首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examined the effect of ketoconazole on viability, apoptosis, mitogen-activated protein kinases (MAPKs) and Ca2+ levels in MG63 osteosarcoma cells. Ketoconazole at 20–200 μM decreased cell viability via apoptosis as demonstrated by propidium iodide staining and activation of caspase-3. Immunoblotting suggested that ketoconazole induced phosphorylation of ERK and JNK, but not p38, MAPKs. Ketoconazole-induced cell death and apoptosis were partially reversed by the selective JNK inhibitor SP600125, but not by the selective ERK inhibitor PD98059, suggesting that ketoconazole’s cytotoxic action was via JNK, but not via ERK and p38 MAPKs. Ketoconazole at a concentration of 100 μM induced [Ca2+]i increases. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) totally inhibited ketoconazole-induced [Ca2+]i increases without reversing ketoconazole-induced cell death. Collectively, in MG63 cells, ketoconazole induced cell death and apoptosis via evoking JNK phosphorylation in a Ca2+-independent manner.  相似文献   

2.
In view of the controversial role of catalytic activity on the cytotoxicity of phospholipase A2 (PLA2), the present study is conducted to explore whether PLA2 induces apoptotic process of human leukemia U937 cells through catalytic activity-independent pathway. Modification of His-48 (according to the sequence alignment with porcine pancreatic PLA2) with p-bromophenacyl bromide (BPB) caused over 99.9% drop in enzymatic activity Naja naja atra PLA2. It was found that BPB–PLA2-induced apoptotic death of U937 cells was associated with mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Upon exposure to BPB–PLA2, elevation of intracellular Ca2+ levels and p38 MAPK activation were observed in U937 cells. Pretreatment with BAPTA-AM (Ca2+ chelator) and nifedipine (L-type Ca2+ channel blocker) abrogated Ca2+ increase and p38 MAPK activation, and rescued viability of BPB–PLA2-treated U937 cells. BPB–PLA2-induced dissipation of mitochondrial membrane potential and down-regulation of Bcl-2 were suppressed by SB202190 (p38MAPK inhibitor). Although PLA2 mutants in which His-48 and Asp-49 were substituted by Ala and Lys, respectively, did not display detectable PLA2 activity, they induced death of U937 cells. The signaling pathway of PLA2 mutants in inducing cell death was indistinguishable from that of BPB–PLA2. Taken together, our data indicate that catalytic activity-independent pathway is involved in PLA2-induced apoptotic death of human leukemia U937 cells via mitochondria-mediated death pathway triggering by Ca2+-mediated p38 MAPK activation.  相似文献   

3.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

4.
Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48 h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.  相似文献   

5.
Cadmium (Cd), an ubiquitous heavy metal, is known to be accumulated outside of the blood-brain barrier. In this study, we investigated whether Cd has cytotoxicity in mouse brain microvascular endothelial cells (bEnd.3). Results from the cell viability assay showed that Cd caused a remarkable decrease in cell viability in a dose-dependent manner. The cell death induced by Cd appeared to involve apoptosis, based on our results from annexin V staining, electron microscopy and TUNEL staining. And the cell death induced by Cd was inhibited by caspase inhibitor ZVAD-fmk. To further investigate the mechanism of the Cd-induced cell death, we examined the effects of selective inhibitors for mitogen activated protein kinase (MAPK) pathways on the cell death. The Cd-induced cell death was significantly inhibited by p38 MAPK inhibitor SB202190, but not by either, c-Jun N-terminal kinase (JNK) inhibitor SP600125 or extracellular signal-regulated kinase (ERK) inhibitor U0126. Phosphorylations of p38 MAPK, JNK and ERK were stimulated by treatment with CdCl(2). In summary, our results suggest that Cd can induce apoptotic cell death, at least in part, through the p38 MAPK pathway in brain microvascular endothelial cells.  相似文献   

6.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations ≥5 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 μM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 μM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

