首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Our previous studies showed that axonal outgrowth from dorsal root ganglia (DRG) transplants in the adult rat brain could be directed toward a specific target location using a preformed growth-supportive pathway. This pathway induced axon growth within the corpus callosum across the midline to the opposite hemisphere. In this study, we examined whether such pathways would also support axon growth either through or around a lesion of the corpus callosum. Pathways expressing GFP, NGF, or FGF2/NGF were set up by multiple injections of adenovirus along the corpus callosum. Each pathway included the transplantation site in the left corpus callosum, 2.8 mm away from the midline, and a target site in the right corpus callosum, 2.5 mm from the midline. At the same time, a 1 mm lesion was made through the corpus callosum at the midline in an anteroposterior direction. A group of control animals received lesions and Ad-NGF injections only at the transplant and target sites, without a bridging pathway. DRG cell suspensions from postnatal day 1 or 2 rats were injected at the transplantation site three to four days later. Two weeks after transplantation, brain sections were stained using an anti-CGRP antibody. The CGRP+ axons were counted at 0.5 mm and 1.5 mm from the lesion site in both hemispheres. Few axons grew past the lesion in animals with control pathways, but there was robust axon growth across the lesion site in the FGF2/NGF and NGF-expressing pathways. This study indicated that preformed NGF and combination guidance pathways support more axon growth past a lesion in the adult mammalian brain.  相似文献   

2.
3.
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesencephalic (VM) dopaminergic neurons. Subpopulations of dopaminergic and non-dopaminergic VM neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Characterization of the actions of GDNF on distinct subpopulations of VM cells is of great importance for its potential use as a therapeutic molecule and for understanding its role in neuronal development. The present study investigated the effects of GDNF on the survival and morphological differentiation of dopaminergic and non-dopaminergic neurons in primary cultures of embryonic day (E) 18 rat VM. As expected from our results obtained using E14 VM cells, GDNF significantly increased the morphological complexity of E18 CB-immunoreractive (CB-ir), tyrosine hydroxylase (TH)-ir, and CR-ir neurons and also the densities of CB-ir and TH-ir neurons. Interestingly, densities of E18 CR-ir neurons, contrarily to our previous observations on E14 CR-ir neurons, were significantly higher after GDNF treatment (by 1.5-fold). Colocalization analyses demonstrated that GDNF increased the densitiy of dopaminergic neurons expressing CR (TH+/CR+/CB-), while no significant effects were observed for TH-/CR+/CB- cell densities. In contrast, we found that GDNF significantly increased the total fiber length (2-fold), number of primary neurites (1.4-fold), number of branching points (2.5-fold), and the size of neurite field per neuron (1.8-fold) of the non-dopaminergic CR-expressing neurons (TH-/CR+/CB-). These cells were identified as GABA-expressing neurons. In conclusion, our findings recognize GDNF as a potent differentiation factor for the development of VM dopaminergic and non-dopaminergic CR-expressing neurons.  相似文献   

4.
Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated transfer of the gene for human glial cell line-derived neurotrophic factor (GDNF) to embryonic (E27/28) porcine VM tissue kept as organotypic explant cultures. Treatment of the developing VM with two mitogens, basic fibroblast growth factor and epidermal growth factor, prior to transfection significantly increased transfection yields. Expression of human GDNF via an episomal vector could be detected by in situ hybridization and by the measuring of GDNF protein secreted into the culture medium. When compared to mock-transfected controls, VM tissue expressing recombinant GDNF contained significantly higher numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo- and xenotransplantation treatment in Parkinson's disease.  相似文献   

