首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation   总被引:20,自引:3,他引:20       下载免费PDF全文
Angiopoietin (Ang) signaling plays a role in angiogenesis and remodeling of blood vessels through the receptor tyrosine kinase Tie2, which is expressed on blood vessel endothelial cells (BECs). Recently it has been shown that Ang-2 is crucial for the formation of lymphatic vasculature and that defects in lymphangiogenesis seen in Ang-2 mutant mice are rescued by Ang-1. These findings suggest important roles for Ang signaling in the lymphatic vessel system; however, Ang function in lymphangiogenesis has not been characterized. In this study, we reveal that lymphatic vascular endothelial hyaluronan receptor 1-positive (LYVE-1(+)) lymphatic endothelial cells (LECs) express Tie2 in both embryonic and adult settings, indicating that Ang signaling occurs in lymphatic vessels. Therefore, we examined whether Ang-1 acts on in vivo lymphatic angiogenesis and in vitro growth of LECs. A chimeric form of Ang-1, cartilage oligomeric matrix protein (COMP)-Ang-1, promotes in vivo lymphatic angiogenesis in mouse cornea. Moreover, we found that COMP-Ang-1 stimulates in vitro colony formation of LECs. These Ang-1-induced in vivo and in vitro effects on LECs were suppressed by soluble Tie2-Fc fusion protein, which acts as an inhibitor by sequestering Ang-1. On the basis of these observations, we propose that Ang signaling regulates lymphatic vessel formation through Tie2.  相似文献   

3.
Angiopoietin-1 promotes lymphatic sprouting and hyperplasia   总被引:15,自引:3,他引:15       下载免费PDF全文
Angiopoietin 1 (Ang1), a ligand for the receptor tyrosine kinase Tie2, regulates the formation and stabilization of the blood vessel network during embryogenesis. In adults, Ang1 is associated with blood vessel stabilization and recruitment of perivascular cells, whereas Ang2 acts to counter these actions. Recent results from gene-targeted mice have shown that Ang2 is also essential for the proper patterning of lymphatic vessels and that Ang1 can be substituted for this function. In order to characterize the effects of the angiopoietins on lymphatic vessels, we employed viral vectors for overexpression of Ang1 in adult mouse tissues. We found that Ang1 activated lymphatic vessel endothelial proliferation, vessel enlargement, and generation of long endothelial cell filopodia that eventually fused, leading to new sprouts and vessel development. Cutaneous lymphatic hyperplasia was also detected in transgenic mice expressing Ang1 in the basal epidermal cells. Tie2 was expressed in the lymphatic endothelial cells and Ang1 stimulation of these cells resulted in up-regulation of vascular endothelial growth factor receptor 3 (VEGFR-3). Furthermore, a soluble form of VEGFR-3 inhibited the observed lymphatic sprouting. Our results reinforce the concept that Ang1 therapy may be useful in settings of tissue edema.  相似文献   

4.
目的研究洛沙坦是否可以通过改善淋巴引流抑制卵巢癌裸鼠模型腹水的形成。方法8周龄雌性裸鼠,随机分3组,每组24只鼠。空白对照组不给予任何处理。另两组给予原位移植SKOV3 IP1-Gluc卵巢癌细胞,根据外周血Gluc水平监测腹腔内肿瘤生长情况,达到1×106相对光单位时入组。对照组为卵巢癌无治疗组,22只鼠入组,卵巢癌洛沙坦治疗组23只鼠入组。注射肿瘤后第28天处死,取出腹腔内肿瘤及膈肌,抽吸腹水测量。免疫组化方法检测sirius red、αSMA、Collagen 1,了解细胞外基质胶原蛋白及纤维母细胞含量。用淋巴管造影方法观察膈肌淋巴管形态,腹腔内注射荧光微球观察膈肌及纵膈淋巴结荧光微球分布情况,了解膈肌淋巴管引流功能。结果洛沙坦治疗可以明显减少卵巢癌裸鼠模型腹水形成(P<0.05)。洛沙坦治疗组肿瘤内胶原蛋白含量(sirius red阳性区域,Collagen 1含量)及纤维母细胞(αSMA阳性区域)均明显减少(均P<0.05)。与正常裸鼠比较,卵巢癌无治疗组裸鼠膈肌淋巴管扩张,结构紊乱;洛沙坦治疗组裸鼠膈肌淋巴管形态和分布情况改善,趋于正常化,而淋巴管引流功能也得到明显改善。结论洛沙坦可以抑制细胞外基质形成,减少卵巢癌细胞外基质含量,降低固态压力,解除对淋巴管的压迫作用,改善淋巴引流,减少腹水形成,使临床获益。  相似文献   

