首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly water-soluble macromolecular compound of ursolic acid with monomethoxypoly(ethylene glycol) (mPEG) was prepared. The physicochemical properties and stabilities under different conditions were investigated. By PEG conjugation, greatly increased water solubility was obtained, and the results showed that this conjugate was a potential prodrug for the oral delivery of ursolic acid.  相似文献   

2.
The purpose of this study was to investigate in vitro drug release kinetics and to develop diffusion model of curcumin loaded Pluronic F127/Oleic acid(OA)-Fe3O4 nanoparticles. The prepared superparamagnetic nanoparticles by co-precipitation technique were characterized by the average size, size distribution, crystallinity, colloidal stability and magnetic property. The release of curcumin was triggered by an acidic environment in pH 5.0 of phosphate buffer saline. Release data of various curcumin loading (15, 25 and 30 ppm) were fitted using non-linear first?order, second?order, Higuchi and Korsmeyer?Peppas model. All the curcumin release mechanism followed Korsmeyer?Peppas model with n values less than 0.45 indicating the Fickian diffusion of curcumin from the prepared nanomicelles. The dynamic of controlled drug release of dilute curcumin loading was well described by a combination of diffusion and first-order release rate. The corresponding diffusion coefficient and kinetic rate were 9.1 × 10?7 cm2?min?1 and 6.51 × 10?7 min?1, which were used as controlled release to achieve the desired curcumin constant release rate in the delivery system.  相似文献   

3.
A thermosensitive micelles–hydrogel hybrid system based on Poloxamer 407 (P407) was prepared to resolve the fast erosion and low loading capability of lipophilic drug of P407 gels for local chemotherapy. Different amounts of glutaraldehyde (GA) were applied to generate cross-linked networks with carboxymethyl chitosan (CMCS) interpenetrated in P407 gels, in which paclitaxel (PTX)-loaded N-octyl-O-sulfate chitosan micelles (PTX-M) were dispersed uniformly. The in vitro characteristics of CMCS-modified P407 gels (PTX-M-MG) were performed by examining the viscosity, swelling ratio, mechanical property, and drug release, while the in vivo evaluation included tissue distribution and anticancer efficacy through in-tratumoral administration in hepatoma solidity cell (Heps) tumor-bearing mice. The results showed that PTX-M-MG containing 0.05% (w/v) GA possessed lower viscosity, higher swelling ratio, stronger mechanical property, and longer term drug release, in which the loading efficiency of PTX was enlarged by the introduction of PTX-M. Moreover, PTX-M-MG revealed a prolonged retention at tumor sites, lasting for 20 days, and a superior tumor inhibition rate (64.27%) with reduced toxicity compared with Taxol®, PTX-M, and PTX-M loaded unmodified P407 gels (PTX-M-P407). It can be concluded that PTX-M-MG is a promising local delivery system for hydrophobic drug in cancer therapy, providing both improved efficacy and relieved side effects. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2707–2717, 2013  相似文献   

4.
PURPOSE: In the treatment of osteoarthritis (OA), some of the therapeutic approaches require delivery of drug(s) to the diseased cartilage. Presence of adequate drug levels in the cartilage is one of the important criteria in selection and ranking of lead compounds. The purpose of this study was to investigate the correlation in cartilage compound levels between in vitro experiments and in vivo animal studies. MATERIALS AND METHODS: Bovine cartilage samples were incubated with test compounds of various concentrations in a culture medium, in the absence or presence of 25 mg/ml of serum albumin which served as an artificial synovial fluid (SF). The test compounds were also dosed to rabbits, the animal model used for efficacy studies, over a six-week treatment period. Test article concentrations in plasma, SF, and cartilage were determined by LC/MS/MS analysis. RESULTS AND CONCLUSIONS: A correlation in cartilage drug concentration was observed between in vitro and in vivo studies. Plasma protein binding and the test article's affinity to cartilage were the major determining factors for drug delivery to cartilage in vivo.  相似文献   

5.