7.
Geraniin, a typical ellagitannin isolated from Phyllanthus urinaria Linn, has been found to possess a range of bioactive properties. In the present study, we found that Geraniin showed potent anti-proliferative effects on human breast cancer MCF-7 cells. The IC50 values were 9.94, 17.98 and 42.32?µM after 72-, 48- and 24-h treatment, respectively. Meanwhile, Geraniin could remarkably disrupt mitochondrial membrane potential and arrest S phase cell cycle. Western-blot analysis showed that Geraniin induced phosphorylation of the anti-apoptotic Bcl-2, and the cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 in MCF-7 cells. Moreover, Geraniin treatment activated p38 mitogen-activated protein kinase (p38 MAPK) and the effect was blunted in MCF-7 cells with the treatment of a specific p38 inhibitor SB203580. Geraniin could generate intracellular reactive oxygen species (ROS), activate p38 MAPK then induce the apoptosis in MCF-7 cells, such phenomena was abrogated by pretreatment with N-acetyl-l-cysteine. In general, these results support the conclusion that Geraniin-induced apoptosis is mediated via ROS-mediated stimulation of p38 MAPK signaling.  相似文献   

8.
The effect of maprotiline on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in human osteosarcoma cells (MG63), using the fluorescent dyes fura‐2 and WST‐1, respectively. Maprotiline at concentrations of ≥20 µM increased [Ca2+]i in a concentration‐dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The maprotiline‐induced Ca2+ influx was sensitive to inhibition by aristolochic acid (a phospholipase A2 inhibitor). In Ca2+‐free medium, after treatment with 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 200 µM maprotiline failed to induce a [Ca2+]i rise. At concentrations of 50–100 µM maprotiline killed cells in a concentration‐dependent manner. The cytotoxic effect of 60 µM maprotiline was slightly enhanced by prechelating cytosolic Ca2+ with 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid (BAPTA). Propidium iodide staining data suggested that maprotiline induced apoptosis between concentrations of 60–70 µM, which was enhanced by BAPTA. Collectively, in MG63 cells, maprotiline induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from phospholipase A2‐regulated Ca2+ channels. Furthermore, maprotiline caused apoptosis that was regulated by Ca2+. Drug Dev Res 71: 268–274, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The present study explored the effect of Antrodia camphorata (AC) on viability, apoptosis, mitogen‐activated protein kinases (MAPKs) phosphorylation, and Ca2+ regulation in MG63 human osteosarcoma cells. AC (25–50 µg/ml) did not affect cell viability, but at 100–200 µg/ml decreased viability and induced apoptosis in a concentration‐dependent manner. AC at concentrations of 25–200 µg/ml did not alter basal [Ca2+]i, but at 25 µg/ml decreased [Ca2+]i increases induced by ATP, bradykinin, histamine, and thapsigargin. ATP, bradykinin, and histamine increased cell viability while thapsigargin decreased it. AC (25 µg/ml) pretreatment failed to alter bradykinin‐ and thapsigargin‐induced effects on viability, but potentiated ATP‐ and histamine‐induced increases in viability. Immunoblotting showed that MG63 cells did not have background phospho‐JNK and phospho‐p38 mitogen‐activated protein kinases (MAPKs); and AC did not induce the phosphorylation of these two MAPKs. Conversely, the cells had significant background phospho‐ERK MAPK that was inhibited by 200 µg/ml AC. The ERK‐specific inhibitor PD98059 also induced cell death. Collectively, in MG63 cells, AC exerted multiple effects on viability and [Ca2+]i, caused apoptosis probably via inhibition of ERK MAPK phosphorylation. Drug Dev Res 68:71–78, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

10.
CMS-9, a phospholipase A2 (PLA2) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA2 activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation.  相似文献   

