首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, the circadian timing system drives rhythms of physiology and behaviour, including the daily rhythms of feeding and activity. The timing system coordinates temporal variation in the biochemical landscape with changes in nutrient intake in order to optimise energy balance and maintain metabolic homeostasis. Circadian disruption (e.g. as a result of shift work or jet lag) can disturb this continuity and increase the risk of cardiometabolic disease. Obesity and metabolic disease can also disturb the timing and amplitude of the clock in multiple organ systems, further exacerbating disease progression. As our understanding of the synergy between the timing system and metabolism has grown, an interest has emerged in the development of novel clock-targeting pharmaceuticals or nutraceuticals for the treatment of metabolic dysfunction. Recently, the pineal hormone melatonin has received some attention as a potential chronotherapeutic drug for metabolic disease. Melatonin is well known for its sleep-promoting effects and putative activity as a chronobiotic drug, stimulating coordination of biochemical oscillations through targeting the internal timing system. Melatonin affects the insulin secretory activity of the pancreatic beta cell, hepatic glucose metabolism and insulin sensitivity. Individuals with type 2 diabetes mellitus have lower night-time serum melatonin levels and increased risk of comorbid sleep disturbances compared with healthy individuals. Further, reduced melatonin levels, and mutations and/or genetic polymorphisms of the melatonin receptors are associated with an increased risk of developing type 2 diabetes. Herein we review our understanding of molecular clock control of glucose homeostasis, detail the influence of circadian disruption on glucose metabolism in critical peripheral tissues, explore the contribution of melatonin signalling to the aetiology of type 2 diabetes, and discuss the pros and cons of melatonin chronopharmacotherapy in disease management.  相似文献   

2.
Each year millions of travelers undertake long distance flights over one or more continents. These multiple time zone flights produce a constellation of symptoms known as jet lag. Familiar to almost every intercontinental traveler is the experience of fatigue upon arrival in a new time zone, but almost as problematic are a number of other jet lag symptoms. These include reduced alertness, nighttime insomnia, loss of appetite, depressed mood, poor psychomotor coordination and reduced cognitive skills, all symptoms which are closely affected by both the length and direction of travel. The most important jet lag symptoms are due to disruptions to the body's sleep/wake cycle. Clinical and pathophysiological studies also indicate that jet lag can exacerbate existing affective disorders. It has been suggested that dysregulation of melatonin secretion and occurrence of circadian rhythm disturbances may be the common links which underlie jet lag and affective disorders. Largely because of its regulatory effects on the circadian system, melatonin has proven to be highly effective for treating the range of symptoms that accompany transmeridian air travel. Additionally, it has been found to be of value in treating mood disorders like seasonal affective disorder. Melatonin acts on MT(1) and MT(2) melatonin receptors located in the hypothalamic suprachiasmatic nuclei, the site of the body's master circadian clock. Melatonin resets disturbed circadian rhythms and promotes sleep in jet lag and other circadian rhythm sleep disorders, including delayed sleep phase syndrome and shift-work disorder. Although post-flight melatonin administration works efficiently in transmeridian flights across less than 7-8 times zones, in the case longer distances, melatonin should be given by 2-3 days in advance to the flight. To deal with the unwanted side effects which usually accompany this pre-departure treatment (acute soporific and sedative effects in times that may not be wanted), the suppression of circadian rhythmicity by covering symmetrically the phase delay and the phase advance portions of the phase response curve for light, together with the administration of melatonin at local bedtime to resynchronize the circadian oscillator, have been proposed. The current view that sleep loss is a major cause of jet lag has focused interest on two recently developed pharmacological agents. Ramelteon and agomelatine are melatonin receptor agonists which, compared to melatonin itself, have a longer half-life and greater affinity for melatonin receptors and consequently are thought to hold promise for treating a variety of circadian disruptions.  相似文献   

3.
The circadian clock drives a number of metabolic processes including energy intake, storage and utilization coupled with the sleep/wake cycles. Globally, the increasing prevalence of type 2 diabetes (T2DM) has become a significant international public health concern. In view of the heavy societal burden caused by diabetes, and further, to reduce its growing incidence, it is clearly essential to understand the causes of this disease and to devise more effective strategies for its treatment. Although many factors cause T2DM, this article centers on the role of circadian regulation of metabolism. The correlation between the increased occurrence of T2DM and the ubiquity of modern social pressures such as 24/7 lifestyles as well as nocturnal lighting conditions point strongly to the hypothesis that malfunctioning of circadian controls may be involved in the etiology of the illness. Nocturnal light exposure, unusual timing of food, irregular sleep/wake schedules and traveling between different time zones are some of the factors responsible for improper entrainment of the clock. Recent reports have proposed that strengthening of circadian clock functioning and proper timing of food intake could stabilize glucose homeostasis. This strategy thus represents a chronotherapeutic option for non-pharmaceutical intervention in treating T2DM patients.  相似文献   