5.
6.
Niessen K  Zhang G  Ridgway JB  Chen H  Kolumam G  Siebel CW  Yan M 《Blood》2011,118(7):1989-1997
The Notch signaling pathway plays a fundamental role during blood vessel development. Notch signaling regulates blood vessel morphogenesis by promoting arterial endothelial differentiation and providing spatial and temporal control over "tip cell" phenotype during angiogenic sprouting. Components of the Notch signaling pathway have emerged as potential regulators of lymphatic development, joining the increasing examples of blood vessel regulators that are also involved in lymphatic development. However, in mammals a role for the Notch signaling pathway during lymphatic development remains to be demonstrated. In this report, we show that blockade of Notch1 and Dll4, with specific function-blocking antibodies, results in defective postnatal lymphatic development in mice. Mechanistically, Notch1-Dll4 blockade is associated with down-regulation of EphrinB2 expression, been shown to be critically involved in VEGFR3/VEGFC signaling, resulting in reduced lymphangiogenic sprouting. In addition, Notch1-Dll4 blockade leads to compromised expression of distinct lymphatic markers and to dilation of collecting lymphatic vessels with reduced and disorganized mural cell coverage. Finally, Dll4-blockade impairs wound closure and severely affects lymphangiogenesis during the wound healing in adult mouse skin. Thus, our study demonstrates for the first time in a mammalian system that Notch1-Dll4 signaling pathway regulates postnatal lymphatic development and pathologic lymphangiogenesis.  相似文献   

7.
8.
In the developing myocardium, vascular endothelial growth factor (VEGF)-dependent neovascularization occurs by division of existing vessels, a process that persists for several weeks following birth. During this remodeling phase, mRNA expression of beta3 integrin in the heart decreases significantly as vessel maturation progresses. However, in male mice lacking beta3, coronary capillaries fail to mature and continue to exhibit irregular endothelial thickness, endothelial protrusions into the lumen, and expanded cytoplasmic vacuoles. Surprisingly, this phenotype was not seen in female beta3-null mice. Enhanced VEGF signaling contributes to the beta3-null phenotype, because these vessels can be normalized by inhibitors of VEGF or Flk-1. Moreover, intravenous injection of VEGF induces a similar angiogenic phenotype in hearts of adult wild-type mice. These findings show a clear vascular phenotype in the hearts of mice lacking beta3 and suggest this integrin plays a critical role in coronary vascular development and the vascular response to VEGF.  相似文献   

9.
Cao R  Björndahl MA  Gallego MI  Chen S  Religa P  Hansen AJ  Cao Y 《Blood》2006,107(9):3531-3536
Hepatocyte growth factor (HGF) has previously been reported to act as a hemangiogenic factor, as well as a mitogenic factor for a variety of tumor cells. Here, we demonstrate that HGF is a lymphangiogenic factor, which may contribute to lymphatic metastasis when overexpressed in tumors. In a mouse corneal lymphangiogenesis model, implantation of HGF induces sprouting and growth of new lymphatic vessel expressing the lymphatic vessel endothelial specific marker hyaluronan receptor-1 (Lyve-1). Unlike blood vessels, the Lyve-1-positive structures consist of blunt-ended vessels of large diameters that generally lack expression of CD31. The growth of HGF-induced lymphatic vessels can be partially blocked by a soluble VEGFR-3, suggesting that HGF may stimulate lymphatic vessel growth through an indirect mechanism. Consistent with this finding, the HGF receptor (c-Met) is only localized on corneal blood vessels but is absent on lymphatic vessels in a mouse corneal assay. In a transgenic mouse model that expresses HGF under the control of the whey acidic protein (WAP) gene promoter, transgenic females develop tumors in the mammary glands after several pregnancies. Interestingly, dilated Lyve-1-positive lymphatic vessels accumulate in the peritumoral area and occasionally penetrate into the tumor tissue. Our findings indicate that HGF may play a critical role in lymphangiogenesis and potentially contribute to lymphatic metastasis.  相似文献   