Purpose

We aimed to assess the fate of β-arteether lipid-based drug delivery systems (AE-LBDDS) in terms of resistance to lipolysis and permeation across intestinal cells.

Methods

AE-LBDDS contained Tween 80 or Cremophor EL as surfactants, ethanol, Maisine 35-1 and vegetable oil. The solubilization behavior of AE was investigated during dynamic in vitro lipolysis. The permeation of AE-LBDDS was evaluated using Caco-2, HT29-MTX and M cell monolayers.

Results

A higher level of AE precipitation was observed for formulations containing Cremophor EL (~30%) compared to formulations containing Tween 80 (~10%) after lipolysis. However, rapid re-dissolution of the precipitated AE from LBDDS containing Cremophor EL in the intestinal biorelevant media was observed. The transport of AE loaded in LBDDS was enhanced in comparison to that of free drug due to the increased AE solubility. The apparent permeability of all AE-LBDDS across Caco-2 cell monolayers was approximately 3.10?6 cm/s. A decrease in the permeability was observed at 4°C. M cells did not influence the transport of AE-LBDDS, and mucus decreased AE permeability when formulated with Tween 80. Furthermore, AE is not a P-glycoprotein substrate.

Conclusion

LBDDS that are partly resistant to in vitro lipolysis significantly increased the transport of AE across intestinal cell monolayers.  相似文献   

6.
Alginate-based polyelectrolyte complexes (PECs) and hydrogel were engineered as platforms for local bevacizumab (BVZ) therapy. This study provides deep comprehension on the microstructures of such systems, and their correlation with drug-release patterns. PECs and hydrogel were characterized using Fourier transform infrared spectroscopy, small-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and porosimetry. Structural investigations indicated that PECs are formed by supramolecular interactions, resulting in physically cross-linked polymer networks, whereas the BVZ-loaded hydrogel has a more compact and rigid structure, promoting better entrapment of BVZ. PECs and hydrogel were able to control the BVZ release for 4 and 8 days, respectively. Their release profiles correlated best with the Higuchi and Korsmeyer-Peppas models, respectively, indicating drug diffusion as the limiting step for drug release. Furthermore, BVZ remained biologically active in vitro after its incorporation into the hydrogel system. Together, these studies confirm that PECs and hydrogel exhibit different porous structures and physicochemical properties, making them promising platforms that allow the modulation of BVZ release meeting different requirements.  相似文献   

7.
Objective of this study was to prepare a drug delivery system for therapeutic peptides that are degraded in the upper part of the gastrointestinal tract due to degradation activity of the enzymes. Delivering peptide to the colon in which enzymatic activity is low is next hope for absorption of these agents. Pectin, a naturally occurring water soluble polysaccharide, as a matrix for peptide delivery was studied. Degradation of pectin by the colonic enzymes makes it suitable for colon-specific delivery of drugs. Bovine serum albumin (BSA) was used as a model peptide. Calcium pectinate beads were prepared by extruding BSA-loaded pectin solution to an agitating calcium chloride solution, and gelled spheres were formed instantaneously by an ionotropic gelation reaction. The effect of several factors such as concentration of pectin, concentration of calcium chloride, and total drug loading on the pattern of drug release in the dissolution medium was studied. Prepared beads showed good resistance in the release medium. The entrapment efficiency of the beads was high (between 63% and 99%). Entrapment efficiency of BSA was reversely dependent to the amount of the drug loaded in the beads. The amount of BSA loaded on the beads affects pattern of drug release. The concentration of the pectin showed the highest impact on the rate of drug release. Presence of the pectiolytic enzymes facilitated the drug release from the beads.  相似文献   