5.
Deep brain stimulation (DBS) is an established therapy for movement disorders such as Parkinson’s disease (PD). Although the efficacy of DBS is clear, its precise molecular mechanism remains unknown. The glial cell line derived factor (GDNF) family of ligands has been shown to confer neuroprotective effects on dopaminergic neurons, and putaminal infusion of GDNF have been investigated in PD patients with promising results. Despite the potential therapeutic role of GDNF in alleviating motor symptoms, there is no data on the effects of electrical stimulation on GDNF-family receptor (GFR) expression in the basal ganglia structures. Here, we report the effects of electrical stimulation on GFRα1 isoforms, particularly GFRα1a and GFRα1b. Wistar rats underwent 2 hours of high frequency stimulation (HFS) at the globus pallidus interna nucleus. A control group was subjected to a similar procedure but without stimulation. The HFS group, sacrificed 24 hours after treatment, had a threefold decrease in mRNA expression level of GFRα1b (p = 0.037), but the expression level reverted to normal 72 hours after stimulation. Our preliminary data reveal the acute effects of HFS on splice isoforms of GFRα1, and suggest that HFS may modulate the splice isoforms of GFRα1a and GFRα1b to varying degrees. Going forward, elucidating the interactions between HFS and GFR may shed new insights into the complexity of GDNF signaling in the nervous system and lead to better design of clinical trials using these signaling pathways to halt disease progression in PD and other neurodegenerative diseases.  相似文献   

6.
We have previously demonstrated that intranigral transplantation of fetal ventral mesencephalic (VM) tissue and nigrostriatal administration of glial cell line-derived neurotrophic factor (GDNF) restores striatal dopamine input in hemiparkinsonian rats. Since it has been found that GDNF is highly expressed in fetal kidney, we examined the possibility that fetal kidney tissue may provide trophic support, similar to GDNF, to an intranigral dopamine (DA) transplant and restore the nigrostriatal pathway. Adult Sprague-Dawley rats were anesthetized and unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Completeness of the lesion was evaluated by measuring amphetamine-induced rotation. One month after 6-OHDA lesioning, fetal VM cells were grafted into the lesioned nigral area followed by transplantation of fetal kidney tissue or vehicle along a pathway from nigra to striatum. Animals receiving these transplants showed a significant decrease both in amphetamine-induced rotation and in postural asymmetry 1 to 3 months after grafting. Immunocytochemical studies demonstrated tyrosine hydroxylase (TH) positive fiber tracts in the lesioned striatum. Control animals that received vehicle injection after the intranigral graft or no transplantation showed no alterations in amphetamine-induced turning and no TH-positive fibers in the lesioned striatum. These results indicate that combinations of fetal nigral and kidney transplants may restore the nigrostriatal DA pathway in Parkinsonian rats. As fetal kidney contains a variety of trophic proteins, it may provide a synergistic admixture to optimally promote DA fiber outgrowth.  相似文献   

7.
We characterized organotypic ventral mesencephalic (VM) cultures derived from embryonic day 12 (E12) mice (CBL57/bL6) in terms of number of dopaminergic neurons, cell soma size and dopamine production in relation to time in vitro and tested the effects of 1-methyl-4-phenylpyridinium (MPP(+)) and glial derived neurotrophic factor (GDNF) to validate this novel culture model. Dopamine production and dopaminergic neuron soma size increased dramatically with time in vitro, whereas the number of dopamine neurons declined by approximately 30% between week 1 and week 2, which was further reduced after week 4. GDNF treatment (100 ng/mL) increased dopaminergic neuron soma size (up to 43%) and DOPAC production (approximately three-fold), but not the number of dopamine neurons in control cultures. One-week-old cultures were more vulnerable to MPP(+), than three-week-old cultures. The EC(50) for dopamine depletion after 2 days exposure and 15 days of recovery were 0.6 and 7 microm, respectively. Both pre-treatment and post-treatment with GDNF are important to obtain maximal protection against MPP(+) toxicity. In one-week-old cultures (5 microm MPP(+), 2 days) GDNF provided potent neuroprotection with dopamine contents reaching control levels and number of tyrosine hydroxylase (TH)(+) cells up to 80% of control, but in three-week-old cultures (10 microm MPP(+), 2 days) the protective potential of GDNF was markedly reduced. Long recovery periods after MPP(+) exposure are required to distinguish between reversible or irreversible toxic and/or trophic effects.  相似文献   