11.
Silymarin was proved to have a protective effect of UV-induced A375-S2 cell apoptosis in our previous research. In this study, its pro-apoptotic and anti-apoptotic activities on human cervical cancer (HeLa) cells in vitro were investigated. Silymarin induced HeLa cell death through both apoptotic and necrotic pathways. At low doses (below 80 μmol l? 1), it induced cell apoptosis, but caused necrosis at high dose (160 μmol l? 1). Silymarin induced typical chromatin condensation and nuclear fragmentation as a hallmark of apoptosis. In this case, mitochondrial Bcl-2 family, Bcl-2 and Bax, were not involved in apoptotic effects; however, silymarin-induced cell death was regulated by the activation of p38 and JNK MAPKs. We also found that pan-caspase inhibitor and caspase-3 inhibitor could not antagonise silymarin-induced apoptosis. Therefore, silymarin induced and augmented HeLa cell apoptosis through p38/JNK MAPKs in the serum-free medium.  相似文献   

12.
Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.  相似文献   

13.
Curcumin (CUR) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. In recent years, it has been reported that CUR exhibits significant anti-tumor activity in vivo. However, the pharmacokinetic features of CUR have indicated poor oral bioavailability, which may be related to its extensive metabolism. The CUR metabolites might be responsible for the antitumor pharmacological effects in vivo. Tetrahydrocurcumin (THC) is one of the major metabolites of CUR. In the present study, we examined the efficacy and associated mechanism of action of THC in human breast cancer MCF-7 cells for the first time. Here, THC exhibited significant cell growth inhibition by inducing MCF-7 cells to undergo mitochondrial apoptosis and G2/M arrest. Moreover, co-treatment of MCF-7 cells with THC and p38 MAPK inhibitor, SB203580, effectively reversed the dissipation in mitochondrial membrane potential (Δψm), and blocked THC-mediated Bax up-regulation, Bcl-2 down-regulation, caspase-3 activation as well as p21 up-regulation, suggesting p38 MAPK might mediate THC-induced apoptosis and G2/M arrest. Taken together, these results indicate THC might be an active antitumor form of CUR in vivo, and it might be selected as a potentially effective agent for treatment of human breast cancer.  相似文献   

14.
p38 MAPK激酶抑制剂增强二烯丙基二硫化物诱导CNE2细胞凋亡   总被引:3,自引:5,他引:3  
目的 研究二烯丙基二硫化物 (DADS)诱导CNE2细胞凋亡及 p38MAPK信号转导通路对此过程的作用。 方法 DADS处理CNE2细胞 2 4h后 ,荧光显微镜下观察形态学变化及凋亡细胞计数 ,MTT法测定细胞活性 ,流式细胞仪检测凋亡细胞 ,蛋白质印迹法检测磷酸化p38MAPK表达。结果 在培养的CNE2细胞中 ,DADS(50~ 1 50 μmol·L- 1 )作用 2 4h后 ,DADS诱导CNE2细胞产生典型的凋亡细胞形态学变化 (核浓染 ,核碎裂 ) ,流式细胞仪结果显示 ,随着DADS给药剂量增加 ,细胞周期中各期细胞所占百分率的变化无规律 ,细胞凋亡呈剂量依赖性 ,DADS(50~ 1 50 μmol·L- 1 )浓度依赖性刺激磷酸化p38MAPK的表达 ,p38MAPK抑制剂SB2 0 3580明显增强DADS致凋亡作用。结论 DADS诱导CNE2细胞凋亡时激活磷酸化 p38MAPK表达 ,磷酸化p38MAPK抑制剂增强DADS诱导CNE2细胞凋亡效应  相似文献   

15.
Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca2+ levels ([Ca2+]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca2+]i rises which were reduced by removing extracellular Ca2+. Eugenol-induced [Ca2+]i rises were not altered by store-operated Ca2+ channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca2+]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca2+]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca2+]i rises by inducing PLC-dependent release of Ca2+ from the endoplasmic reticulum and caused Ca2+ influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway.  相似文献   