10.
The roles of angiogenesis in development, health, and disease have been studied extensively; however, the studies related to lymphatic system are limited due to the difficulty in observing colorless lymphatic vessels. But recently, with the improved technique, the relative importance of the lymphatic system is just being revealed. We bred transgenic mice in which lymphatic endothelial cells express GFP (Prox1-GFP) with mice in which vascular endothelial cells express DsRed (Flt1-DsRed) to generate Prox1-GFP/Flt1-DsRed (PGFD) mice. The inherent fluorescence of blood and lymphatic vessels allows for direct visualization of blood and lymphatic vessels in various organs via confocal and two-photon microscopy and the formation, branching, and regression of both vessel types in the same live mouse cornea throughout an experimental time course. PGFD mice were bred with CDh5CreERT2 and VEGFR2lox knockout mice to examine specific knockouts. These studies showed a novel role for vascular endothelial cell VEGFR2 in regulating VEGFC-induced corneal lymphangiogenesis. Conditional deletion of vascular endothelial VEGFR2 abolished VEGFA- and VEGFC-induced corneal lymphangiogenesis. These results demonstrate the potential use of the PGFD mouse as a powerful animal model for studying angiogenesis and lymphangiogenesis.  相似文献   

11.
In contrast to the established role of blood vessel remodeling in inflammation, the biologic function of the lymphatic vasculature in acute inflammation has remained less explored. We studied 2 established models of acute cutaneous inflammation, namely, oxazolone-induced delayed-type hypersensitivity reactions and ultraviolet B irradiation, in keratin 14-vascular endothelial growth factor (VEGF)-C and keratin 14-VEGF-D transgenic mice. These mice have an expanded network of cutaneous lymphatic vessels. Transgenic delivery of the lymphangiogenic factors VEGF-C and the VEGFR-3 specific ligand mouse VEGF-D significantly limited acute skin inflammation in both experimental models, with a strong reduction of dermal edema. Expression of VEGFR-3 by lymphatic endothelium was strongly down-regulated at the mRNA and protein level in acutely inflamed skin, and no VEGFR-3 expression was detectable on inflamed blood vessels and dermal macrophages. There was no major change of the inflammatory cell infiltrate or the composition of the inflammatory cytokine milieu in the inflamed skin of VEGF-C or VEGF-D transgenic mice. However, the increased network of lymphatic vessels in these mice significantly enhanced lymphatic drainage from the ear skin. These results provide evidence that specific lymphatic vessel activation limits acute skin inflammation via promotion of lymph flow from the skin and reduction of edema formation.  相似文献   

12.
The lymphatic system plays an important role in the physiological control of the tissue fluid balance and in the initiation of immune responses. Recent studies have shown that lymphangiogenesis, the growth of new lymphatic vessels and/or the expansion of existing lymphatic vessels, is a characteristic feature of acute inflammatory reactions and of chronic inflammatory diseases. In these conditions, lymphatic vessel expansion occurs at the tissue level but also within the draining lymph nodes. Surprisingly, activation of lymphatic vessel function by delivery of vascular endothelial growth factor-C exerts anti-inflammatory effects in several models of cutaneous and joint inflammation. These effects are likely mediated by enhanced drainage of extravasated fluid and inflammatory cells, but also by lymphatic vessel-mediated modulation of immune responses. Although some of the underlying mechanisms are just beginning to be identified, lymphatic vessels have emerged as important targets for the development of new therapeutic strategies to treat inflammatory conditions. In this context, it is of great interest that some of the currently used anti-inflammatory drugs also potently activate lymphatic vessels.  相似文献   

13.
14.
The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct''s potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.