4.
Complementary and alternative medicines (CAM) are frequently used for the treatment of sleep disorders, but in many cases patients do not discuss these therapies directly with their health care provider. There is a growing body of well-designed clinical trials using CAM that have shown the following: (1) Melatonin is an effective agent for the treatment of circadian phase disorders that affect sleep; however, the role of melatonin in the treatment of primary or secondary insomnia is less well established. (2) Valerian has shown a benefit in some, but not all clinical trials. (3) Several other modalities, such as Tai Chi, acupuncture, acupressure, yoga, and meditation have improved sleep parameters in a limited number of early trials. Future work examining CAM has the potential to significantly add to our treatment options for sleep disorders in older adults.  相似文献   

5.
Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system in which the immune system plays a central role. In particular, effector populations such as T helper (Th) 1, Th9, Th17, and Th22 cells are involved in disease development, whereas T regulatory cells (Tregs) are associated with the resolution of the disease. Melatonin levels are impaired in patients with MS, and exogenous melatonin ameliorates the disease in MS animal models by modulating the Th1/Th17/Treg responses and also improves quality of life and several symptoms in patients with MS. However, no study has examined melatonin's effect on T cells from relapsing‐remitting MS (RR‐MS) patients. Therefore, the objectives of the present study were to evaluate the effects of the in vitro administration of melatonin to peripheral blood mononuclear cells (PBMCs) from 64 RR‐MS patients and 64 sex‐ and age‐matched healthy subjects on Th1, Th9, Th17, Th22, and Treg responses and to analyze the expression of the melatonin effector/receptor system in these cells. Melatonin decreased Th1 and Th22 responses in patients, whereas it did not affect the Th17 and Treg subsets. Melatonin also promoted skewing toward a more protective cytokine microenvironment, as shown by an increased anti‐inflammatory/Th1 ratio. Furthermore, for the first time, we describe the overexpression of the melatonin effector/receptor system in PBMCs from patients with MS; this alteration might be relevant to the disease because acetylserotonin O‐methyltransferase expression significantly correlates with disease progression and T effector/regulatory responses in patients. Therefore, our data suggest that melatonin may be an effective treatment for MS.  相似文献   

6.
Melatonin in relation to physiology in adult humans   总被引:11,自引:0,他引:11  
Abstract: The role exerted by melatonin in human physiology has not been completely ascertained. Melatonin levels have been measured in different physiopathological conditions, but the effects induced by melatonin administration or withdrawal have been tested only recently. Some effects have been clearly documented. Melatonin has hypothermic properties, and its nocturnal secretion generates about 40% of the amplitude of the circadian body temperature rhythm. Melatonin has sleep inducing properties, and exerts important activities in the regulation of circadian rhythms. Melatonin is capable of phase shifting human circadian rhythms, of entraining free-running circadian rhythms, and of antagonizing phase shifts induced by nighttime exposure to light. Its effect on human reproduction is not completely clear, but stimulatory effects on gonadotropin secretion have been reported in the follicular phase of the menstrual cycle. Direct actions on ovarian cells and spermatozoa have been also documented. Beside these, new important actions for melatonin may be proved. Melatonin may exert protective effects on the cardiovascular system, by reducing the risk of atherosclerosis and hypertension, and may influence immune responses. Finally, by acting as an antioxidant, melatonin could be important in slowing the processes of ageing.  相似文献   

7.
OBJECTIVES: To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. SETTING: The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. SUBJECTS: We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. MAIN OUTCOME MEASURES: Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. RESULTS: In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. CONCLUSIONS: Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.  相似文献   

8.
Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh‐performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6‐sulfatoxymelatonin excretion. Additionally, high‐mean‐glycemia type 1 diabetes patients presented lower 6‐sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.  相似文献   

