首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dental materials》2014,30(8):876-883
ObjectiveThe aim of this study was to evaluate the influence of in vitro pulpal pressure and cavity type on the tooth–composite bonding interface by means of acoustic emission (AE) analysis.MethodsClasses I and II cavities on extracted third molars were prepared and assigned to four groups of seven teeth each: (1) direct composite restoration without simulated pulpal pressure (SPP) in class I cavity, (2) direct composite restoration with SPP in class I cavity, (3) direct composite restoration without SPP in class II cavity, (4) direct composite restoration with SPP in class II cavity. The teeth were restored with Filtek Z250 composite and Adper Scotchbond Multi-Purpose adhesive system (3M ESPE, St. Paul, MN, USA). AE events were recorded for 2000 s during light-curing. Groups 2 and 4 were subjected to 20 cm H2O hydrostatic pressure throughout the procedures. The data were analyzed with two-way ANOVA. After the AE test, teeth were sectioned longitudinally in mesio-distal direction, the tooth–composite interface was examined using SEM.ResultsSPP in Groups 2 (4.57 ± 1.40) and 4 (3.43 ± 1.13) yielded significantly higher AE events number than those of Groups 1 (3.43 ± 1.51) and 3 (1.71 ± 0.95) where the SPP was not applied (p < 0.05). The number of AE events of class I cavity in Groups 1 and 2 were significantly higher than those of class II cavity in Groups 3 and 4 (p < 0.05). SEM examination showed that all groups had intact enamel–composite interface, while micro-gaps were observed at the dentin–composite interface, mainly at the pulpal floor of the cavity. The class I cavities with SPP in Group 2 showed wider gaps more frequently than class II cavities without SPP in Group 3.SignificanceThe SPP and class I cavity with high C-factor triggered more AE events, confirming its negative impact on the bonding interface.  相似文献   

2.
《Dental materials》2020,36(10):e309-e315
PurposeTo determine the curing potential and color stability of resin-based luting materials for aesthetic restorations.Material and MethodsFour resin-based luting agents were tested: traditional dual-activated resin cement (RelyX ARC, ARC), amine-free dual-activated resin cement (RelyX Ultimate, ULT), light-activated resin cement (RelyX Veneer, VEN), and pre-heated restorative resin composite (Filtek Supreme, PHC). Degree of C = C conversion was determined by infrared spectroscopy (n = 3) with direct light exposure or with interposition of 1.5-mm-thick ceramic (e.max Press HT) between the luting material and light. The curing potential considered the ratio between these two scenarios. Color difference (n = 6) was determined by CIELAB (ΔEab) and CIEDE2000 (ΔE00) methods, by spectrophotometer measurements made 24 h after photoactivation and 90 days after storage in water. Data was submitted to ANOVA and Tukey’s test (α = 0.05).ResultsThe luting agents affected both conversion and color stability. With ceramic, ARC produced the highest conversion among the tested groups (75 ± 1%) and the pre-heated composite (PHC) the lowest one (51 ± 3%), but the curing potential was similar for all materials. ULT produced lower ΔEab than ARC. PHC presented the lowest color difference when considered both CIELAB and CIE2000 methods (ΔEab 2.1 ± 0.4; ΔE00 1.6 ± 0.2).SignificanceAll luting strategies presented high curing potential. Amine-free dual-activated material was able to reduce color difference than that formulated with the amine component. Pre-heated composite produced the least color variation after storage.  相似文献   

3.
ObjectivePhosphoryl oligosaccharides of calcium (POs-Ca) are highly soluble calcium source made from potato starch. The aim of this study was to investigate the optimal concentrations of POs-Ca for the remineralization of subsurface enamel lesions in vitro.DesignDemineralized bovine enamel slabs (n = 5) were remineralized in vitro for 24 h at 37 °C with artificial saliva (AS) containing 0–0.74% POs-Ca to adjust the Ca/P ratio to 0.4–3.0, then sectioned and analysed by transversal microradiography (TMR). The data were analysed by Scheffe's post hoc test. The Ca/P ratio with most remineralization was used to investigate the effect of calcium on enamel remineralization (n = 11). The demineralized slabs were treated with AS with calcium-chloride- (CaCl2-) or POs-Ca with an identical calcium content, and sectioned for TMR and wide-angle X-ray diffraction (WAXRD) analyses to evaluate the local changes in hydroxyapatite (HAp) crystal content. The data were analysed using the Mann–Whitney U-test.ResultsThe highest mineral recovery rate resulted from addition of POs-Ca to adjust the Ca/P to 1.67. At this ratio, the mineral recovery rate for AS containing POs-Ca (24.2 ± 7.4%) was significantly higher than that for AS containing CaCl2 (12.5 ± 11.3%) (mean ± SD, p < 0.05). The recovery rate of HAp crystallites for AS containing POs-Ca (35.7 ± 10.9%) was also significantly higher than that for AS containing CaCl2 (23.1 ± 13.5%) (p < 0.05). The restored crystallites were oriented in the same directions as in sound enamel.ConclusionsPOs-Ca effectively enhances enamel remineralization with ordered HAp at a Ca/P ratio of 1.67.  相似文献   