16.
Kazinol B, a natural isoprenylated flavan, stimulated the [Ca2+]i elevation in the presence or absence of Ca2+ in the medium. Treatment with chymotrypsin or phorbol 12-myristate 13-acetate to shedding of l-selectin had no effect on subsequent kazinol B-induced Ca2+ response. Upon initial cyclopiazonic acid (CPA) treatment in the absence of external Ca2+, the subsequent [Ca2+]i rise followed by challenge with kazinol B was greatly diminished. The ryanodine receptor blockers, 8-bromo-cyclic ADP-ribose and ruthenium red did not affect kazinol B-evoked Ca2+ release from internal stores. However, the inhibitors of sphingosine kinase, dimethylsphingosine, but not dihydrosphingosine, inhibited kazinol B-induced Ca2+ release. Kazinol B-induced [Ca2+]i rise was not affected by two nitric oxidase inhibitors, N-(3-aminomethyl)benzylacetamidine (1400W) and 7-nitroindazole, cytochalasin B and Na+-deprivation. This response was slightly attenuated by 2-aminoethyldiphenyl borate (2-APB), a d-myo-inositol 1,4,5-trisphosphate (IP3) receptor blocker, and by genistein, a general tyrosine kinase inhibitor. However, the Ca2+ response was greatly diminished by two actin filament reorganizers, calyculin A and jasplakinolide, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), an inhibitor of phosphoinositide 3-kinase, N-(3-aminomethyl)benzylacetamidine (SB 203580), the p38 mitogen-activated protein kinase inhibitor, 1-[6-[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, and by 0.3 mM La3+ or Ni2+. Kazinol B did not evoke any appreciable Ba2+ and Sr2+ entry into cells. The Ca2+ entry blockers, 1-[-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), but not cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A), inhibited a kazinol B-induced [Ca2+]i rise. Kazinol B had no effect on the pharmacologically isolated plasma membrane Ca2+-ATPase activity. In a Ca2+-free medium, kazinol B inhibited the subsequent Ca2+ addition, resulting in robust entry in CPA- and formyl peptide-activated cells. Kazinol B produced a concentration-dependent reduction in the mitochondrial membrane potential. These results indicate that kazinol B stimulates Ca2+ release from internal Ca2+ store, probably through the sphingosine 1-phosphate and IP3 signaling, and activates external Ca2+ influx mainly through a non-store-operated Ca2+ entry (non-SOCE) pathway. Inhibition of SOCE by kazinol B is probably attributable to a break in the Ca2+ driven force of mitochondria.  相似文献   

17.
Tea made from the leaves of the plant Camellia sinensis is a popular beverage. The possible cancer-preventive activity of tea and tea polyphenols has been studied extensively. This article briefly reviews studies in animal models, cell lines, and possible relevance of these studies to the prevention of human cancer. The cancer-preventive activity of tea constituents have been demonstrated in many animal models including cancer of the skin, lung, oral cavity, esophagus, stomach, liver, pancreas, small intestine, colon, bladder, prostate, and mammary gland. The major active constituents are polyphenols, of which (-)-epigallocatechin-3-gallate (EGCG) is most abundant, most active, and most studied, and caffeine. The molecular mechanisms of the cancer-preventive action, however, are just beginning to be understood. Studies in cell lines led to the proposal of many mechanisms on the action of EGCG. However, mechanisms based on studies with very high concentrations of EGCG may not be relevant to cancer prevention in vivo. The autooxidation of EGCG in cell culture may also produce activities that do not occur in many internal organs. In contrast to the cancer prevention activity demonstrated in different animal models, no such conclusion can be convincingly drawn from epidemiological studies on tea consumption and human cancers. Even though the human data are inconclusive, tea constituents may still be used for the prevention of cancer at selected organ sites if sufficient concentrations of the agent can be delivered to these organs. Some interesting examples in this area are discussed.  相似文献   