8.
9.
Ciprofloxacin loaded microspheres were prepared by spray drying technique, with bovine serum albumin as the natural biodegradable wall materials. The obtained microspheres, using aqueous system, were organic solvent-free. The diameters of the spherical microspheres were in the range of 1-5 1:4. The drug entrapment of microspheres, formulated with different ciprofloxacin/albumin ratios as 1:1, 1:2 and 1:4, were 46.93%, 32.96% and 20.56% (n=3). And the encapsulation efflciencies for ciprofloxacin during spray drying were higher than 90%. Thermal denaturation programs at different temperatures (100-120℃) for different time intervals (3-6-12 h) were further processed to stabilize the spray-dried microspheres. The higher the extent for thermal denaturation, the slower the rate of ciprofloxacin released from microspheres in vitro. So the release rate of ciprofloxacin from microspheres can be controlled by modifing the conditions of thermal denaturation.  相似文献   

10.
An orally administered site-specific Oral Ghost Drug Delivery (OGDD) device was developed and evaluated for the administration of salmon calcitonin. In vitro drug release studies have been undertaken using biorelevant media and aspirated gastrointestinal fluid from a large white pig in addition to characterization of a formulated trimethyl chitosan blend formulated and prepared into a loaded mini-pellet system. In vivo drug release analysis in a large white pig model has further been undertaken on the OGDD device and a commercial intramuscular injection to ascertain the release properties of the OGDD device in an animal model in comparison with the currently used treatment option for the administration of salmon calcitonin. Results of this study have detailed the success of the prepared system during both in vitro and in vivo analyses with the OGDD providing a greater control of release of salmon calcitonin when compared to the commercial product.  相似文献   

11.
Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB.  相似文献   

12.
Bovine brain micro vessel endothelial cells have been isolated and grown in culture to monolayers. These endothelial cell monolayers have been characterized morphologically with electron microscopy, histochemically for brain endothelium enzyme markers, alkaline phosphatase and -glutamyl trans-peptidase, and by immunofluorescence to detect Factor VIII antigen, an exclusive endothelial antigen. Results of these studies indicate that the cells forming the monolayers are of endothelial origin and possess many features of the in vivo brain endothelium responsible for formation of the blood–brain barrier. This in vitro blood–brain barrier model system was used in experiments to determine the permeability of the cultured monolayer to sucrose, leucine, and propranolol. Leucine rapidly moved across the monolayers of this in vitro system and tended to plateau after approximately 10 min. In contrast, the rates of sucrose and propranolol movement were linear during a 1-hr observation period, with the rate of propranolol movement across the monolayer greater than that of sucrose. The ability to detect differences in the permeability of the monolayers to leucine, propranolol, and sucrose with radioactive tracers suggests that this in vitro model system will be an important tool for the investigation of the role of the blood–brain barrier in the delivery of centrally acting drugs and nutrients.  相似文献   

13.

Purpose  

To establish in vitro and in silico models that predict clinical drug–drug interactions (DDIs) with the OATP1B1 (SLCO1B1) transporter.  相似文献   

14.
The landscape of thin films is continuously evolving as an attractive self-administration mean to drive patient compliance. This work reports incorporation of drugs into various polymeric compositions using spin coating technology to screen amorphous solid dispersion film formation for buccal applications. Polarized light microscopy and differential scanning calorimetry were used for characterization. Physical stability was assessed after films storage at 0% RH/25°C for 6 months. Chlorpheniramine maleate, theophylline, and famotidine were used as model drugs and mixed with Opadry amb II® or Kollicoat IR®. Acryl-EZE II® or Zein was also used as surface (design I) or surface and base polymers (design II). Of all the drug-Opadry combinations, only chlorpheniramine was amorphously dispersed up to 25% (w/w). In contrast, Kollicoat IR® resulted in amorphous dispersions of all the tested drugs, suggesting that it has a better solubilization capacity. Drugs prepared in design II achieved higher in vitro release compared to respective design I, indicating that lower content of Acryl-EZE II® or Zein can decrease drug release over 3 h. It has been also revealed that Zein could improve physical stability of the aged theophylline solid-dispersed films. Release kinetics of model drugs were satisfactory when described by first-order kinetics, facilitated through anomalous transport of both diffusion and polymer swelling.  相似文献   