9.
Restless legs syndrome (RLS) and periodic limb movements of sleep (PLMS) are common disorders seen in sleep disorder centers. Although RLS in universally thought to cause daytime sleepiness, the role of PLMS in causing sleepiness (or any symptom!) has been more controversial. Recent publications have show that PLMS do not cause either subjective or objective sleepiness, but may be a marker for respiratory effort related arousals. In regards to patients with end-stage renal disease, PLMS may mark mortality. In this same group of patients, gabapentin and normalization of hematocrit may be effective therapies for RLS/PLMS. Melatonin may prove to be an alternative therapy for PLMS.  相似文献   

10.
Genome-wide association studies have detected an association between type 2 diabetes risk and a non-coding SNP located in MTNR1B, the gene encoding melatonin receptor 2 (MT2). Melatonin regulates circadian rhythms and sleep and associates with metabolic disorders. However, the mechanisms underlying these actions are still unclear. Functional genomic, animal and clinical studies have not reached the same conclusions: while some studies have reported that decreased melatonin signalling increases type 2 diabetes risk, others have found the opposite. In this commentary, we have tried to provide an explanation for these contradictions and we suggest how the community may progress to reach a unified picture of the effect of melatonin and its signalling on type 2 diabetes.  相似文献   

11.
This paper reviews melatonin as an overlooked factor in the developmental etiology and maintenance of schizophrenia; the neuroimmune and oxidative pathophysiology of schizophrenia; specific symptoms in schizophrenia, including sleep disturbance; circadian rhythms; and side effects of antipsychotics, including tardive dyskinesia and metabolic syndrome. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this review using keywords: schizophrenia, psychosis, tardive dyskinesia, antipsychotics, metabolic syndrome, drug side effects and melatonin. Articles were selected on the basis of relevance to the etiology, course and treatment of schizophrenia. Melatonin levels and melatonin circadian rhythm are significantly decreased in schizophrenic patients. The adjunctive use of melatonin in schizophrenia may augment the efficacy of antipsychotics through its anti-inflammatory and antioxidative effects. Further, melatonin would be expected to improve sleep disorders in schizophrenia and side effects of anti-psychotics, such as tardive dyskinesia, metaboilic syndrome and hypertension. It is proposed that melatonin also impacts on the tryptophan catabolic pathway via its effect on stress response and cortisol secretion, thereby impacting on cortex associated cognition, amygdala associated affect and striatal motivational processing. The secretion of melatonin is decreased in schizophrenia, contributing to its etiology, pathophysiology and management. Melatonin is likely to have impacts on the metabolic side effects of anti-psychotics that contribute to subsequent decreases in life-expectancy.  相似文献   

12.
The Metabolic Syndrome is a cluster of cardio‐metabolic risk factors and comorbidities conveying high risk of both cardiovascular disease and type 2 diabetes. It is responsible for huge socio‐economic costs with its resulting morbidity and mortality in most countries. The underlying aetiology of this clustering has been the subject of much debate. More recently, significant interest has focussed on the involvement of the circadian system, a major regulator of almost every aspect of human health and metabolism. The Circadian Syndrome has now been implicated in several chronic diseases including type 2 diabetes and cardiovascular disease. There is now increasing evidence connecting disturbances in circadian rhythm with not only the key components of the Metabolic Syndrome but also its main comorbidities including sleep disturbances, depression, steatohepatitis and cognitive dysfunction. Based on this, we now propose that circadian disruption may be an important underlying aetiological factor for the Metabolic Syndrome and we suggest that it be renamed the ‘Circadian Syndrome’. With the increased recognition of the ‘Circadian Syndrome’, circadian medicine, through the timing of exercise, light exposure, food consumption, dispensing of medications and sleep, is likely to play a much greater role in the maintenance of both individual and population health in the future.  相似文献   