8.
The potential role of glial cell line-derived neurotrophic factor (GDNF) as a trophic molecule for midbrain dopamine neurons was examined using two different approaches: in situ hybridization and intraocular transplantation. The presence of mRNA for GDNF was noted in striatal and ventral limbic dopaminergic target areas in the developing (E20-P7) rat, but not the adult rat. Signals were also found in nondopaminergic areas during maturation, such as the cerebellar anlage, spinal cord, and thalamus. Lesions of the nigrostriatal pathway in neonatal or adult rats, using 6-hydroxydopamine injected into the medial forebrain bundle, did not elicit upregulation of mRNA for GDNF. Grafts of fetal ventral mesencephalon in the anterior eye chamber were exposed to repeated injections of GDNF, which elicited a marked and dose-dependent increase in transplant volume. A low (0.1 μg/eye) and high (1 μg/eye) dose of GDNF both led to a somewhat larger mean area of dopamine fiber outgrowth into host irides. In the transplants, cell counts of tyrosine hydroxylase (TH)-immunoreactive neurons revealed a doubling of cell numbers in the low-dose group and about four times as many cells in the high-GDNF-dose group compared to controls. Moreover, the density of TH-immunoreactive nerve fibers was markedly and significantly higher in transplants treated with the high GDNF dose. Since the volumes of these transplants were also larger, the total amount of both TH-positive cells and TH-positive nerve fibers was many-fold greater in the high-GDNF group than that in the controls. Taken together, these data support the concept that GDNF functions as a dopaminotrophic factor in vivo.  相似文献   

9.
The objective was to analyze functional effects of the combination of GDNF and TGF-β1 in the retrograde model of Parkinsonism in rats, based on the intrastriatal infusion of 6-hydroxydopamine, which leads to protracted and progressive cell death in the substantia nigra. Hemiparkinsonian rats were implanted with osmotic minipumps 2 months after striatal lesion, pumps delivering GDNF alone (10 ng/day), TGF-β1 alone (2 ng/day), or a GDNF and TGF-β1 combination. The findings confirmed that GDNF alone has potent dopaminotrophic effects but they also revealed, for the first time, that GDNF and TGF-β1 co-infusion led to stronger trophic effects relative to the infusion of GDNF alone. TGF-β1 allowed further reducing dopamine receptor hypersensitivity, and potentiated GDNF-mediated effects. This cooperation could be accounted for by the recruitment of GFRα1 on striatal membranes, and by enhanced expression and activation of TH through augmented pSer31TH and pSer40TH. Co-infusion induced striatal sprouting, as revealed by augmentation of p21-Arc, stathmin, and synaptophysin, and led to a reliable recovery of phenotypic expression of TH in surviving nigral neurons. Functional recovery and improvement of TH signal in the nigrostriatal system were long-lasting and sustained, remaining after cessation of trophic infusion.  相似文献   

10.
Glial cell-line derived neurotrophic factor (GDNF) is a neurotrophic factor known to promote neuronal survival of dopaminergic neurons in the embryonic midbrain as well as contribute to carcinogenesis in many cancers. Its ubiquitous presence in the central nervous system suggests a role in the mitogenesis of high-grade astrocytoma. GDNF is overexpressed in glioblastoma cell lines and human gliomas. GFRα1b is the predominant spliced receptor isoform in human gliomas and RET9 is the predominant co-receptor. Significantly there is differential overexpression of the GFRα1b spliced isoform compared to the GFRα1a spliced variant. Pre-treatment of glioblastoma cell lines with GDNF but not the alternative ligand neurturin, promoted mitogenic behaviour and conferred chemoresistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Signaling mapping of BCNU and GDNF suggest that the ability of GDNF to promote Akt activity and inhibit JNK activity may contribute to the increased cellular survival after BCNU chemotherapy.  相似文献   

