首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder and has an elusive etiology. It is likely multifactorial, and genetic defects contribute to its pathogenesis. At least 25 genetic loci and 20 monogenic genes have been identified in monogenic PD. Recessive F-box protein 7 gene (FBXO7) mutations reportedly cause hereditary parkinsonism. To explore the roles of four paralogs (FBXO2, FBXO6, FBXO12, and FBXO41) in PD development, their variants (rs9614, rs28924120, rs6442117, and rs61733550, respectively) were analyzed in 502 Han Chinese patients with PD and 556 age, gender, and ethnicity-matched normal participants in mainland China. Statistically significant differences in genotypic and allelic frequencies were detected only in the FBXO2 variant rs9614 (P = 0.001 and 0.023, respectively; odds ratio 0.819, 95% confidence interval 0.690–0.973) between patients and controls. These results suggest that the FBXO2 variant rs9614 C allele may decrease the PD risk in mainland Han Chinese and may be a biomarker for PD.  相似文献   

2.
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic inclusions (Lewy bodies). Iron, which is elevated in the substantia nigra (SN) of PD patients, seems to be of pivotal importance, because of its capacity to enhance the amplification of reactive-oxygen species. Therefore, it is tempting that the iron-releasing key enzyme in heme catabolism, heme oxygenase-1 (HO-1), may represent a candidate for a genetic susceptibility to PD. In the current study, we examined a (GT)n fragment length polymorphism in the promoter region, as well as three coding SNPs in the HO-1 gene in order to assess if certain genotypes are associated with PD. Furthermore, peripheral blood expression levels of HO-1 in PD patients and healthy probands were compared. However, our analyses did not reveal a significant association of these genetic markers in the HO-1 gene with an increased susceptibility to PD.  相似文献   

3.
Epilepsy is a brain disorder with a global prevalence of 1%. It has been attributed to genetics and environmental factors. Despite efforts to identify the molecular pathology of epilepsy, the underlying mechanism is not understood yet. This study was carried out to compare GRIN2B, BDNF, and IL-1β gene expressions in 50 patients suffering from generalized epilepsy with tonic-colonic seizures and 50 age- and sex-matched healthy subjects using TaqMan Real-time PCR. Our results demonstrated significant upregulation of these genes in people with epilepsy compared with healthy subjects. We also found a positive correlation between GRIN2B and BDNF expression (r2=0.4619, p?<?0.0001), BDNF and IL-1β expression (r2?=?0.515, p?<?0.0001), and GRIN2B and IL-1β gene expressions (r2?=?0.666, p?<?0.0001) which implies the possibility to estimate the expression level of these genes by assessment of expression of one of them. Considering the results of the previous animal studies which showed upregulation of these genes in brain tissues of epileptic animals, the expression levels of GRIN2B, BDNF, and IL-1β in blood samples might be related to their expression in brain samples. Future studies are needed to assess the role of these genes in the pathogenesis of epilepsy and evaluate whether altered expression of these genes along with imaging methods can facilitate subtyping the epilepsy.  相似文献   

4.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. Both genetic and environmental factors are involved in the etiology of the disease. Many studies have revealed the susceptibility genes and variations for PD which need further confirmation. Here we evaluated the association of variations in SNCA, HUSEYO and CSMD1 genes with PD. A case–control study was conducted with 489 PD patients and 489 healthy controls. DNA was extracted from peripheral blood of all subjects and rs356220 and rs11931074 in SNCA, rs2338971 in HUSEYO and rs12681349 in CSMD1 were genotyped using PCR–RFLP method. The genotypes and allele frequencies were significantly different between case and control groups for rs356220, rs11931074 and rs2338971 but not for rs12681349. We provided further evidence that rs356220 is associated with increased risk of PD supporting previous studies in Caucasian-based and Japanese populations. The association of rs11931074 with decreased risk of PD was also significant. This study revealed the first evidence of the association of rs2338971 with increased risk of PD in the Iranian population. Nevertheless, these findings need further validation via more replication studies.  相似文献   

5.
Accumulation and aggregation of β-amyloid (Aβ) peptides result in neuronal death, leading to cognitive dysfunction in Alzheimer’s disease. The self-assembled Aβ molecules form various intermediate aggregates including oligomers that are more toxic to neurons than the mature aggregates, including fibrils. Thus, one strategy to alleviate Aβ toxicity is to facilitate the conversion of Aβ intermediates to larger aggregates such as fibrils. In this study, we designed a peptide named A3 that significantly enhanced the formation of amorphous aggregates of Aβ by accelerating the aggregation kinetics. Thioflavin T fluorescence experiments revealed an accelerated aggregation of Aβ monomers, accompanying reduced Aβ cytotoxicity. Transgenic Caenorhabditis elegans over-expressing amyloid precursor protein exhibited paralysis due to the accumulation of Aβ oligomers, and this phenotype was attenuated by feeding the animals with A3 peptide. These findings suggest that the Aβ aggregation-promotion effect can potentially be useful for developing strategies to reduce Aβ toxicity.  相似文献   