13.
Recent data suggest that melatonin may influence human physiology, including the sleep-wake cycle, in a time-dependent manner via the body's internal clock. Rapid-eye-movement (REM) sleep expression is strongly circadian modulated, and the impact of REM sleep on primary brain functions, metabolic processes, and immune system function has become increasingly clear over the past decade. In our study, we evaluated the effects of exogenous melatonin on disturbed REM sleep in humans. Fourteen consecutive outpatients (five women, nine men; mean age, 50 yr) with unselected neuropsychiatric sleep disorders and reduced REM sleep duration (25% or more below age norm according to diagnostic polysomnography) were included in two consecutive, randomized, double-blind, placebo-controlled, parallel design clinical trials. Patients received 3 mg melatonin daily, administered between 2200 and 2300 h for 4 wk. The results of the study show that melatonin was significantly more effective than placebo: patients on melatonin experienced significant increases in REM sleep percentage (baseline/melatonin, 14.7/17.8 vs. baseline/placebo, 14.3/12.0) and improvements in subjective measures of daytime dysfunction as well as clinical global impression score. Melatonin did not shift circadian phase or suppress temperature but did increase REM sleep continuity and promote decline in rectal temperature during sleep. These results were confirmed in patients who received melatonin in the second study (REM sleep percentage baseline/placebo/melatonin, 14.3/12.0/17.9). In patients who received melatonin in the first study and placebo in the second, the above mentioned effects outlasted the period of melatonin administration and diminished only slowly over time (REM sleep percentage baseline/melatonin/placebo, 14.7/17.8/16.2). Our findings show that exogenous melatonin, when administered at the appropriate time, seems to normalize circadian variation in human physiology. It may, therefore, have a strong impact on general health, especially in the elderly and in shift workers.  相似文献   

14.
Abstract:  Cystic fibrosis (CF) is a chronic progressive disorder characterized by repeated episodes of respiratory infection. Impaired sleep is common in CF leading to reduced quality of life. Melatonin, a secretory product of the pineal gland, has an important function in the synchronization of circadian rhythms, including the sleep–wake cycle, and has been shown to possess significant anti-oxidant properties. To evaluate the effects of exogenous melatonin on sleep and inflammation and oxidative stress markers in CF, a randomized double-blind, placebo-controlled study initially involving 20 patients with CF was conducted. One individual failed to conclude the study. All subjects were clinically stable when studied and without recent infectious exacerbation or hospitalization in the last 30 days. Groups were randomized for placebo ( n  = 10; mean age 12.1 ± 6.0) or 3 mg melatonin ( n  = 9; mean age 16.6 ± 8.26) for 21 days. Actigraphy was performed for 6 days before the start of medication and in the third week (days 14–20) of treatment. Isoprostane and nitrite levels were determined in exhaled breath condensate (EBC) at baseline (day 0) and after treatment (day 21). Melatonin improved sleep efficiency ( P  = 0.01) and tended to improve sleep latency ( P  = 0.08). Melatonin reduced EBC nitrite ( P  = 0.01) but not isoprostane. In summary, melatonin administration reduces nitrite levels in EBC and improves sleep measures in clinically stable CF patients. The failure of melatonin to reduce isoprostane levels may have been a result of the low dose of melatonin used as a treatment.  相似文献   

15.
Pineal melatonin regulates circadian rhythms and influences sleep. Melatonin also has protective actions against tissue damage from free-radicals and other toxins. Evidence is presented that this indoleamine is involved in pre- and postnatal brain (and ocular) development and intrauterine growth. In the absence of maternal melatonin, short gestation infants have a prolonged period of melatonin deficiency. Melatonin supplementation, which has a benign safety profile, may help reduce complications in the neonatal period that are associated with short gestation. We believe that this treatment might result in a wide range of health benefits, improved quality of life and reduced healthcare costs.  相似文献   

16.
The effect of chronic disorders on sleep in the elderly   总被引:1,自引:0,他引:1  
Sleep disorders are increasingly common as people age. Along with the numerous physiologic changes that occur with aging, sleep patterns are also altered. Inability to get to sleep, shorter sleep times, and changes in the normal circadian patterns can have an impact on an individual's overall well being. In addition, many common chronic conditions, such as chronic obstructive pulmonary disease, diabetes, dementia, chronic pain, and cancer, that are more common in the elderly, can also have significant effects on sleep and increase the prevalence of insomnia as compared with the general population. This is a result not only of the chronic medical illnesses themselves, but of the psychologic and social factors associated with the disease processes.  相似文献   