The lymphatic and blood vascular systems are two distinct vessel network systems that work in synchrony to maintain tissue homeostasis. Blood vessels transport oxygen and nutrients around the body, while lymphatic vessels collect leaked fluid and macromolecules from the interstitial space and return them to the blood circulation, maintaining interstitial fluid homeostasis (1). Furthermore, the lymphatic system plays a central role in immune responses, inflammation regulation, and lipid absorption (2). While many in vitro models have been created to study angiogenesis, fewer attempts have been made to engineer an in vitro platform to study lymphangiogenesis. Such engineered models are critical for both fundamental research and the development of clinically implantable tissue to treat various diseases involving the lymphatic system. One such disease is lymphedema, a chronic condition that affects 200 million people worldwide (3). Lymphedema is characterized by tissue swelling resulting from a compromised lymphatic system. The condition is mainly caused by complications during cancer treatment but may also develop due to genetic disorders. The condition is progressive and incurable, with a high risk of infection. Implantation of engineered lymphatic tissue can serve as a treatment for such disease (4).Lymph flow is primarily driven by pressures generated by lymphatic contractions of the smooth muscle cells surrounding the vessels (5). Impaired contractility thus reduces lymph flow and may cause lymphedema. Previous computational studies have investigated the correlation between lymphatic vessel contractility and mechanical stimulation, such as mechanical loading, pressure gradients, and shear stress amplitudes (6, 7). Furthermore, studies have investigated lymphatic vessel capacity to distend under mechanical loading conditions. In addition, the microenvironment composition has been shown to play an important role in enabling lymphatic vessel functionality (4).Thus far, several groups have been able to engineer lymphatic tissues. Marino et al. created dermo-epidermal skin grafts with lymphatic and blood vessels embedded in a fibrin-collagen gel (8). Others created a lymphatic vessel network within multilayered fibroblast sheets (9, 10). Another study demonstrated that different hydrogel compositions are required for the optimal growth and development of blood and lymphatic endothelial cells (BECs and LECs, respectively) (11). However, no studies have investigated the influence of the supporting cells, the secreted extracellular matrix (ECM), and the mechanical environment on the forming lymphatic vessels. Since lymphatic pathologies are known to correlate with mechanically impaired lymphatic vessels (4), it is important to create lymphatic models with a biomimetic microenvironment.In this study, lymphatic vessel networks were engineered to investigate fundamental questions concerning lymphangiogenesis, including the influence of different supporting cells on the formation of lymphatic vessels and the role of PDGFR-β, an important receptor associated with support cells recruitment, in vessel formation. In addition, a complex tissue designed to better mimic native tissue was generated and lymphatic and blood vessel development along with muscle formation were monitored. In addition, the impact of the application of cyclic stretch on the organization and alignment of lymphatic-blood-vessel-muscle tissue was assessed. Finally, the penetration and anastomosis of the engineered lymphatic vessels were monitored following their implantation into mice.  相似文献   

15.
The endothelial cells lining all vessels of the circulatory system have been recognized as key players in a variety of physiological and pathological settings. They act as regulators of vascular tone via the inducible nitric oxide system and in angiogenesis, the formation of blood vessels de novo. Aberrant regulation of endothelial cells contributes to tumor formation, atherosclerosis, and diseases such as psoriasis and rheumatoid arthritis. Among the most recently discovered growth factors for endothelial cells are newly isolated members of the platelet-derived growth factor/vascular endothelial growth factor (VEGF) family, VEGF-B, VEGF-C, and VEGF-D. VEGF-C is the ligand for the receptor tyrosine kinase VEGFR-3 (also known as Flt4), which is expressed predominantly in lymphatic endothelium of adult tissues, but a proteolytically processed form of VEGF-C can also activate VEGFR-2 of blood vessels. The lymphatic vessels have been known since the 17th century, but their specific roles in health and disease are still poorly understood. With the discovery of VEGF-C and its cognate receptor VEGFR-3, the regulation and functions of this important component of the circulatory system can be investigated.  相似文献   