4.
ObjectiveThis study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm.DesignBlocks of sound bovine enamel (n = 24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h–37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level.ResultsG2 presented the lowest average %HL value (68.44% ± 12.98) (p = 0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p = 0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p = 0.477). Groups G5 and G6 presented %HL = 16.11% ± 7.92 and 20.55% ± 10.65; respectively (p = 0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p = 0.001). The lowest bacterial count was observed in chlorhexidine group (G2 = 6.79 ± 0.10 CFU/mL) (p = 0.043). There was no difference between S. mutans count of G3 and G4 (p = 0.435). The EEP showed pH 4.8 and total soluble solids content = 25.9 Brix.ConclusionThe EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process.  相似文献   

5.
ObjectiveFracture is one of the main causes for failure of resin-based composite restorations. To overcome this drawback, self-healing resin-based composites have been designed by incorporation of microcapsules. However, the relationship between their self-healing capacity and microcapsule and resin parameters is still poorly understood. Therefore, the objective of this study was to systematically investigate the effect of initiator concentration (in the resin) and microcapsule size and concentration on the self-healing performance of commercially available flowable resin-based composites.MethodsPoly(urea-formaldehyde) (PUF) microcapsules containing acrylic healing liquid were synthesized in small (33 ± 8 μm), medium (68 ± 21 μm) and large sizes (198 ± 43 μm) and characterized. Subsequently, these microcapsules were incorporated into a conventional flowable resin-based composite (Majesty Flow ES2, Kuraray) at different contents (5–15 wt%) and benzoyl peroxide (BPO) initiator concentrations (0.5–2.0 wt%). Fracture toughness (KIC) of test specimens was tested using a single edge V-notched beam method. Immediately after complete fracture (KIC-initial), the two fractured parts were held together for 72 h to allow for healing. Subsequently, fracture toughness of the healed resin-based composites (KIC-healed) was tested as well.ResultsThe fracture toughness of healed dental composites significantly increased with increasing microcapsule size and concentration (2 wt% BPO, p < 0.05). The highest self-healing efficiencies (up to 76%) were obtained with microcapsules sized 198 ± 43 um.Significancecommercially available resin-based composites can be rendered self-healing most efficiently by incorporation of large microcapsules (198 ± 43 μm). However, long-term tests on fatigue and wear behavior are needed to confirm the clinical efficacy.  相似文献   

6.
ObjectivesThe aim of this study was to investigate the effect of the nanostructured hydroxyapatite (NHAp) and titanium dioxide nanoparticles (NTiO2) on dispersion in an adhesive containing monomers of Dipenta erythritol penta-acrylate monophosphate (PENTA) and Urethane dimethacrylate (UDMA), as well as evaluating the structural, optical and mechanical behavior of the composite material for dental aesthetic application.MethodsThe NHAp powders were synthesized through the wet chemical methods of hydrothermal and ultrasound-assisted precipitation. The microstructure, morphology and composition analysis of the powder of NHAp and NTiO2 were performed by scanning and transmission electron microscopy. The optical microscopic identification of the different colors was obtained due to varying the amounts of NHAp and NTiO2 in the adhesive. On the other hand, the diffuse reflectance spectra of the coatings were evaluated every 2 nm with the wavelength from 400 to 800 nm for combined specular and diffuse reflectance. The nanomechanical properties of the aesthetic coating such as (H), elastic modulus (E) and nanoscratching were evaluated by nanoindentation. The roughness of the composite coatings were evaluated by AFM.ResultsFrom different powders combinations, NHAP 75%Wt-NTiO2 %25 Wt, at (10Wt %) into a dental adhesive, the resulting mixture manifested the optimum aesthetic white appearance. The scanning and transmission electron microscopy images confirmed that the HAp nanorods and TiO2 nanoparticles sized were 55 nm and 20 nm respectively prepared by the high-energy ball mixed process. The values of nanomechanical properties of the optimum aesthetic coating were hardness, H = 3.2 ± 0.3 GPa, elastic modulus, E = 78 ± 3 GPa, Yield point, Y = 107 MPa ± 2 and scratching, maximum wear track deformation 3.7 ± 0.12 μm2. The percentage of reflectance to optimum aesthetic white appearance was of 46.83% at 423 nm of wavelength.ConclusionsThe nanocomposite PENTA/UDMA with mixtures of Nanohydroxyapatite and titanium dioxide may be considerate as a mechanical toughened, also an option to modify shade qualities for dental aesthetic applications.  相似文献   