17.
Alzheimer's disease. Sleep and sleep/wake patterns   总被引:1,自引:0,他引:1  
Significant changes in sleep/wake patterns, particularly loss of SWS and increased amount and frequency of nighttime wakefulness, apparently occur even at an early stage of the AD process. These disruptions of nighttime sleep increase in magnitude with increasing severity of dementia. While the REM sleep of early stage AD patients is relatively unaffected by the disease process, later stages of AD are marked by significant losses of REM sleep and perhaps more importantly the breakdown of the sleep/wake circadian rhythm with significant amounts of sleep occurring during the day. This daytime sleep is of poor quality however, consisting almost exclusively of stages 1 and 2 sleep and does not compensate for the nighttime losses of SWS and REM sleep experienced by AD patients. These findings clearly support the clinical observations and anecdotal reports of sleep disturbance in AD patients. It is of interest to note that sleep is disrupted quite early in the disease process. In our study of early stage AD patients all were community dwelling and had relatively mild cognitive impairment (average MMS scores of 22.7). Despite this, significant increases in frequency and duration of awakening from sleep and reductions of SWS were observed in these patients. These findings indicate that when a patient is suspected of having AD it may be worthwhile as part of the evaluative and diagnostic process to caution both the patient and the patient's family that they might expect to see significant changes in sleep/wake patterns even though the patient's level of day-to-day functioning may still be high. It is also important to consider warning AD patients' families that as the disease progresses they should expect to see not only a worsening of nocturnal sleep quality but a breakdown of the circadian sleep/wake rhythm and an increase in daytime napping behavior by the patient. Families need to be encouraged to try and minimize the napping behavior of the patient in an effort to consolidate sleep into the night. This may have the effect of somewhat attenuating the amount of nocturnal disruption of sleep that accompanies progression of the disease.  相似文献   

18.
The increased prevalence of type 2 diabetes in the aged has been recognized for a long time. Within the last decades, a growing number of younger subjects and even children are prone to develop type 2 diabetes. In both groups, aged and young, the biological clock, located in the suprachiasmatic nucleus of the hypothalamus (SCN) is malfunctioning as evidenced by disturbed sleep cycles and altered circadian rhythms. While elderly patients have an impaired function of the SCN due to the degeneration of neurons, we propose that in younger subjects the clock loses its "feeling" for internal and external rhythms caused by the modern lifestyle. Sleeping late and less coupled with constant metabolic excess alter both internal and external environmental stimuli to the brain. In response to these alterations, the rhythm of the biological clock is disrupted which may lead to the metabolic syndrome and type 2 diabetes.  相似文献   

19.
The human pineal gland and melatonin in aging and Alzheimer's disease   总被引:16,自引:0,他引:16  
The pineal gland is a central structure in the circadian system which produces melatonin under the control of the central clock, the suprachiasmatic nucleus (SCN). The SCN and the output of the pineal gland, i.e. melatonin, are synchronized to the 24-hr day by environmental light, received by the retina and transmitted to the SCN via the retinohypothalamic tract. Melatonin not only plays an important role in the regulation of circadian rhythms, but also acts as antioxidant and neuroprotector that may be of importance in aging and Alzheimer's disease (AD). Circadian disorders, such as sleep-wake cycle disturbances, are associated with aging, and even more pronounced in AD. Many studies have reported disrupted melatonin production and rhythms in aging and in AD that, as we showed, are taking place as early as in the very first preclinical AD stages (neuropathological Braak stage I-II). Degeneration of the retina-SCN-pineal axis may underlie these changes. Our recent studies indicate that a dysfunction of the sympathetic regulation of pineal melatonin synthesis by the SCN is responsible for melatonin changes during the early AD stages. Reactivation of the circadian system (retina-SCN-pineal pathway) by means of light therapy and melatonin supplementation, to restore the circadian rhythm and to relieve the clinical circadian disturbances, has shown promising positive results.  相似文献   

20.
Aging effects on sleep are important to consider for the practicing pulmonologist due to the increase in prevalence of major respiratory disorders as well as the normal changes that occur in sleep patterns with aging. Typically, aging is associated with decreases in the amount of slow wave sleep and increases in stage 1 and 2 non-rapid eye movement sleep, often attributed to an increased number of spontaneous arousals that occur in the elderly. Elderly individuals tend to go to sleep earlier in the evening and wake earlier due to a phase advance in their normal circadian sleep cycle. Furthermore the development of sleep-related respiratory disorders such as obstructive sleep apnea (OSA) and central sleep apnea or Cheyne-Stokes respiration (CSA-CSR) associated with congestive heart failure (CHF) occur with increasing prevalence in the elderly. The development of such disorders is often of major concern because they are associated with systemic hypertension and cardiovascular disease, metabolic disorders such as diabetes, and impaired neurocognition. The present review reflects the current understanding of the normal changes in sleep patterns and sleep needs with advancing age, in addition to the effect that aging has on the predisposition to and consequences of OSA and CSA-CSR associated with CHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号