首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poorly water-soluble drug candidates often emerge from contemporary drug discovery programs, and present formulators with considerable technical challenges. The absorption of such compounds when presented in the crystalline state to the gastrointestinal tract is typically dissolution rate-limited, and the drugs are typically BCS class II or class IV compounds. Class IV compounds, which have low membrane permeability as well as poor aqueous solubility, are often poor candidates for development, unless the dose is expected to be low. The rate and extent of absorption of class II compounds is highly dependent on the performance of the formulated product. These drugs can be successfully formulated for oral administration, but care needs to be taken with formulation design to ensure consistent bioavailability. Essentially the options available involve either reduction of particle size (of crystalline drug) or formulation of the drug in solution, as an amorphous system or lipid formulation. The performance of amorphous or lipid formulations is dependent on their interaction with the contents of the gastrointestinal tract, therefore, a formulation exercise should involve the use of techniques which can predict the influence of gut physiology. A major consideration is the fate of metastable supersaturated solutions of drug, which are formed typically after dispersion of the formulation and its exposure to gastrointestinal digestion. A better understanding of the factors which affect drug crystallization is required, and the introduction of standardised predictive in vitro tests would be valuable. Although many bioavailability studies have been performed with poorly water-soluble drugs, thus far this research field has lacked a systematic approach. The use of a lipid formulation classification system combined with appropriate in vitro tests will help to establish a database for in vitro-in vivo correlation studies.  相似文献   

2.
An emerging technology subtype that has been adopted by formulators to address low-solubility issues is the supersaturating drug delivery system; this system is based on the "spring" and "parachute" design elements, which have been applied to lipid-based formulations, S(M)EDDS, solid dispersions, nano-based systems, and many others. This broad formulation approach attempts to delicately balance the need of creating intraluminal drug concentrations in excess of its thermodynamic solubility while at the same time providing for sufficient solution stability to allow for useful drug absorption. The conundrum created is that the higher the extent of supersaturation, the lower the physical stability of the metastable solution based on an increased tendency for a solubilized drug to precipitate. Traditional dissolution testing is a touchstone of formulation development based on the need for useful dissolution rates and drug availability. Dissolution testing is likewise important in the development and characterization of enabling and supersaturating drug delivery systems; however, their execution and interpretation are distinct from that associated with conventional dosage forms. The nature of the dissolution assay (sink versus nonsink, apparatus type, and rate and extent of supersaturation) can impact the ability to efficiently use the dissolution data in the configuration of these enabling formulations.  相似文献   

3.
Formulation of medicines for children   总被引:3,自引:1,他引:2       下载免费PDF全文
The development of age-adapted dosage forms and taste-masking of bitter-tasting drugs administered orally for children, are formidable challenges for formulation scientists. Childhood is a period of maturation requiring knowledge of developmental pharmacology to establish dose but the ability of the child to manage different dosage forms and devices also changes. Paediatric formulations must allow accurate administration of the dose to children of widely varying age and weight. Whilst the oral route will be preferred for long term use and the intravenous route for the acutely ill, many of the dosage forms designed for adults, such as oro-dispersible tablets, buccal gels and transdermal patches, would also benefit children if they contained an appropriate paediatric dose. The age at which children can swallow conventional tablets is of great importance for their safety. Liquid medicines are usually recommended for infants and younger dhildren so the ability to mask unpleasant taste with sweeteners and flavours is crucial. More sophisticated formulations such as granules and oro-dispersible tablets may be required but there will be limitations on choice and concentration of excipients. There are many gaps in our knowledge about paediatric formulations and many challenges for the industry if suitable preparations are to be available for all ranges. A CHMP points to consider document is soon to be released. More research and clinical feedback are important because a formulation with poor acceptability may affect compliance, prescribing practice and ultimately commercial viability.  相似文献   