7.
ObjectivesThe aim of this study was to evaluate the influence of monomer content on fracture toughness (KIc) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers.MethodsFive formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm × 5 mm × 2.5 mm, a/w = 0.5, n = 20) and 10 mm × 2 mm × 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm × 2 mm × 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 °C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (α = 5%).ResultsThe 30B:70T composite presented the highest KIc value (in MPa m1/2) at 24 h (1.3 ± 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 ± 0.1). After ethanol storage, reductions in KIc ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69–73%), except for 30B:70U (52 ± 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 ± 21 and 122 ± 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 ± 20 and 94 ± 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U.SignificanceComposites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties.  相似文献   

8.
《Dental materials》2020,36(2):210-220
ObjectiveDisruption of the demineralization–remineralization balance could trigger the development of dental caries, making it challenging for enamel to “self-heal”. Thus, extrinsic assistance is needed to restore enamel lesions and stop undermining progression. The aim of this study was to investigate enamel remineralization in a simulated oral environment via poly (amino amine) (PAMAM) dendrimers quantitatively.MethodsBovine enamel specimens were shaken in demineralization solution (pH 4.5, 37 °C, 50 rpm/min) for 72 h to create initial enamel carious lesions. The subsurface-demineralized specimens were then divided into four groups: enamel treated with PAMAM-NH2, enamel treated with PAMAM−COOH, enamel treated with PAMAM−OH, and enamel treated with deionized water. The treated specimens underwent subsequent 12-day pH cycling. Enamel blocks were analyzed by transverse microradiography (TMR), surface microhardness testing and scanning electron microscopy (SEM) before and after demineralization and pH cycling.ResultsGroups treated with PAMAM dendrimers showed lower lesion depth and less mineral loss, attained more vertical-section surface microhardness recovery, and adsorbed more mineral deposits (p < 0.05). The enamel lesion remineralization values of PAMAM-NH2, PAMAM-COOH, and PAMAM-OH groups were 76.42 ± 3.32%, 60.07 ± 5.92% and 54.52 ± 7.81%, respectively.SignificanceIn conclusion, PAMAM with different terminal groups could induce enamel remineralization, among which PAMAM-NH2 showed the most prominent competence, followed by PAMAM-COOH and PAMAM-OH, in that order.  相似文献   

9.
ObjectivesThis study measured the degree of conversion (DC), sorption, solubility and microhardness of methacrylate (Filtek Z250 and Filtek Z350XT) and silorane-based composites (Filtek P90).MethodsDC was measured using near infrared spectroscopy immediately and 24 h after the photoactivation. Sorption and solubility measurements were performed after 24 h, 4 weeks and 12 weeks of storage in water. Knoop microhardness was measured after 24 h and after thermal cycling. The data were statistically analyzed using ANOVA followed by Tukey's, Tamhane or paired t-tests (α = 0.05).ResultsThe DC for P90 (37.22 ± 1.46) was significantly lower than the Z250 (71.44 ± 1.66) and Z350 (71.76 ± 2.84). Water sorption was highest in the Z250 and lowest in the P90. All the tested composites exhibited similar values after 24 h of immersion, and no significant differences were observed. No significant differences were observed between the solubilities of the P90 composite (12 weeks) and the Z250 or Z350 composites (4 weeks). KHN values were less elevated for the P90 composite and similar for the Z250 and Z350 composites. An effect of thermal cycling on KHN values was observed for all the composites (p < 0.001).ConclusionsSilorane produced the lowest DC and KHN values and exhibited lower water sorption and solubility compared to methacrylate-based composites. These differences suggest that silorane composites exhibit better hydrolytic stability after 3 months of water immersion compared to conventional methacrylate-based composites.Clinical significanceSilorane had higher hydrolytic stability after 3 months of water immersion than the methacrylate-based resins, despite the lower values of DC and KHN recorded.  相似文献   

