beta NTP (reflecting ATP) and reduced pH may reflect altered energy production with healthy aging. Unlike some previous studies of aging and brain chemistry, this study examined healthy, non‐demented and psychiatrically stable older adults and specifically analyzed gray‐white matter differences in brain metabolism. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this study was to evaluate the use of dynamic contrast‐enhanced (DCE) MRI, in vivo 1H MRS and ex vivo high resolution magic angle spinning (HR MAS) MRS of tissue samples as methods to detect early treatment effects of docetaxel in a breast cancer xenograft model (MCF‐7) in mice. MCF‐7 cells were implanted subcutaneously in athymic mice and treated with docetaxel (20, 30, and 40 mg/kg) or saline six weeks later. DCE‐MRI and in vivo 1H MRS were performed on a 7 T MR system three days after treatment. The dynamic images were used as input for a two‐compartment model, yielding the vascular parameters Ktrans and ve. HR MAS MRS, histology, and immunohistochemical staining for proliferation (Ki‐67), apoptosis (M30 cytodeath), and vascular/endothelial cells (CD31) were performed on excised tumor tissue. Both in vivo spectra and HR MAS spectra were used as input for multivariate analysis (principal component analysis (PCA) and partial least squares regression analysis (PLS)) to compare controls to treated tumors. Tumor growth was suppressed in docetaxel‐treated mice compared to the controls. The anti‐tumor effect led to an increase in Ktrans and ve values in all the treated groups. Furthermore, in vivo MRS and HR MAS MRS revealed a significant decrease in choline metabolite levels for the treated groups, in accordance with reduced proliferative index as seen on Ki‐67 stained sections. In this study DCE‐MRI, in vivo MRS and ex vivo HR MAS MRS have been used to demonstrate that docetaxel treatment of a human breast cancer xenograft model results in changes in the vascular dynamics and metabolic profile of the tumors. This indicates that these MR methods could be used to monitor intra‐tumoral treatment effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
In vivo water‐ and fat‐suppressed 1H magnetic resonance spectroscopy (MRS) and 31P magnetic resonance adiabatic multi‐echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31P metabolites were determined, and the reproducibility of 1H and 31P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi‐exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi‐exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ‐ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono‐exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1H total choline (tChol) and the 31P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31P MRS imaging was superior to the reproducibility of 1H MRS for tChol. 1H and 31P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.  相似文献   

20.
We developed a new dedicated measurement protocol for dynamic 31P MRS analysis in contracting calf muscles of the mouse, using minimally invasive assessment of the contractile force combined with the acquisition of spectroscopic data gated to muscle contraction and determination of phosphocreatine (PCr) recovery rate and ATP contractile cost. This protocol was applied in a comparative study of six wild type (WT) mice and six mice deficient in cytosolic creatine kinase and adenylate kinase isoform 1 (MAK?/? mice) using 70 repeated tetanic contractions at two contractions per minute. Force levels during single contractions, and metabolite levels and tissue pH during resting conditions were similar in muscles of MAK?/? and WT mice. Strikingly, muscle relaxation after contraction was significantly delayed in MAK?/? mice, but during repeated contractions, the decrease in the force was similar in both mouse types. Gated data acquisition showed a negligible PCr breakdown in MAK?/? immediately after contraction, without a concomitant decrease in ATP or tissue pH. This protocol enabled the determination of rapid PCr changes that would otherwise go unnoticed due to intrinsic low signal‐to‐noise ratio (SNR) in mouse skeletal muscles combined with an assessment of the PCr recovery rate. Our results suggest that MAK?/? mice use alternative energy sources to maintain force during repeated contractions when PCr breakdown is reduced. Furthermore, the absence of large increases in adenosine diphosphate (ADP) or differences in force compared to WT mice in our low‐intensity protocol indicate that creatine kinase (CK) and adenylate kinase (AK) are especially important in facilitating energy metabolism during very high energy demands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号