4.
Early formulations are prepared mostly for drug compounds at both discovery and preclinical stages and are used to animals via various routes such as oral and intravenous dosing. They serve the purpose of evaluating these compounds on a broad range of pharmaceutical interests, notably pharmacology (activity/efficacy), pharmacokinetics (PK), and toxicology. It is estimated that approx. 40% of all drug compounds discovered have certain delivery limitations due to poor solubility or poor bioavailability. This brings tremendous challenges to the scientists working in the field of early formulations. This study intends to cover a broad spectrum of early formulations including basic aspect and development aspect. On basic aspect, it summarized early formulation study purpose, objectives, dosing route, animal species, etc. It then evaluated a variety of dosage forms and solubility enhancement approaches including various solutions, suspensions, lipid-based formulations, solid dispersions, etc. On development aspect, this study broadly reviewed literatures and current practice in the field, the issues and challenges. It offered authors' own approaches and strategies including general development schemes for oral and for i.v., recommended excipient use range for oral and for i.v., experimental procedures for vitro serial dilution method, for kinetic solubility, etc. The study also discussed a number of case analyses and emphasized scientific rationales and experimental approaches in each of them. The study concluded with authors' summary and some comments on early formulation practice, thoughts and perspectives on its future trend. The study is a mixture of literature review and investigational research. It provides many useful information, practical procedures, and recommendations. It is expected that the study will fill the void of literature of such kind, and provide direct benefit to everyday practitioners in the field.  相似文献   

5.
Solid dispersion technology represents an enabling approach to formulate poorly water-soluble drugs. While providing for a potentially increased oral bioavailability secondary to an increased drug dissolution rate, amorphous dispersions can be limited by their physical stability. The ability to assess formulation risk in this regard early in development programs can not only help in guiding development strategies but can also point to critical design elements in the configuration of the dosage form. Based on experience with a recently approved solid dispersion-based product, Intelence® (etravirine), a three part strategy is suggested to predict early formulate-ability of these systems. The components include an assessment of the amorphous form, a study of binary drug/carrier cast films and the evaluation of a powder of the drug and polymer processed in a manner relevant to the intended final dosage form. A variety of thermoanalytical, spectroscopic, and spectrophotometric approaches were applied to study the prepared materials. The data suggest a correlation between the glass forming ability and stability of the amorphous drug and the nature of the final formulation. Cast films can provide early information on miscibility and stabilization and assessment of processed powders can help define requirements and identify issues with potential final formulations.  相似文献   

6.
Contrary to the early philosophy of supersaturating formulation design for oral solid dosage forms, current evidence shows that an exceedingly high rate of supersaturation generation could result in a suboptimal in vitro dissolution profile and subsequently could reduce the in vivo oral bioavailability of amorphous solid dispersions. In this commentary, we outline recent research efforts on the specific effects of the rate and extent of supersaturation generation on the overall kinetic solubility profiles of supersaturating formulations. Additional insights into an appropriate definition of sink versus nonsink dissolution conditions and the solubility advantage of amorphous pharmaceuticals are also highlighted. The interplay between dissolution and precipitation kinetics should be carefully considered in designing a suitable supersaturating formulation to best improve the dissolution behavior and oral bioavailability of poorly water-soluble drugs.KEY WORDS: amorphous formulation, kinetic solubility, nonsink dissolution testing, poorly water-soluble drug, supersaturation rate  相似文献   

7.
New chemical entities are required to possess physicochemical characteristics that result in acceptable oral absorption. However, many promising candidates need physicochemical modification or application of special formulation technology. This review discusses strategies for overcoming physicochemical problems during the development at the preformulation and formulation stages with emphasis on overcoming the most typical problem, low solubility. Solubility of active pharmaceutical ingredients can be improved by employing metastable states, salt forms, or cocrystals. Since the usefulness of salt forms is well recognized, it is the normal strategy to select the most suitable salt form through extensive screening in the current developmental study. Promising formulation technologies used to overcome the low solubility problem include liquid-filled capsules, self-emulsifying formulations, solid dispersions, and nanosuspensions. Current knowledge for each formulation is discussed from both theoretical and practical viewpoints, and their advantages and disadvantages are presented.  相似文献   