15.
PURPOSE: Validate and exemplify a discrete, componentized, in silico, transwell device (ISTD) capable of mimicking the in vitro passive transport properties of compounds through cell monolayers. Verify its use for studying drug-drug interactions. METHODS: We used the synthetic modeling method. Specialized software components represented spatial and functional features including cell components, semi-porous tight junctions, and metabolizing enzymes. Mobile components represented drugs. Experiments were conducted and analyzed as done in vitro. RESULTS: Verification experiments provided data analogous to those in the literature. ISTD parameters were tuned to simulate and match in vitro urea transport data; the objects representing tight junction (effective radius of 6.66 A) occupied 0.066% of the surface area. That ISTD was then tuned to simulate pH-dependent, in vitro alfentanil transport properties. The resulting ISTD predicted the passive transport properties of 14 additional compounds, individually and all together in one in silico experiment. The function of a two-site enzymatic component was cross-validated with a kinetic model and then experimentally validated against in vitro benzyloxyresorufin metabolism data. Those components were used to exemplify drug-drug interaction studies. CONCLUSIONS: The ISTD is an example of a new class of simulation models capable of realistically representing complex drug transport and drug-drug interaction phenomena.  相似文献   

16.
In vitroin vivo correlation (IVIVC) is a predictive mathematical model describing the relationship between an in vitro property and a relevant in vivo response. The main objective of an IVIVC is to serve as a surrogate for human bioequivalence (BE) studies, which may reduce the number of BE studies performed during the initial approval process as well as with certain scale-up and postapproval changes. The US Food and Drug Administration (FDA) published a regulatory guidance related to development, evaluation, and applications of IVIVC for extended-release (ER) oral dosage forms in September 1997. Despite the publication of this guidance, the deficiencies related to IVIVC are still identified by the Division of Bioequivalence in the process of Abbreviated New Drug Application (ANDA) review. Thus, the main objective of this article is to present the most commonly occurring deficiencies associated with IVIVCs via selected case studies from the ANDAs for oral ER drug products only. We searched internal FDA databases from January 1996 to December 2014 to identify the ANDAs for proposed generic oral ER drug products containing IVIVC. Only 14 ANDA submissions had IVIVC data, and most were not acceptable. Only one ANDA submission included adequate information related to IVIVC data enabling the completion of BE review within first review cycle. It is hoped that awareness of the deficiencies presented in our article would help the generic drug applicants to submit complete and appropriate information related to IVIVC data, ultimately, resulting in a more timely approval of ANDAs.KEY WORDS: bioequivalence, extended-release drug products, generics, IVIVC, SUPAC  相似文献   

17.

Purpose

The aim of this work was to evaluate in vivo poly(lactide)-d-α-tocopheryl polyethylene glycol 1,000 succinate nanoparticles (PLA–TPGS NPs) for controlled and sustained small molecule drug chemotherapy.

Methods

The drug-loaded PLA–TPGS NPs were prepared by the dialysis method. Particle size, surface morphology and surface chemistry, in vitro drug release and cellular uptake of NPs were characterized. In vitro and in vivo therapeutic effects of the nanoparticle formulation were evaluated in comparison with Taxol®.

Results

The PLA–TPGS NP formulation exhibited significant advantages in in vivo pharmacokinetics and xenograft tumor model versus the PLGA NP formulation and the pristine drug. Compared with Taxol®, the PLA–TPGS NP formulation achieved 27.4-fold longer half-life in circulation, 1.6-fold larger area-under-the-curve (AUC) with no portion located above the maximum tolerance concentration level. For the first time in the literature, one shot for 240 h chemotherapy was achieved in comparison with only 22 h chemotherapy for Taxol® at the same 10 mg/kg paclitaxel dose. Xenograft tumor model further confirmed the advantages of the NP formulation versus Taxol®.