18.
Deficiency of delta-sarcoglycan (delta-SG), a component of the dystrophin-glycoprotein complex (DGC), causes skeletal muscular dystrophy and cardiomyopathy in BIO14.6 hamsters. Here, we studied the involvement of abnormal Ca2+ homeostasis in muscle degeneration and the protective effect of drugs against Ca2+ handling proteins in vivo as well as in vitro. First, we characterized the properties of cultured myotubes from muscles of normal and BIO14.6 hamsters (30-60 days old). While there were no apparent differences in the levels of expression of various Ca2+ handling proteins (L-type Ca2+ channel, ryanodine receptor, SR-Ca2+ ATPase, and Na+/Ca2+ exchanger), muscle-specific proteins (contractile actin and acetylcholine receptor), or DGC member proteins except SGs, BIO14.6 myotubes showed a high degree of susceptibility to mechanical stressors, such as cyclic stretching and hypo-osmotic stress as compared to normal myotubes, as evidenced by marked increases in creatine phosphokinase (CK) release and bleb formation. BIO14.6 myotubes showed abnormal Ca2+ homeostasis characterized by elevated cytosolic Ca2+ concentration, frequent Ca2+ oscillation, and increased 45Ca2+ uptake. These abnormal Ca2+ events and CK release were significantly prevented by Ca2+ handling drugs, tranilast, diltiazem, and FK506. The calpain inhibitor E64 prevented CK release, but not 45Ca2+ uptake. Some of these drugs (tranilast, diltiazem, and FK506) also exerted a significant protective effect for muscle degeneration in BIO14.6 hamsters and mdx mice in vivo. These observations suggest that elevated Ca2+ entry through sarcolemmal Ca2+ channels predominantly contributes to muscle degeneration and that the drugs tested here may have novel therapeutic potential against muscular dystrophy.  相似文献   

19.
Nonylphenol (NP) is a widely distributed environment contaminant and has been documented to disrupt testicular development and decrease male fertility. Amongst possible targets of this compound are testicular Sertoli cells, which play a crucial role in supporting and nourishing sperm cells. In the present study, we found that NP treatment could cause dramatic morphological changes as well as decreased cell viability of Sertoli cells, while the following Annexin V–PI staining demonstrated that NP treatment led to increased proportion of cell apoptosis, which was evidenced again by the detection of condensation and marginal changes of chromatins using Hoechst staining and transmission microscopy observation. In addition, increased intracellular Ca2+ levels and changes of endoplasmic reticulum (ER) ultrastructure were also observed in NP-treated groups, indicating the action of NP on ER. The subsequent data showed that the expressions of ER-stress signaling targeted genes GRP78 and gadd153 were elevated, suggesting the activation of ER-stress signal pathway. Furthermore, the detection of ER-stress related proteins by western blotting revealed that the expression of gadd153 was upregulated by NP, whereas the expressions of GRP78 and ERp57 were both first upregulated and then inhibited. Taken together, it is suggested that NP can induce ER stress in Sertoli cells, which may plays an important role in the induction of apoptosis.  相似文献   

20.
In human MG63 osteosarcoma cells, the effect of calmidazolium on [Ca(2+)](i) and proliferation was explored using fura-2 and ELISA, respectively. Calmidazolium, at concentrations greater than 0.1 micromol/L, caused a rapid increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 0.5 micromol/L). The calmidazolium-induced [Ca(2+)](i) increase was reduced by 66% by removal of extracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the effect of calmidazolium to increase [Ca(2+)](i) was completely inhibited. U73122, an inhibitor of phospholipase C (PLC), abolished histamine (but not calmidazolium)-induced increases in [Ca(2+)](i). Pretreatment with phorbol 12-myristate 13-acetate to activate protein kinase C inhibited the calmidazolium-induced increase in [Ca(2+)](i) in Ca(2+)-containing medium by 47%. Separately, it was found that overnight treatment with 2-10 micromol/L calmidazolium inhibited cell proliferation in a concentration-dependent manner. These results suggest that calmidazolium increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing release of intracellular Ca(2+) from the endoplasmic reticulum in a PLC-independent manner. Calmidazolium may be cytotoxic to osteosarcoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号