8.
Although the potential advantages of the amorphous solid state is widely recognized among pharmaceutical researchers, its industrial applications have been mainly limited to freeze-dried injectable formulations where the amorphous form is naturally produced. Applications in oral dosage forms have been limited due, at least in part, to the poor state of knowledge regarding physical properties and stability of amorphous materials. Relaxation behavior is perhaps one of the most important physical characteristics of amorphous materials because relaxation kinetics are closely related to physical and chemical stability. Although recent developments in calorimetry methodology have facilitated detailed characterization of relaxation behavior, some experimental difficulties remain, and quantitative analysis of structural relaxation is still under development. This review focuses on the calorimetric investigation of the structural relaxation of drugs and excipients, and discusses the difficulties in the experimental evaluation of the relaxation time by those methods. We also present an original investigation of the impact of increases in relaxation time during an annealing experiment on the values of relaxation time, tau, and stretched exponential constant, beta, obtained from analysis of the experiment according to the Kohlraush-Williams-Watts kinetic model. Using results from a numerical simulation, we find that the values of tau and beta obtained from the data analysis are too large and too small, respectively, but the value of stretched relaxation time, tau(beta), remains reliable. The time dependence of the relaxation time is likely to play an important role in the non-Arrhenius behavior of pharmaceutical glasses.  相似文献   

9.
BMS-488043 is an HIV-attachment inhibitor that exhibited suboptimal oral bioavailability upon using conventional dosage forms prepared utilizing micronized crystalline drug substance. BMS-488043 is classified as a Biopharmaceutics Classification System (BCS) Class-II compound with a poor aqueous solubility of 0.04 mg/mL and an acceptable permeability of 178 nm/s in the Caco2 cell-line model. Two strategies were evaluated to potentially enhance the oral bioavailability of BMS-488043. The first strategy targeted particle size reduction through nanosizing the crystalline drug substance. The second strategy aimed at altering the drug's physical form by producing an amorphous drug. Both strategies provided an enhancement in oral bioavailability in dogs as compared to a conventional formulation containing the micronized crystalline drug substance. BMS-488043 oral bioavailability enhancement was 5- and 9-folds for nanosizing and amorphous formulation approaches, respectively. The stability of the amorphous coprecipitated drug prepared at different compositions of BMS-488043/polyvinylpyrrolidone (PVP) was evaluated upon exposure to stressed stability conditions of temperature and humidity. The drastic effect of exposure to humidity on conversion of the amorphous drug to crystalline form was observed. Additionally, the dissolution behavior of coprecipitated drug was evaluated under discriminatory conditions of different pH values to optimize the BMS-488043/PVP composition and produce a stabilized, amorphous BMS-488043/PVP (40/60, w/w) spray-dried intermediate (SDI), which was formulated into an oral dosage form for further development and evaluation.  相似文献   

10.
In the recent years, coamorphous systems, containing an active pharmaceutical ingredient (API) and a small molecule coformer have appeared as alternatives to the use of either amorphous solid dispersions containing polymer or cocrystals of API and small molecule coformers, to improve the dissolution and oral bioavailability of poorly soluble crystalline API. This Commentary article considers the relative properties of amorphous solid dispersions and coamorphous systems in terms of methods of preparation; miscibility; glass transition temperature; physical stability; hygroscopicity; and aqueous dissolution. It also considers important questions concerning the fundamental criteria to be used for the proper selection of a small molecule coformer regarding its ability to form either coamorphous or cocrystal systems. Finally, we consider various aspects of product development that are specifically associated with the formulation of commercial coamorphous systems as solid oral dosage forms. These include coformer selection; screening; methods of preparation; preformulation; physical stability; bioavailability; and final formulation. Through such an analysis of coamorphous API-small molecule coformer systems, against the more widely studied API-polymer dispersions and cocrystals, it is believed that the strengths and weaknesses of coamorphous systems can be better understood, leading to more efficient formulation and manufacture of such systems for enhancing oral bioavailability.  相似文献   