Conclusions

The PLA–TPGS NP formulation can realize a way of controlled and sustained drug release for more than 10 days, which relieves one of the two major concerns on cancer nanotechnology, i.e. feasibility.  相似文献   

18.
Purpose   In vitro assessment of drug candidates' affinity for multi-drug resistance proteins is of crucial importance for the prediction of in vivo pharmacokinetics and drug–drug interactions. To have well described experimental tools at hand, the objective of the study was to characterize substrates and inhibitors of Breast Cancer Resistance Protein (BCRP) and P-glycoprotein (P-gp). Methods  Madin–Darbin canine kidney cells overexpressing mouse Bcrp (MDCKII-Bcrp) were incubated with various Bcrp substrates, or a mixture of substrate and inhibitor to either the apical (A) or basolateral (B) compartment of insert filter plates. Substrate concentrations in both compartments at time points t = 0 h and t = 2 h were determined by LC–MS/MS, and respective permeation coefficients (P app) and efflux ratios were calculated. Results  The Bcrp inhibitor Ko143 blocked topotecan and ABZSO transport in a concentration-dependent manner. P-gp inhibitors ivermectin, LY335979, PSC833, and the P-gp/Bcrp inhibitor ritonavir did not influence Bcrp mediated topotecan transport, however, blocked ABZSO transport. Additionally, neither was ABZSO transport influenced by topotecan, nor topotecan transport by ABZSO. Conclusions  Data suggest different modes of substrate and inhibitor binding to Bcrp. In order to not overlook potential drug–drug interactions when testing drug candidates for inhibitory potential towards Bcrp, distinct Bcrp probe substrates should be used.  相似文献   

19.

Purpose

To evaluate 26 marketed oncology drugs for time-dependent inhibition (TDI) of cytochrome P450 (CYP) enzymes. Evaluate TDI-positive drugs for potential to generate reactive intermediates. Assess clinical drug–drug interaction (DDI) risk using static mechanistic models.

Methods

Human liver microsomes and CYP-specific probes were used to assess TDI in a dilution shift assay followed by generation of KI and kinact. Reactive metabolite trapping studies were performed with stable label probes. Static mechanistic model was used to predict DDI risk using a 1.25-fold AUC increase as a cut-off for positive DDI.

Results

Negative TDI across CYPs was observed for 13/26 drugs; the rest were time-dependent inhibitors of, predominantly, CYP3A. The kinact/KI ratios for 11 kinase inhibitors ranged from 0.7 to 42.2 ml/min/μmol. Stable label trapping agent–drug conjugates were observed for ten kinase inhibitors. DDI predictions gave no false negatives, one true negative, four false positives and three true positives. The magnitude of DDI was overestimated irrespective of the inhibitor concentration selected.

Conclusions

13/26 oncology drugs investigated showed TDI potential towards CYP3A, formation of reactive metabolites was also observed. An industry standard static mechanistic model gave no false negative predictions but did not capture the modest clinical DDI potential of kinase inhibitors.  相似文献   

20.
Purpose. Dequalinium, a drug known for over 30 years, is a dicationic amphiphile compound resembling bolaform electrolytes. The purpose of our work was to determine the state of aggregation of dequalinium in aqueous medium and to investigate both, its ability to bind DNA and its potential to serve as a novel non-viral transfection vector. Methods. The form of aggregation was determined employing electron microscopic techniques. The DNA binding capacity of dequalinium was assayed using SYBR Green I stain. For in vitro cell transfection experiments plasmid DNA encoding for firefly luciferase was used. Results. Dequalinium forms in aqueous medium liposome-like aggregates, which we term DQAsomes. These dequalinium vesicles bind DNA and they are able to transfect cells in vitro with an efficiency comparable to Lipofectin. Conclusions. Based on the intrinsic properties of dequalinium such as the in vivo selectivity for carcinoma cells and selective accumulation in mitochondria we propose DQAsomes as a novel and unique drug and gene delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号