10.
ObjectiveMonomers like BisGMA (Bisphenol-A-glycidyldimethacrylate) and comonomers like TEGDMA (triethyleneglycoldimethacrylate) are used in dental restorative materials in order to build up the three-dimensional network of filling materials. Since earlier investigations revealed uptake and subsequent metabolism of unpolymerized remainders of (co)monomers, the present experiment investigates the metabolic urine pattern of guinea pigs (n = 4) after application of TEGDMA or BisGMA (each dose = 0.02 mmol/kg body weight = 100%), respectively.MethodsFor the investigations BisGMA was pre-dissolved in DMSO and subsequently diluted with 0.9% NaCl solution (final DMSO concentration 1%) and TEGDMA was dissolved in 0.9% NaCl solution. The solutions were administered with a gastric tube into the animals. Control animals received either 0.9% NaCl or 0.9% NaCl solution with 1% DMSO solution.ResultsAfter 24 h in collected urine the following metabolites were identified. After administration of TEGDMA (mean relative concentration of administered substances) ± s.d. [%]; n = 4): unchanged TEGDMA: 12 ± 1.5%, MA: 2.4 ± 0.8%, and triethyleneglycol: 35 ± 2.2%. After administration of BisGMA (mean ± s.d. [%]; n = 4): unchanged BisGMA: 11.4 ± 2.7%, MA: 2.2 ± 0.6%, and bisphenol-A-bis(2,3-dihydroxypropyl)ether: 60.1 ± 5.2%).ConclusionNo further metabolites like the previously identified intermediate 2,3-epoxymethacrylic acid and derived reaction products were identified in the urine, indicating that these metabolites must have reacted further.  相似文献   

11.
PurposeThe aim of this study was to compare the effects of two endodontic sealers on the retention of posts cemented with zinc phosphate or resin cement.Materials and methodsCrowns of 72 mandibular premolars were removed at the cementoenamel junction. Root canals were prepared and specimens were randomly divided into two groups of 36. In each group, 12 specimens were obturated with gutta percha only; 12 specimens with gutta percha/ZOE sealer and 12 specimens with gutta percha/AH26. In the first group, 10 mm Post spaces were prepared with Peeso reamers size 4 and, size 5 stainless steel Paraposts were cemented in with zinc phosphate. In the second group, 10 mm Post spaces were prepared with Fiber Lux size 5.5 drills and size 5 Paraposts were cemented with Panavia F2.0. After mounting in resin blocks, posts were pulled out by universal testing machine at 1 mm/min and results were analyzed by two-way ANOVA and Dunnett test.ResultsMean forces (in Newtons) required to remove posts cemented with zinc phosphate in canals obturated without sealer, with ZOE, and with AH26 sealers were 270 ± 83, 281 ± 128 and 266 ± 67, respectively; and for posts cemented with Panavia F2.0 were 520 ± 290, 464 ± 212 and 229 ± 108, respectively. Statistical analysis showed that AH26 significantly reduced retention of posts cemented with Panavia F2.0 (p < 0.05).ConclusionDifferent sealers had no significant effect on retention of posts cemented with zinc phosphate. However posts cemented with Panavia F2.0 showed reduced retention in canals obturated with AH26.  相似文献   

12.
ObjectivesThis study evaluated the relationship between microtensile bond strength (μTBS) and occurrence of nanoleakage at the resin–dentin interface using the same specimens.MethodsResin–dentin-bonded micro-specimens (sticks with a size of 300 μm × 300 μm × 8 mm) were prepared using one of two material combinations (group I: Syntac classic/Tetric Ceram Cavifil: n = 57; group II: Prime & Bond NT/Spectrum TPH: n = 52). After immersion of the micro-specimens in 0.1% rhodamine-B solution for 1 h, nanoleakage was imaged nondestructively using a confocal laser scanning microscope (CLSM). Then the specimens were subjected to a μTBS test.ResultsFor the influence of nanoleakage on μTBS with the Syntac classic/Tetric Ceram Cavifil group, the nonparametric Spearman correlation was 0.033 at p = 0.805. For the Prime & Bond NT/Spectrum TPH group, the nonparametric Spearman correlation was 0.077 at p = 0.584.SignificanceThe degree of nanoleakage had no influence on microtensile bond strength for the Syntac classic/Tetric Ceram Cavifil or for the Prime & Bond NT/Spectrum TPH group.  相似文献   