11.
After the destruction of the noradrenergic ascending pathways, the localization of frontal cortical fields receiving fibers from the dopaminergic mesocortical system has been studied in rats, using a glyoxylic-paraformaldehyde method. The dopaminergic innervation was distributed in two main areas. The area of highest density was a medial field which spread in the medial cortex anterior and dorsal to the genu of the corpus callosum. It did not reach the shoulder region except in the foremost part of the frontal lobe where dopaminergic fibers were scattered in the whole cortex, including the molecular layer. A deep sulcal field was situated between the dorsal bank of the rhinal sulcus and the lateral cortex above it. In addition, a moderately dense band of dopaminergic fibers was observed between the corpus callosum and the anterior commissura, beside the accumbens nucleus. Similar data were obtained with dopamine uptake experiments on reserpine-treated but otherwise normal animals. The frontal areas receiving dopaminergic innervation coincide strikingly with the 'prefrontal cortex' as defined by neuroanatomical studies, which is assumed to be more or less equivalent to the prefrontal cortex of primates and derives direct projections from the amygdala. The functional implications of these findings are discussed.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) has potent trophic action on fetal dopaminergic neurons. We have used a double immunocytochemical approach with antibodies that recognize GDNF and tyroxine hydroxylase (TH) or the phosphoprotein DARPP-32, to study the developmental pattern of their interactions in the rat striatum and in intrastriatal striatal transplants. Postnatally, at one day and also at 1 week, GDNF showed a patchy distribution in the striatum, together with a high level of expression in the lateral striatal border, similar to that observed for the striatal marker DARPP-32 and also for TH. In the adult striatum, there was diffuse, weak immunopositivity for GDNF, together with widespread expression of DARPP-32-positive neurons and TH-immunoreactive (TH-ir) fibers. In 1-week-old intrastriatal striatal transplants, there were some GDNF immunopositive patches within the grafts and although there was not an abundance of TH-positive fibers, the ones that were seen were located in GDNF-positive areas. This was clearly evident in 2-week-old transplants, where TH-ir fibers appeared selectively concentrated in GDNF-positive patches. This pattern was repeated in 3-week-old grafts. In co-transplants of mesencephalic and striatal fetal tissue (in a proportion of 1:4), TH-ir somata were located mainly at the borders of areas that were more strongly immunostained for GDNF, and TH-ir fibers were also abundant in these areas and were found in smaller numbers in regions that were weakly positive for GDNF. These results demonstrate that GDNF-ir is coincident with that for TH and DARPP-32, and suggest that GDNF release by fetal striatal neurons both in normal development and in developing striatal grafts may have not only a trophic but also a tropic influence on TH-ir fibers and may be one of the factors that regulate dopaminergic innervation of the striatum.  相似文献   

13.
The cuprizone model is a suitable animal model of de- and remyelination secondary to toxin-induced oligodendrogliopathy. From a pharmaceutical point of view, the cuprizone model is a valuable tool to study the potency of compounds which interfere with toxin-induced oligodendrocyte cell death or boost/inhibit remyelinating pathways and processes. The aim of this study was to analyze the vulnerability of neighboring white mater tracts (i.e., the fornix and cingulum) next to the midline of the corpus callosum which is the region of interest of most studies using this model. Male mice were fed cuprizone for various time periods. Different white matter areas were analyzed for myelin (anti-PLP), microglia (anti-IBA1), and astrocyte (anti-GFAP) responses by means of immunohistochemistry. Furthermore, Luxol fast blue–periodic acid Schiff stains were performed to validate loss of myelin-reactive fibers in the different regions. Cuprizone induced profound demyelination of the midline of the corpus callosum and medial parts of the cingulum that was paralleled by a significant astrocyte and microglia response. In contrast, lateral parts of the corpus callosum and the cingulum, as well as the fornix region which is just beneath the midline of the corpus callosum appeared to be resistant to cuprizone exposure. Furthermore, resistant areas displayed reduced astrogliosis and microgliosis. This study clearly demonstrates that neighboring white matter tracts display distinct vulnerability to toxin-induced demyelination. This important finding has direct relevance for evaluation strategies in this frequently used animal model for multiple sclerosis.  相似文献   

