首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
LKB1, mutated in Peutz-Jeghers and in sporadic lung tumours, phosphorylates a group of protein kinases named AMP-activated protein kinase (AMPK)-related kinases. Among them is included the AMPK, a sensor of cellular energy status. To investigate the relevance of LKB1 in lung carcinogenesis, we study several lung cancer cells with and without LKB1-inactivating mutations. We report that LKB1-mutant cells are deficient for AMPK activity and refractory to mTOR inhibition upon glucose depletion but not growth-factor deprivation. The requirement for wild-type LKB1 to properly activate AMPK is further demonstrated in genetically modified cancer cells. In addition, LKB1-deficient lung primary tumours had diminished AMPK activity, assessed by complete absence or low level of phosphorylation of its critical substrate, acetyl-CoA carboxylase. We also demonstrate that LKB1 wild-type cells are more resistant to cell death upon glucose withdrawal than their mutant counterparts. Finally, modulation of AMPK activity did not affect PI3K/AKT signalling, an advantage for the potential use of AMPK as a target for cancer therapy in LKB1 wild-type tumours. Thus, sustained abrogation of cell energetic checkpoint control, through alterations at key genes, appear to be an obligatory step in the development of some lung tumours.  相似文献   

2.

Introduction

Honokiol, a small-molecule polyphenol isolated from magnolia species, is widely known for its therapeutic potential as an antiinflammatory, antithrombosis, and antioxidant agent, and more recently, for its protective function in the pathogenesis of carcinogenesis. In the present study, we sought to examine the effectiveness of honokiol in inhibiting migration and invasion of breast cancer cells and to elucidate the underlying molecular mechanisms.

Methods

Clonogenicity and three-dimensional colony-formation assays were used to examine breast cancer cell growth with honokiol treatment. The effect of honokiol on invasion and migration of breast cancer cells was evaluated by using Matrigel invasion, scratch-migration, spheroid-migration, and electric cell-substrate impedance sensing (ECIS)-based migration assays. Western blot and immunofluorescence analysis were used to examine activation of the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) axis. Isogenic LKB1-knockdown breast cancer cell line pairs were developed. Functional importance of AMPK activation and LKB1 overexpression in the biologic effects of honokiol was examined by using AMPK-null and AMPK-wild type (WT) immortalized mouse embryonic fibroblasts (MEFs) and isogenic LKB1-knockdown cell line pairs. Finally, mouse xenografts, immunohistochemical and Western blot analysis of tumors were used.

Results

Analysis of the underlying molecular mechanisms revealed that honokiol treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity, as evidenced by increased phosphorylation of the downstream target of AMPK, acetyl-coenzyme A carboxylase (ACC) and inhibition of phosphorylation of p70S6kinase (pS6K) and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). By using AMPK-null and AMPK-WT (MEFs), we found that AMPK is required for honokiol-mediated modulation of pACC-pS6K. Intriguingly, we discovered that honokiol treatment increased the expression and cytoplasmic translocation of tumor-suppressor LKB1 in breast cancer cells. LKB1 knockdown inhibited honokiol-mediated activation of AMPK and, more important, inhibition of migration and invasion of breast cancer cells. Furthermore, honokiol treatment resulted in inhibition of breast tumorigenesis in vivo. Analysis of tumors showed significant increases in the levels of cytoplasmic LKB1 and phospho-AMPK in honokiol-treated tumors.

Conclusions

Taken together, these data provide the first in vitro and in vivo evidence of the integral role of the LKB1-AMPK axis in honokiol-mediated inhibition of the invasion and migration of breast cancer cells. In conclusion, honokiol treatment could potentially be a rational therapeutic strategy for breast carcinoma.  相似文献   