6.
7.
We preformed this meta-analysis to investigate the influence of ABCA1 (ATP-binding cassette sub-family A member 1) rs2422493 (C-477T), rs1800977 (C-14T), rs2066718 (V771M), and PTGS2 (Prostaglandin-endoperoxide synthase 2) rs20417 (G-765C) polymorphisms on the risk of Alzheimer’s disease (AD). Seventeen eligible case–control studies were acquired from PubMed, Embase, Alzgene, Chinese National Knowledge Infrastructure and Wanfang databases. The pooled odds ratios (ORs) with 95 % confidence intervals (95 % CI) were calculated to evaluate the association under five genetic models. Combined data indicated that ABCA1 rs2422493 polymorphism was statistically significant associated with increasing AD risk in three genetic models (allelic T vs C: OR = 1.12, 95 % CI: 1.01–1.24; homozygous TT vs CC: OR = 1.26, 95 % CI: 1.03–1.55; and recessive TT vs TC + CC: OR = 1.33, 95 % CI: 1.12–1.58) while no association was found between two other ABCA1 polymorphisms and AD susceptibility. Nevertheless, a further risk-stratification analysis showed that ApoE-ε4 carriers with any ABCA1 polymorphism suffered a much higher probability to be AD patients. Meanwhile, PTGS2 rs20417 polymorphism was linked to decreasing AD risk with a P < 0.0001 in five genetic models (e.g., allelic C vs G: OR = 0.59, 95 % CI: 0.50–0.70; homozygous CC vs GG: OR = 0.31, 95 % CI: 0.18–0.52; and heterozygous CG vs GG: OR = 0.64, 95 % CI: 0.52–0.78). In summary, our meta-analysis results showed that ABCA1 rs2422493 polymorphism was a risk factor for AD while PTGS2 rs20417 variant showed a protective effect on AD risk. In addition, ABCA1 rs2066718 and rs1800977 polymorphisms might not contribute to AD susceptibility in general population, but they should play a role on AD development when interacted with ApoE-ε4.  相似文献   

8.
Genetic association studies have identified significant association between the GAB2 rs2373115 variant and Alzheimer’s disease (AD). However, it is unknown whether rs2373115 affects the regulation of nearby genes. Here, we evaluate the potential effect of rs2373115 on gene expression using multiple eQTL (expression quantitative trait loci) datasets from human brain tissues from the Mayo Clinic brain expression genome-wide association study (eGWAS), the UK Brain Expression Consortium (UKBEC), the Genotype-Tissue Expression (GTEx) project, and the Brain xQTL Serve. Our findings indicate that the rs2373115 C allele is associated with increased NARS2 expression, and both reduced and increased GAB2 expression in human tissues. Using a large-scale AD case-control expression dataset, we found increased GAB2 expression and reduced NARS2 expression in AD cases compared with controls. We believe that our findings provide important information regarding the rs2373115 variant and expression of nearby genes with respect to AD risk.  相似文献   

9.
10.
Folie à deux (FAD) was first described in 19th century France. Since then, the concept has been elaborated, and several subtypes of FAD have been successively reported in France. In contrast, studies in German-speaking psychiatry mainly focused on the conceptual boundary between reactive/endogenous psychosis and etiological hypothesis (ie, psychogenesis vs genetic predisposition). In North America, Gralnick wrote a seminal review and redefined four subtypes of FAD by adopting the European classical concepts. More recently, "shared psychotic disorder" in DSM or "induced delusional disorder" in ICD-10 was branched off from FAD. However, several classical subcategories of FAD were not included in these recent definitions, the nosological significance of which should not be underestimated. We examined demographic data of FAD case reports published from the 19th to the 21st century and found that some of the earlier hypotheses, such as females being more susceptible, older and more intelligent individuals being more likely to be inducers, and sister-sister pairs being the most common relationship, were not supported. The controversial issue of the etiology of FAD-association of subjects or genetically driven psychosis-was re-examined in light of recent studies.  相似文献   