11.
Time and resource constraints necessitate increasingly early decision making to accelerate or stop preclinical drug discovery programs. Early discovery drug candidates may be potent inhibitors of new targets, but all too often exhibit poor pharmaceutical and pharmacokinetic properties that limit the in vivo exposure. Low solubility of a drug candidate often leads to poor oral bioavailability and poor dose linearity that creates an issue for efficacy and target safety studies, where high drug exposures are desired. When solubility issues are encountered, enabling formulations are often used to improve the exposure. However, this approach often requires a substantial and lengthy investment to develop the formulation. In our study, two drug candidates with poor aqueous solubility were dosed in rats as simple suspension formulations using a novel tandem dosing strategy, which employs dosing orally in 2.5 h increments up to three times to simulate an oral infusion by avoiding saturation of absorption associated with bolus dosing. These compounds were also dosed using the same suspension formulations and a standard dosing strategy. The resulting in vivo exposures were compared. It was found that this novel tandem dosing strategy significantly improved the in vivo exposures. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3132-3140, 2010  相似文献   

12.
This work summarizes the pharmaceutical evaluation of a preclinical drug candidate with poor physicochemical properties. Compound 1 is a weakly basic, GPR‐119 agonist designated to Biopharmaceutics Classification System Class II because of good permeability in a Caco‐2 cell line model and poor solubility. Compound 1 showed good oral bioavailability from a solution formulation at low doses and oral exposure sufficient for toxicological evaluation at high doses from a nanosuspension of Form A—the only known polymorph of 1 during drug discovery. The identification of the thermodynamically stable polymorph, Form B, during early development adversely affected the bioperformance of the nanosuspension. The poor solubility of Form B resulted in a significant reduction in the oral exposure from a nanosuspension to a level that was insufficient for toxicological evaluation of compound 1. Subsequent to the discovery of Form B, multiple form and formulation engineering strategies were evaluated for their ability to enhance the oral exposure of 1. Formulations based on cocrystals and amorphous solid dispersions showed a statistically significant increase in exposure, sixfold and sevenfold, respectively, over the benchmark formulation, a suspension of Form B. The physicochemical characterization of 1, and the solid form and formulation engineering approaches explored to address the insufficient oral exposure of Form B are discussed along with insights on improving the physicochemical properties of the follow‐on drug candidates in discovery.  相似文献   

13.
Fix  Joseph A. 《Pharmaceutical research》1996,13(12):1760-1764
In spite of significant efforts in academic and commercial laboratories, major breakthroughs in oral peptide and protein formulation have not been achieved. The major barriers to developing oral formulations for peptides and proteins include poor intrinsic permeability, lumenal and cellular enzymatic degradation, rapid clearance, and chemical and conformational stability. Pharmaceutical approaches to address these barriers, which have been successful with traditional, small, organic drug molecules, have not readily translated into effective peptide and protein formulations. The success achieved by Sandoz with cyclosporin formulations remains one clear example of what can be achieved, although it is likely that effective oral formulations for peptides and proteins will remain highly compound specific. Although the challenges are significant, the potential therapeutic benefit remains high, particularly with the increasing identification of potential peptide and protein drug candidates emerging from the biotechnology arena. Successful formulations will most likely require a systematic and careful merger of formulation and design delivery systems which maximize the potential for absorption across the epithelial cell layer.  相似文献   

14.
Despite the fact that a significant percentage of the population is unable to swallow tablets and capsules, these dosage forms continue to be the default standard. These oral formulations fail many patients, especially children, because of large tablet or capsule size, poor palatability, and lack of correct dosage strength. The clinical result is often lack of adherence and therapeutic failure. The American Association of Pharmaceutical Scientists formed a Pediatric Formulations Task Force, consisting of members with various areas of expertise including pediatrics, formulation development, clinical pharmacology, and regulatory science, in order to identify pediatric, manufacturing, and regulatory issues and areas of needed research and regulatory guidance. Dosage form and palatability standards for all pediatric ages, relative bioavailability requirements, and small batch manufacturing capabilities and creation of a viable economic model were identified as particular needs. This assessment is considered an important first step for a task force seeking creative approaches to providing more appropriate oral formulations for children.  相似文献   