3.
The mutation of tumor suppressor gene liver kinase B1 (LKB1) has a prevalence of about 20% in non–small cell lung cancer (NSCLC). LKB1-mutant lung cancer is characterized by enhanced aggressiveness and immune escape and is associated with poor prognosis. Therefore, it is urgent to develop effective therapeutic methods for LKB1-mutant NSCLC. Recently, apatinib, a VEGFR-TKI, was found to significantly improve the outcome of LKB1-mutant NSCLC, but the mechanism is not completely clear. In this study, AMP-activated protein kinase (AMPK), the crucial downstream kinase of LKB1 was excavated as the potential target of apatinib. Biochemical experiments verified that apatinib is a direct AMPK activator. Moreover, clinically available VEGFR-TKIs were found to regulate AMPK differently: Apatinib and anlotinib can directly activate AMPK, while axitinib and sunitinib can directly inhibit AMPK. Activation of AMPK by apatinib leads to the phosphorylation of acetyl-CoA carboxylase (ACC) and inhibition of de novo fatty acid synthesis (FAsyn), which is upregulated in LKB1-null cancers. Moreover, the killing effect of apatinib was obviously enhanced under delipidated condition, and the combination of exogenous FA restriction with apatinib treatment can be a promising method for treating LKB1-mutant NSCLC. This study discovered AMPK as an important off-target of apatinib and elucidated different effects of this cluster of VEGFR-TKIs on AMPK. This finding can be the basis for the accurate and combined application of these drugs in clinic and highlights that the subset of VEGFR-TKIs including apatinib and anlotinib are potentially valuable in the treatment of LKB1-mutant NSCLC.  相似文献   

4.
Loss of function of the tumor suppressor LKB1 occurs in 30% to 50% of lung adenocarcinomas. Because LKB1 activates AMP-activated protein kinase (AMPK), which can negatively regulate mTOR, AMPK activation might be desirable for cancer therapy. However, no known compounds activate AMPK independently of LKB1 in vivo, and the usefulness of activating AMPK in LKB1-mutant cancers is unknown. Here, we show that lipid-based Akt inhibitors, phosphatidylinositol ether lipid analogues (PIA), activate AMPK independently of LKB1. PIAs activated AMPK in LKB1-mutant non-small cell lung cancer (NSCLC) cell lines with similar concentration dependence as that required to inhibit Akt. However, AMPK activation was independent of Akt inhibition. AMPK activation was a major mechanism of mTOR inhibition. To assess whether another kinase capable of activating AMPK, CaMKK beta, contributed to PIA-induced AMPK activation, we used an inhibitor of CaMKK, STO-609. STO-609 inhibited PIA-induced AMPK activation in LKB1-mutant NSCLC cells, and delayed AMPK activation in wild-type LKB1 NSCLC cells. In addition, AMPK activation was not observed in NSCLC cells with mutant CaMKK beta, suggesting that CaMKK beta contributes to PIA-induced AMPK activation in cells. AMPK activation promoted PIA-induced cytotoxicity because PIAs were less cytotoxic in AMPKalpha-/- murine embryonic fibroblasts or LKB1-mutant NSCLC cells transfected with mutant AMPK. This mechanism was also relevant in vivo. Treatment of LKB1-mutant NSCLC xenografts with PIA decreased tumor volume by approximately 50% and activated AMPK. These studies show that PIAs recapitulate the activity of two tumor suppressors (PTEN and LKB1) that converge on mTOR. Moreover, they suggest that PIAs might have utility in the treatment of LKB1-mutant lung adenocarcinomas.  相似文献   

5.
Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.  相似文献   

6.
Considerable evidence has demonstrated that UVB irradiation is a strong carcinogen for nonmelanoma skin cancer. Up-regulation of cyclooxygenase-2 (Cox-2) has been shown to be a crucial event in human keratinocytes in their responses to UVB irradiation. To further understand the molecular mechanisms governing Cox-2 regulation, we found that UVB irradiation significantly increased Cox-2 mRNA stability by inducing cytoplasmic localization and protein abundance of human antigen R (HuR). We also found that AMP-activated kinase (AMPK) mediates these events and that UVB reduces AMPK activity by down-regulating LKB1 kinase. Finally, we propose a novel model in which UVB regulates Cox-2 mRNA stability through the LKB1/AMPK pathway.  相似文献   