11.
Juvenile Batten disease (JBD) is an inherited disorder that is characterized by the development of blindness, seizures, and progressive motor, psychiatric, and cognitive impairment. A model of JBD expressing the predominant human mutation (Cln3 ?ex7/8 ) has been explored. Dissociated brain cultures from Cln3 ?ex7/8 knock-in mice were compared to wild type (WT) for effects on granules of ceroid lipofuscin (CL) and neuronal structure. Utilizing high content image analysis of CL granules identified with antibodies to mitochondrial ATP synthase subunit c or tripeptidyl peptidase-1, significant increases in the areas for both immunoreactive granules were observed in Cln3 ?ex7/8 cultures in comparison to WT. CL granules also exhibit autofluorescence at 488 and 560 nm, and the areas of these autofluorescent spots were found to be significantly increased in Cln3 ?ex7/8 cultures in comparison to WT. Progressive increases in CL granule area in Cln3 ?ex7/8 cultures were observed during culture development. Because current therapies for JBD provide only symptomatic support, a therapeutic strategy has been explored based on the observations that JBD-related tissues are deficient in β-galactosyl ceramide. Treatment of cultures for 40 h with a potent analog of β-galactosyl ceramide (SNB-4050) produced significant decreases in CL granule area in the Cln3 ?ex7/8 cultures; whereas identical studies on WT cultures produced no detectible changes. Significant decreases in average neurite length and neurite branch point number were also observed in the Cln3 ?ex7/8 cultures that were attenuated by treatment with 1 nM SNB-4050. These studies indicate Cln3 ?ex7/8 brain cultures may be useful to screen therapeutic agents for treatment of JBD.  相似文献   

12.
Mutations in the TARDBP gene are a cause of autosomal dominant amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration (FTLD), but they have not been found so far in patients with Parkinson’s disease (PD). A founder TARDBP mutation (p.Ala382Thr) was recently identified as the cause of ~30% of ALS cases in Sardinia, a Mediterranean genetic isolate. We studied 327 consecutive Sardinian patients with clinically diagnosed PD (88 familial, 239 sporadic) and 578 Sardinian controls. One family with FTLD and parkinsonism was also included. The p.Ala382Thr heterozygous mutation was detected in eight unrelated PD patients (2.5%). The three patients from the FTLD/parkinsonism family also carried this mutation. Within the control group, there were three heterozygous mutation carriers. During follow-up, one of these individuals developed motoneuron disease and another, a rapidly progressive dementia; the third remains healthy at the age of 79 but two close relatives developed motoneuron disease and dementia. The eight PD patients carrying the p.Ala382Thr mutation had all sporadic disease presentation. Their average onset age was 70.0 years (SD 9.4, range 51–79), which is later but not significantly different from that of the patients who did not carry this mutation. In conclusion, we expand the clinical spectrum associated with TARDBP mutations to FTLD with parkinsonism without motoneuron disease and to clinically definite PD. The TDP-43 protein might be directly involved in a broader neurodegenerative spectrum, including not only motoneuron disease and FTLD but also PD.  相似文献   

13.
14.
Increased oxidative stress and advanced glycosylation are important factors in the development of diabetic neuropathy. In non-diabetic neuropathies their influence has not been investigated in detail so far. We studied the localisation of N(epsilon)-carboxymethyllysine (CML) - a biomarker for oxidative stress - by immunohistochemistry in sural nerve biopsies of 31 patients with different polyneuropathies [diabetic polyneuropathy (n=5), alcohol-associated polyneuropathy (n=4), vitamin B12-deficient polyneuropathy (n=6), chronic inflammatory demyelinating polyneuropathy (CIDP) (n=6), vasculitic neuropathy (n=6), Charcot-Marie-Tooth disease type I (CMT I) (n=4)] and 4 normal controls. CML was detected in the perineurium of patients with diabetic, alcohol-associated, vitamin B12-deficient and vasculitic polyneuropathies. Epineurial, perineurial and endoneurial vessels were CML positive in diabetic, vitamin B12-deficient and vasculitic polyneuropathies. CML was also found in mononuclear inflammatory cells in vasculitic neuropathy. In CIDP and normal controls there was only marginal perineurial CML deposition in 2/6 and 1/4 cases. In CMT I no CML was detected. Immunohistochemical results were confirmed by immunoblot. Our data suggest a role of oxidative stress in the pathogenesis not only of diabetic but also of alcohol-associated, vitamin B12-deficient and vasculitic polyneuropathies. It may be a minor pathogenetic factor in CIDP and may not be involved in CMT I. Underlying causes for increased oxidative stress may be an elevated production of reactive oxygen species and an impairment of antioxidative defences. Therefore, an antioxidative treatment should be considered in alcohol-associated, vitamin B12-deficient and vasculitic polyneuropathy.  相似文献   