14.
In many vertebrate and invertebrate systems, pioneering axons play a crucial role in establishing large axon tracts. Previous studies have addressed whether the first axons to cross the midline to from the corpus callosum arise from neurons in either the cingulate cortex (Koester and O'Leary [1994] J. Neurosci. 11:6608-6620) or the rostrolateral neocortex (Ozaki and Wahlsten [1998] J. Comp. Neurol. 400:197-206). However, these studies have not provided a consensus on which populations pioneer the corpus callosum. We have found that neurons within the cingulate cortex project axons that cross the midline and enter the contralateral hemisphere at E15.5. By using different carbocyanine dyes injected into either the cingulate cortex or the neocortex of the same brain, we found that cingulate axons crossed the midline before neocortical axons and projected into the contralateral cortex. Furthermore, the first neocortical axons to reach the midline crossed within the tract formed by these cingulate callosal axons, and appeared to fasciculate with them as they crossed the midline. These data indicate that axons from the cingulate cortex might pioneer a pathway for later arriving neocortical axons that form the corpus callosum. We also found that a small number of cingulate axons project to the septum as well as to the ipsilateral hippocampus via the fornix. In addition, we found that neurons in the cingulate cortex projected laterally to the rostrolateral neocortex at least 1 day before the neocortical axons reach the midline. Because the rostrolateral neocortex is the first neocortical region to develop, it sends the first neocortical axons to the midline to form the corpus callosum. We postulate that, together, both laterally and medially projecting cingulate axons may pioneer a path for the medially directed neocortical axons, thus helping to guide these axons toward and across the midline during the formation of the corpus callosum.  相似文献   

15.
目的研究神经细胞黏附分子(neural cell adhesion molecule,NCAM)在胶质细胞系源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)保护帕金森(Parkinson's disease,PD)模型大鼠受损多巴胺(dopamine,DA)能神经元中的作用。方法右侧纹状体内立体定位注射6-羟多巴胺(6-OHDA)制备早期PD模型,而后分为4组:对照组(同侧黑质内注射PBS)、NCAM组(同侧黑质内仅注射anti-NCAM抗体)、GDNF组(同侧黑质内注射GDNF)、NCAM阻断组(同侧黑质内注射anti-NCAM抗体30min后注射GDNF),采用免疫组织化学染色技术和免疫印迹技术,观察各组酪氨酸羟化酶(tyrosine hydroxylase,TH)的表达变化。结果GDNF组黑质致密部TH阳性神经元数目及表达的量明显多于PBS组,差别有统计学意义;NCAM阻断组与GDNF组相比,该处TH阳性神经元数目及表达的量明显减少,差别有统计学意义。结论NCAM参与了GDNF保护DA能神经元的作用。  相似文献   

16.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to protect and repair midbrain dopamine neurons in vivo using animal models created with neurotoxins. The weaver mouse (wv/wv) has natural and spontaneous midbrain dopaminergic cell death which gives a unique opportunity to examine the effects of GDNF. The present study was designed to investigate a possible neuroprotective role by GDNF for midbrain dopamine neurons in the wv/wv. Weaver pups were given 1 microl injections on postnatal day 1. The wv/wv placebo group received a single unilateral injection into the right lateral ventricle of phosphate buffered saline (PBS) while the GDNF treated wv/wv mice received either 1.0 microg/microl or 10.0 microg/microl GDNF in PBS. All mice were sacrificed on postnatal day 20 and their brains were processed for tyrosine hydoxylase (TH) immunocytochemistry. When compared to the placebo group, the 1 microg GDNF group showed significantly less cell death on the injection side, but the contralateral side showed no significant sparing of TH neurons. The combined counts from both sides show significantly more TH staining neurons in the 1 microg GDNF group compared to placebo. When compared to placebo-injected controls, the 10 microg GDNF treated group showed significantly more TH staining neurons on the injected side, contralateral side, and combined. The results demonstrate that GDNF does protect weaver dopaminergic midbrain neurons from the lethal action of the weaver gene and the effect is positively correlated to dosage.  相似文献   

17.
To study the role of the corpus callosum (CC) in midline binocular integration, the effects of late callosotomy and congenital CC agenesis on the ability to perceive dichoptic plaid motion was assessed. Coherent motion was well perceived at all locations in the visual field under dioptic viewing but not along the vertical meridian (VM) when the components were dichoptically presented. This deficit was totally abolished in the agenesis subject and reduced in the callosotomized individual when stimulus size was increased beyond the VM. Electrophysiological correlates were also examined by recording visual evoked potentials and these showed that the P1/N2 components were abnormal for small dichoptic stimuli presented on the midline. These findings attest to the importance of the contribution of CC to midline binocular integration and the effects of cerebral plasticity.  相似文献   