13.
ObjectiveThis study aimed to analyze in vitro cytotoxicity to cultured 3T3 fibroblasts and in vivo inflammatory reaction in rats by calcium hypochlorite (Ca(OCl)2) solutions compared with sodium hypochlorite (NaOCl) solutions.DesignCultured 3T3 fibroblasts were exposed to different concentrations of (Ca(OCl)2) and NaOCl solutions, and a scratch assay was performed. The viability rate was analyzed with trypan blue assay. Both solutions of 1% and 2.5% concentrations were injected into the subcutaneous tissue of 18 male Wistar rats aged 18 weeks. The inflammatory tissue reaction was evaluated at 2 h, 24 h, and 14 days after the injections. The samples were qualitatively analyzed using a light microscope. Statistical analysis was performed with ANOVA and Tukey post hoc tests for in vitro assays and Kruskal–Wallis and Dunn post hoc tests for in vivo assays (α = 0.05).ResultsIn the scratch assay, Ca(OCl)2 showed no significant difference compared with the control group (culture medium) at 24 h (p < 0.05). Solutions of 0.0075% and 0.005% NaOCl and Ca(OCl)2 concentrations presented similar results compared with those in the positive control group (hydrogen peroxide) (p > 0.05) in the trypan blue assay. In the in vivo assay, 1% Ca(OCl)2 group showed a significant decrease in neutrophils at 2 h and 24 h (p = 0.041) and 2 h and 14 days (p = 0.017). There was no statistically significant difference for lymphocyte/plasmocyte and macrophage counts among the different concentration groups.ConclusionsCa(OCl)2 showed favorable results of viability and induced a low-level inflammatory response. Ca(OCl)2 presented acceptable cytotoxicity and biocompatibility as an irrigant solution.  相似文献   

14.
ObjectiveTo evaluate the stability of sleep quality and the impact of nocturnal use of complete dentures on sleep quality in an elderly edentulous population over a one-year period.Materials and methodsWritten informed consent was obtained from 172 edentulous elders who agreed to enrol in a longitudinal cohort study. A total of 153 participants completed the follow-up after one year. Perceived quality of sleep and daytime sleepiness were measured using the Pittsburgh Sleep Quality Index (PSQI, score 0–21) and the Epworth Sleepiness Scale (ESS, score 0–24) at baseline (T0) and at follow-up (T1). Data on oral health related quality of life, type of mandibular dentures (conventional versus implant-retained mandibular overdenture), nocturnal wear of the dentures and socio-demographic status were obtained by means of the OHIP-20 questionnaire, a clinical examination form and a socio-demographic questionnaire.ResultsNo statistically significant differences were detected in the global PSQI mean scores and EES mean scores from baseline (PSQI 4.77 ± 3.32; EES 5.35 ± 3.72) to the follow-up assessment (PSQ1 5.04 ± 3.50; EES 5.53 ± 4.34). Edentate elders wearing prostheses at night had poorer daytime sleepiness scores than those who removed their prostheses at night (p = 0.003 unadjusted model; p = 0.058 adjusted for age, gender, type of prosthesis and the OHIP-20 total score).ConclusionResults of this study suggest that wearing complete dentures while sleeping has little effect on sleep quality or daytime sleepiness.  相似文献   

15.
《Dental materials》2020,36(8):987-996
ObjectivesThis study aimed to investigate physical properties of a fiber-reinforced CAD/CAM resin disc, which included woven layers of multi-directional glass fibers.MethodsFiber orientations of CAD/CAM specimens (TRINIA, SHOFU) were specified as longitudinal (L), longitudinal-rotated (LR), and anti-longitudinal (AL). A fiber-reinforced composite (everX posterior, GC (E)) and a conventional composite (Beauti core flow paste, SHOFU (B)) were also tested.A three-point bending test and a tensile test with notchless prism-shaped specimens were conducted using a universal testing machine (AUTOGRAPH AG-IS, Shimadzu). A water absorption test was also carried out after the specimens were stored in water for 24 h or 1 week. Flexural strength and fracture toughness were obtained by conducting a three-point bending test.ResultsTRINIA L and LR groups showed significantly high flexural strength (254.2 ± 22.3 and 248.8 ± 16.7 MPa, respectively). Those were approximately 2.5 times higher than those in AL, E, and B groups (96.8–98.0 MPa) (p < 0.05, ANOVA and Tukey HSD test). No significant difference was shown in flexural modulus among the experimental groups. The fracture toughness in L group (9.1 ± 0.4 MPa/m1/2) was found to be significantly higher than those in other groups (1.9–3.0 MPa/m1/2; p < 0.05). TRINIA group demonstrated significantly lower water absorption (4.7 ± 1.9 μg/mm3) than did E (16.1 ± 3.1 μg/mm3) and B (17.3 ± 3.7 μg/mm3) groups (p < 0.05).SignificanceTRINIA demonstrated distinct anisotropy. TRINIA can be used as a superior restorative material when specifying directions of its fiber mesh layers.  相似文献   