15.
《Drug delivery》2013,20(6):877-884
Abstract

The objective of this paper is to introduce some strategic guidance to a rational formulation strategy of new molecules as oral dosage forms, based on a sound scientific understanding of factors determining the oral bioavailability. The critical implication of permeability and solubility is discussed along with the efficient dose of the drug. The concept of dose-solubility number is introduced as a tool for chemists to assess the develop-ability of different molecules very early during discovery stage. Based on this understanding, a rational formulation strategy for preclinical and early clinical phases is provided. The technical considerations and limitations of different formulation technologies are discussed and illustrated via concrete examples. This approach has the advantage of streamlining the formulation process in order to avoid delaying the development of new drugs due to formulation related issues.  相似文献   

16.
The existence of a new physical form of a drug substance with a bioavailability significantly different from that of the original form can have serious effects on the therapeutic levels of the dosage form. The goal of any dosage form is to ensure reproducible safe exposure during preclinical and clinical studies, and ultimately for the marketed product. This review discusses the different physical forms of a drug substance, including amorphous forms, polymorphs, hydrates and salts, and the importance of characterizing the form of the drug substance during development. A definition of the different forms is provided, and enantiotropism, monotropism and polyamorphicity are discussed. This article provides examples of cases in which changes in the physical form resulted in changes in stability and/or bioavailability of the product. The review also discusses some of the methods used to quantify the physical form of a drug substance in a product.  相似文献   

17.
Drug discovery lead optimization teams face many diverse challenges in the search for drug development candidates. This includes understanding the toxicology profile of a candidate, and some strategies call for in vivo preclinical safety studies to be moved increasingly earlier in the discovery phase to increase the likelihood of success in development. One of the final hurdles in these pursuits is achieving adequate exposure to support safety margins for human clinical trials. In this article, we describe several strategies on early toxicology studies along with various enabling formulation methods that can be employed to achieve optimal oral absorption. These two elements of research together can significantly increase the speed preclinical drug candidates can move through development, and the overall probability of success in identifying viable new drugs.  相似文献   

18.
Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.  相似文献   

19.
Though there is an advantage in using the higher solubility amorphous state in cases where low solubility limits absorption, physical instability poses a significant barrier limiting its use in solid oral dosage forms. Unlike chemical instability, where useful accelerated stability testing protocols are common, no methodology has been established to predict physical instability. Therefore, an understanding of the factors affecting crystallization from the amorphous state is not only important from a scientific perspective but also has practical applications. Crystallization from the amorphous matrix has been linked to the molecular mobility in the amorphous matrix and recent research has focused on developing the link between these two fundamental properties of glass forming materials. Although researchers have been actively working in this area for some time, there is no current review describing the present state of understanding of crystallization from the amorphous state. The purpose of this review therefore is to examine the roles of different factors such as molecular mobility, thermodynamic factors, and the implication of different processing condition, in crystallization from the amorphous state. We believe an increased understanding of the relative contributions of molecular mobility and processing conditions are vital to increased usage of the amorphous state in solid oral dosage forms.  相似文献   

20.
The solid-state characteristics play an important role during the development and manufacture of medicinal products, because they may influence the effectiveness, stability as well as the processibility of pharmaceutical systems. The amorphous state is critical in determining the solid-state physical and chemical properties of many pharmaceutical dosage forms. The main reason of the growing interest toward amorphous materials is the need to improve the bioavailability of compounds with poor aqueous solubility. However the disordered structure of higher energy state assures increased solubility and faster dissolution rate, the amorphous state is a non-equilibrium state. Materials often go through spontaneous transformations towards lower energy equilibrium states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号