15.
16.
Aggregation of amyloid-beta is one of the major characteristics in brains of patients with Alzheimer’s disease (AD). Although several mechanisms behind the formation of such aggregates have been suggested the regulatory factors are still unknown. The present study aimed at investigating the association of lysyl oxidase-like 1 (LOXL1) polymorphisms with AD diagnosis and cerebrospinal fluid biomarkers (CSF) for the disease. Proteins of the lysyl oxidase (LOX) family are involved in cross-linking extracellular matrix proteins to insoluble fibers and have been associated with neurodegenerative diseases including AD. Genetic polymorphisms in LOXL1 (rs1048661, rs3825942, and rs2165241) have been linked to exfoliation syndrome and exfoliation glaucoma, conditions that have shown association with AD. The polymorphisms were genotyped by Taqman allelic discrimination in a study sample including AD patients (n = 318) and controls (n = 575). In a subgroup of the population, the polymorphisms were analyzed in relation to APOE ε4 genotype and to CSF (T-tau, P-tau, and Aβ1–42). No evidence for associations of these polymorphisms with risk for AD or any of the studied CSF biomarkers measured was found. These results do not support LOXL1 as being a major risk gene for AD.  相似文献   

17.
Pihlstrøm L  Toft M 《Neurogenetics》2011,12(4):283-293
Over the last decades, increasing knowledge about the genetic architecture of Parkinson’s disease has provided novel insights into the pathogenesis of the disorder, generating hypotheses for further research. Characterizing the role of SNCA, encoding the α-synuclein protein, has been a particularly important aspect of this development. The identification of SNCA as the first gene implicated in monogenic parkinsonism led to the recognition of α-synuclein as a key protein in the pathogenesis and a major component of pathological hallmark lesions. An association between common variants in SNCA and risk of sporadic Parkinson’s disease has been established through numerous studies. We review our current understanding of SNCA variability contributing to Parkinson’s disease, highlighting the characterization of functionally relevant susceptibility alleles as a major future challenge. We argue that new strategies will be needed to pinpoint the variants that are ultimately responsible for the signals detected in association studies, where targeted resequencing may represent an attractive initial approach.  相似文献   

18.
Guillain-Barré syndrome is associated with antecedent Campylobacter jejuni infection. Only a minority of the infected individuals, however, develops the disease, implying a role for genetic factors in conferring susceptibility. To determine the role of immunoglobulin KM genes (genetic markers of the constant region of κ chains) in the etiology of this syndrome, we genotyped 83 patients and 196 healthy controls from Norway for KM1 and KM3 alleles by polymerase chain reaction-restriction fragment length polymorphism. The frequency of KM3 homozygotes was significantly increased in patients compared with controls (86.7% vs. 74%, P=0.01, odds ratio=2.3). Conversely, the frequency of KM1/KM3 heterozygotes was significantly decreased in patients compared with controls (13.3% vs. 26%, P=0.01, odds ratio=0.4). These results suggest that KM genes may be relevant to the etiology of Guillain-Barré syndrome. Electronic Publication  相似文献   

19.
20.
Phelan–McDermid syndrome (PMS), also called 22q13.3 deletion syndrome, is a neurodevelopmental disorder characterized by global developmental delay, intellectual disability, severe speech delays, poor motor tone and function, and autism spectrum disorder (ASD). Although the overall prevalence of PMS is unknown, there have been at least 1200 cases reported worldwide, according to the Phelan–McDermid Syndrome Foundation. PMS is now considered to be a relatively common cause of ASD and intellectual disability, accounting for between 0.5 % and 2.0 % of cases. The cause of PMS has been isolated to loss of function of one copy of SHANK3, which codes for a master scaffolding protein found in the postsynaptic density of excitatory synapses. Reduced expression of SH3 and multiple ankyrin repeat domains 3 (SHANK3) leads to reduced numbers of dendrites, and impaired synaptic transmission and plasticity. Recent mouse and human neuronal models of PMS have led to important opportunities to develop novel therapeutics, and at least 2 clinical trials are underway, one in the USA, and one in the Netherlands. The SHANK3 pathway may also be relevant to other forms of ASD, and many of the single-gene causes of ASD identified to date appear to converge on several common molecular pathways that underlie synaptic neurotransmission. As a result, treatments developed for PMS may also affect other forms of ASD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号