16.
PurposeThe present study was designed to assess the potential of oral myofunctional therapy (OMFT) for improving respiration parameters, Apnea-Hypopnea Index (AHI), and saturation of peripheral oxygen (SpO2) during sleep.MethodsThe Epworth Sleepiness Scale (ESS) was administered to 92 students in class time at the Nihon University School of Dentistry at Matsudo. The results showed that 15 students had a high ESS. Of the 15 students who had learnt about their excessive sleepiness, six students expressed their intention to receive treatment for their sleep condition. They volunteered as subjects for the study. The Lip Trainer Patakara® was used for labial closure force (LCF) training for 2 months. LCF, AHI and SPO2 during sleep were measured before training and after 2 months training. The paired t-test was applied for statistical analyses.ResultLCFs before and 2 months after training were 8.8 ± 1.6 and 12.9 ± 0.6 N, respectively. LCF significantly increased after training compared to that before training. SpO2 before training and after training were 90.0 ± 2.9% and 96.8 ± 0.8%, respectively. SpO2 after training was significantly increased compared to that before training. AHI before and after training were 15.1 ± 3.4 and 9.2 ± 1.5 events/h, respectively. AHI after training was significantly decreased compared to that before training.ConclusionFrom this study, the following conclusions were made: (1) OMFT significantly increases LCF; and (2) the AHI and SpO2 during sleep are significantly improved after OMFT.  相似文献   

17.
ObjectivesThis study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.MethodsMetallic frameworks (diameter: 5 mm, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 μm aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4 mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900–Au–Pd alloy; Gr2: Triceram–cpTi; Gr3: Super Porcelain Ti-22–cpTi and G4: Vita Titankeramik–cpTi. While half of the specimens from each ceramic–metal combination were randomly tested without aging (water storage at 37 °C for 24 h only), the other half were first thermocycled (6000 cycles, between 5 and 55 °C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under 50 N load, immersion in distilled water at 37 °C). The ceramic–alloy interfaces were loaded under shear in a universal test machine (crosshead speed: 0.5 mm/min) until failure occurred. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereomicroscope and scanning electron microscope (SEM). In an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic–alloy interfaces. Data were analyzed using ANOVA and Tukey's test.ResultsBoth ceramic–metal combinations (p < 0.001) and aging conditions (p < 0.001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 ± 4.2) and Gr4 (32.1 ± 4.8) when compared to the non-aged groups (42.9 ± 8.9, 42.4 ± 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 ± 8.4 for control, 60.7 ± 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic–cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2–4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi–ceramic groups showed predominantly 34.5–85.1% O2 followed by 1.1–36.7% Al and 0–36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4–8.3%), S (0.7%) and Sn (35.3%) was found. In the Au–Pd alloy–ceramic interface, 56.4–69.9% O2 followed by 15.6–26.2% Si, 3.9–10.9% K, 2.8–6% Na, 4.4–9.6% Al and 0–0.04% Mg was observed.SignificanceAfter thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram–cpTi combination presented the least decrease among other ceramic–alloy combinations when compared to the mean bond strength results with Au–Pd alloy–Vita Omega 900 combination.  相似文献   