18.
Rats were given unilateral 6-hydroxydopamine (6-OHDA) lesions and subsequently received transplants of fetal ventral mesencephalic tissue into the denervated striatum. Four weeks later transplanted animals were tested for graft-mediated reduction of amphetamine-induced rotational behavior. Subsequently, transplanted animals received an intrastriatal injection of either GDNF (10 microg) or citrate buffer into a site lateral to the transplant, and then 6 h later received an injection of either 4.0 microg of 6-OHDA, 8.0 microg of 6-OHDA, or vehicle using the same stereotaxic coordinates that were used for the GDNF/citrate buffer injection. Animals were re-tested for amphetamine-induced rotational behavior 2 weeks later. Histological analysis revealed a significant reduction in the number of cell bodies immunostained for tyrosine hydroxylase (TH+) within the transplant for those animals pretreated with an intrastriatal injection of citrate buffer and subsequently given either dose of 6-OHDA. Transplanted animals pretreated with GDNF and subsequently administered 8.0 microg of 6-OHDA showed a significant reduction of TH+ neurons within the transplant compared to controls, however TH+ cell counts for this group remained significantly higher than the TH+ cell counts for the group of animals receiving the same dose of 6-OHDA but pretreated with citrate buffer. GDNF pretreatment completely protected TH+ cell bodies against 4.0 microg of 6-OHDA. Rotational scores indicated that GDNF provided only partial protection against 6-OHDA neurotoxicity in terms of transplant function. For both groups of transplanted animals receiving GDNF pretreatment and 6-OHDA injections, amphetamine-induced rotational scores dropped below the scores for animals pretreated with citrate buffer but remained significantly higher than the scores for transplanted animals that were not injected with 6-OHDA. Both histological and behavioral measures indicate GDNF partially protects integrated transplants against neurotoxic insult.  相似文献   

19.
Glial cell line-derived neurotrophic factor (GDNF) promotes survival of mesencephalic dopaminergic neurons in vitro and when injected locally into the brains of lesioned adult animals. Here, we show that GDNF (3 μg per day and higher) can promote the survival of all (retrogradely labeled) axotomized nigrostriatal dopaminergic neurons of adult rats when continuously infused for 2 weeks close to the substantia nigra, compared to only ∼30% survival with control infusions. Based on our previous observations, GDNF was as potent as ciliary neurotrophic factor and neurotrophin-4 and approximately five to ten times more potent than brain-derived neurotrophic factor and was most effective in promoting survival. GDNF prevented neuronal death induced by 6-hydroxydopamine to a lesser extent than after axotomy. GDNF treatments begun 1 week after axotomy could maintain those neurons that had not yet died. When a 2 week GDNF treatment was interrupted, most of the GDNF-rescued neurons died over the following 2 weeks. This suggests that longer trophic factor treatments or nigrostriatal connections are needed to achieve permanent survival. Measurements of tyrosine hydroxylase (TH) immunoreactivity of the rescued neuronal cell bodies suggest that GDNF cannot prevent the lesion-induced loss of this rate-limiting enzyme for dopamine synthesis. In fact, GDNF induced a decrease in TH in normal animals, suggesting an active down-regulation of TH synthesis. Levels of TH immunoreactivity were recovered between 7 and 14 days after withdrawal of a 2 week GDNF infusion, in the neurons that survived axotomy. These results may have implications for developing new treatment strategies for Parkinson's disease. J. Comp. Neurol. 388:484–494, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Previous studies have shown that brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) can enhance the survival of dopaminergic neurons in the ventral mesencephalon (VM). Here we compared several non-survival functions of the two factors in VM neurons in culture. We found that both BDNF and GDNF elicited an increase in the depolarization-induced release of dopamine, but had no effect on GABA release, in the VM cultures. BDNF, but not GDNF, significantly enhanced the expression of the calcium binding protein calbindin and synaptic protein SNAP25. In contrast, treatment of the cultures with GDNF, but not BDNF, elicited a marked fasciculation of the processes of the VM neurons. Thus, although both act on VM neurons, BDNF and GDNF have distinct functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号