16.
Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis   总被引:2,自引:0,他引:2  
Oka M  Iwata C  Suzuki HI  Kiyono K  Morishita Y  Watabe T  Komuro A  Kano MR  Miyazono K 《Blood》2008,111(9):4571-4579
Lymphangiogenesis is induced by various growth factors, including VEGF-C. Although TGF-β plays crucial roles in angiogenesis, the roles of TGF-β signaling in lymphangiogenesis are unknown. We show here that TGF-β transduced signals in human dermal lymphatic microvascular endothelial cells (HDLECs) and inhibited the proliferation, cord formation, and migration toward VEGF-C of HDLECs. Expression of lymphatic endothelial cell (LEC) markers, including LYVE-1 and Prox1 in HDLECs, as well as early lymph vessel development in mouse embryonic stem cells in the presence of VEGF-A and C, were repressed by TGF-β but were induced by TGF-β type I receptor (TβR-I) inhibitor. Moreover, inhibition of endogenous TGF-β signaling by TβR-I inhibitor accelerated lymphangiogenesis in a mouse model of chronic peritonitis. Lymphangiogenesis was also induced by TβR-I inhibitor in the presence of VEGF-C in pancreatic adenocarcinoma xenograft models inoculated in nude mice. These findings suggest that TGF-β transduces signals in LECs and plays an important role in the regulation of lymphangiogenesis in vivo.  相似文献   

17.
18.
Infiltration of lymphocytes into the thyroid gland and formation of lymph node-like structures is a hallmark of Hashimoto's thyroiditis. Here we demonstrate that lymphatic vessels are present within these infiltrates. Mice overexpressing the chemokine CCL21 in the thyroid (TGCCL21 mice) developed similar lymphoid infiltrates and lymphatic vessels. TGCCL21 mice lacking mature T and B cells (RAGTGCCL21 mice) did not have cellular infiltrates or increased number of lymphatic vessels compared with controls. Transfer of CD3(+)CD4(+) T cells into RAGTGCCL21 mice promoted the development of LYVE-1(+)podoplanin(+)Prox-1(+) vessels in the thyroid. Genetic deletion of lymphotoxin beta receptor or lymphotoxin alpha abrogated development of lymphatic vessels in the inflamed areas in the thyroid but did not affect development of neighboring lymphatics. These results define a model for the study of inflammatory lymphangiogenesis in the thyroid and implicate lymphotoxin beta receptor signaling in this process.  相似文献   

19.
Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.  相似文献   

20.
The microfibrils of anchoring filaments, a typical ultrastructural feature of initial lymphatic vessels, consist mainly of fibrillin and are similar to the microfibrils of elastic fibers. As we previously demonstrated, they radiate from focal adhesions of lymphatic endothelium to the perivascular elastic network. Although present in large blood vessels, fibrillin microfibrils have never been detected in blood capillaries. Here we report immunohistochemical evidence that cultured bovine aortic and lymphatic endothelial cells express fibrillin microfibrils. These microfibrils form an irregular web in lymphatic endothelial cells, whereas in blood vessel endothelial cells they are arranged in a honeycomb pattern. Cultured lymphatic and blood vessel endothelial cells also produce focal adhesion molecules: focal adhesion kinase, vinculin, talin, and cytoskeletal beta-actin. Our data suggest that anchoring filaments of initial lymphatic vessels in vivo may be produced by endothelium. Through their connection with focal adhesions, they may form a mechanical anchorage for the thin wall of initial lymphatic vessels and a transduction device for mechanical signals from the extracellular matrix into biochemical signals in endothelial cells. The complex anchoring filaments-focal adhesions may control the permeability of lymphatic endothelium and finely adjust lymph formation to the physiological conditions of the extracellular matrix. The different deposition of fibrillin microfibrils in blood vessel endothelial cells may be related to the necessity of withstanding shear forces. Thus, in our opinion, differences in fibrillin deposition imply a different role of fibrillin in blood vessel and lymphatic endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号