18.
ObjectivesGlass-ionomer cements (GICs) are known to have inhibitory effects on bacterial growth, but the biochemical mechanism of this property has not been fully understood. This study aimed to evaluate inhibitory effects of GIC on the acid production of caries-related oral streptococci, and to identify the components responsible for the inhibition.MethodsAn eluate was prepared by immersing set GIC in phosphate-buffered saline at 37 °C for 24 h. Fluoride and other elements in the eluate were quantified by fluoride ion electrode and atomic absorption photometry, respectively. Streptococcus mutans NCTC 10449 and Streptococcus sanguinis NCTC 10556 were used to evaluate the pH fall and the rate of acid production after the addition of glucose in the presence or absence of the eluate. Acidic end products from glucose were also assayed by carboxylic acid analyzer.ResultsThe eluate contained silicon (1.24 ± 0.26 mM), fluoride (0.49 ± 0.02 mM) and aluminum (0.06 ± 0.00 mM), and inhibited the pH fall and the acid production rate of both streptococci at acidic pH, with a concomitant decrease in lactic acid production. These effects were comparable to those of a potassium fluoride solution containing the same concentration of fluoride as the eluate.SignificanceThese results indicate that the GIC eluate inhibits the acid production of caries-related oral streptococci at acidic pH and that the effect is due to fluoride derived from the GIC. Thus, adjacent to GIC fillings, bacterial acid production and the subsequent bacterial growth may decrease, establishing a cariostatic environment.  相似文献   

19.
IntroductionCovalently bound functional GAGs orchestrate tissue mechanics through time-dependent characteristics.ObjectiveThe role of specific glycosaminoglycans (GAGs) at the ligament–cementum and cementum–dentin interfaces within a human periodontal complex were examined. Matrix swelling and resistance to compression under health and modeled diseased states was investigated.Materials and methodsThe presence of keratin sulfate (KS) and chondroitin sulfate (CS) GAGs at the ligament–cementum and cementum–dentin interfaces in human molars (N = 5) was illustrated by using enzymes, atomic force microscopy (AFM), and AFM-based nanoindentation. The change in physical characteristics of modeled diseased states through sequential digestion of keratin sulfate (KS) and chondroitin sulfate (CS) GAGs was investigated. One-way ANOVA tests with P < 0.05 were performed to determine significant differences between groups. Additionally, the presence of mineral within the seemingly hygroscopic interfaces was investigated using transmission electron microscopy.ResultsImmunohistochemistry (N = 3) indicated presence of biglycan and fibromodulin small leucine rich proteoglycans at the interfaces. Digestion of matrices with enzymes confirmed the presence of KS and CS GAGs at the interfaces by illustrating a change in tissue architecture and mechanics. A significant increase in height (nm), decrease in elastic modulus (GPa), and tissue deformation rate (nm/s) of the PDL-C attachment site (215 ± 63–424 ± 94 nm; 1.5 ± 0.7–0.4 ± 0.2 GPa; 21 ± 7–48 ± 22 nm/s), and cementum–dentin interface (122 ± 69–360 ± 159 nm; 2.9 ± 1.3–0.7 ± 0.3 GPa; 18 ± 4–30 ± 6 nm/s) was observed.ConclusionsThe sequential removal of GAGs indicated loss in intricate structural hierarchy of hygroscopic interfaces. From a mechanics perspective, GAGs provide tissue recovery/resilience. The results of this study provide insights into the role of GAGs toward conserved tooth movement in the socket in response to mechanical loads, and modulation of potentially deleterious strain at tissue interfaces.  相似文献   

20.
《Archives of oral biology》2014,59(8):808-814
ObjectivesTo evaluate the antimicrobial activity of Arctium lappa L. extract on Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Candida albicans, C. tropicalis and C. glabrata. In addition, the cytotoxicity of this extract was analyzed on macrophages (RAW 264.7).DesignBy broth microdilution method, different concentrations of the extract (250–0.4 mg/mL) were used in order to determine the minimum microbicidal concentration (MMC) in planktonic cultures and the most effective concentration was used on biofilms on discs made of acrylic resin. The cytotoxicity A. lappa L. extract MMC was evaluated on RAW 264.7 by MTT assay and the quantification of IL-1β and TNF-α by ELISA.ResultsThe most effective concentration was 250 mg/mL and also promoted significant reduction (log10) in the biofilms of S. aureus (0.438 ± 0.269), S. epidermidis (0.377 ± 0.298), S. mutans (0.244 ± 0.161) and C. albicans (0.746 ± 0.209). Cell viability was similar to 100%. The production of IL-1β was similar to the control group (p > 0.05) and there was inhibition of TNF-α (p < 0.01).ConclusionsA. lappa L. extract was microbicidal for all the evaluated strains in planktonic cultures, microbiostatic for biofilms and not cytotoxic to the macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号