7.
Epithelial ovarian cancer (EOC) metastasis is a direct contributor to high recurrence and low survival for patients with this disease. Metastasis in EOC occurs by cell exfoliation from the primary tumor into the fluid-filled peritoneal cavity, persistence of these cells as non-adherent multicellular aggregates or spheroids and reattachment of spheroids to form secondary lesions. We have recovered native spheroids from ascites fluid and demonstrated that EOC cells within these structures exhibit reduced proliferation, yet regain the capacity to attach and reinitiate cell division. To model this process in vitro for further investigation, primary EOC cells from patient peritoneal fluid were cultured under non-adherent conditions. Here we show that these cells naturally form spheroids resembling those observed in ascites. Spheroids exhibit reduced cell proliferation and a protein expression pattern consistent with cellular quiescence: specifically, decreased phospho-AKT and p45/SKP2 with a concomitant increase in p130/RBL2 and p27(Kip1). However, when spheroids are seeded to an adherent surface, reattachment occurs rapidly and is followed by reinitiation of AKT-dependent cell proliferation. These results were strikingly consistent among numerous clinical specimens and were corroborated in the EOC cell line OVCAR3. Therefore, our data reveal that EOC cells become quiescent when forming spheroids, but reactivate proliferative mechanisms upon attachment to a permissive substratum. Overall, this work utilizes a novel in vitro model of EOC metastasis that employs primary human EOC cells and introduces the important concept of reversible dormancy in EOC pathogenesis.  相似文献   

8.
Links between cancer and metabolism have been suggested for a long time but compelling evidence forthis hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as atumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers,a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulatedby pharmacological molecules such as metformin in cancer cells. In addition, AMPK plays a central role in thecontrol of cell growth, proliferation and autophagy through the regulation of mTOR activity, which is consistentlyderegulated in cancer cells. Targeting of AMPK/mTOR is thus an attractive strategy in the development oftherapeutic agents against non-small-cell lung cancer (NSCLC). In this review, the LKB1/AMPK/mTOR signalingpathway is described, highlighting its protective role, and opportunities for therapeutic intervention, and clinicaltrials in NSCLC.  相似文献   

9.
The present study aims to determine the effect of AMPK on etoposide-induced apoptosis of cancer cells. Our results revealed that etoposide induced AMPK activation in prostate C4-2 cancer cells, an event that was attenuated by ATM siRNA. In A549 cells that lack LKB1, AMPK was unable to be activated by etoposide, which was restored by introduction of LKB1. Likewise, silencing LKB1 in C4-2 cells impaired AMPK activation. Finally, etoposide displayed a potent pro-apoptotic effect in cancer cells with functional LKB1 and AMPK. Thus, our results establish a linear relationship of ATM, LKB1 and AMPK in response to the DNA damage drug.  相似文献   

10.
Liu JL  Mao Z  Gallick GE  Yung WK 《Neuro-oncology》2011,13(2):184-194
The regulation of the subcellular localization of phosphatase and tensin homologue (PTEN) is critical to its tumor-suppressing functions. Previously, we found that the activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR/S6 protein kinase (S6K) cascade triggers the nuclear export of PTEN during the G1/S transition. Because mTOR can be alternatively downregulated by tuberous sclerosis complex 2 (TSC2) activation mediated by 5' adenosine monophosphate-activated protein kinase (AMPK), we proposed that the activation of AMPK α1/2 by LKB1 and/or by calmodulin-dependent protein kinase kinase (CaMKK) would also block the nuclear export of PTEN in a manner similar to that of inhibitors of PI3K, mTOR, and S6K. We found that in LKB1-null A549 lung adenocarcinoma cells, an AMPK activator, metformin, failed to block the nuclear export of PTEN, and the reintroduction of functional LKB1 into these cells restored the metformin-mediated inhibition of the nuclear export of PTEN. In addition, the nuclear export of PTEN was blocked in cells treated with the CaMKK activator ATP, and this inhibition was reversed by the addition of inhibitors of either AMPK (compound C) or CaMKK (STO-609). Although the nuclear export of PTEN is blocked by metformin in MCF-7 breast cancer cells carrying wild-type LKB1, this inhibition could not be reversed by an AMPK inhibitor, suggesting that LKB1 could regulate the nuclear export of PTEN by bypassing AMPK α1/2. Moreover, ATP could not block the nuclear export of PTEN in AMPK α1/2(-/-) or TSC2(-/-) mouse embryonic fibroblasts. However, metformin was still able to induce the LKB1-mediated inhibition of the nuclear export of PTEN in these cells. Taken together, these findings strongly suggest that although CaMKK mediates the nuclear retention of PTEN mainly through the activation of AMPK, LKB1 can regulate the nuclear-cytoplasmic trafficking of PTEN, with or without the AMPK/TSC2/mTOR/S6K-signaling intermediates.  相似文献   

11.
Initially identified as the Caenorhabditis elegans PAR-4 homologue, the serine threonine kinase LKB1 is conserved throughout evolution and ubiquitously expressed. In humans, LKB1 is causally linked to the Peutz–Jeghers syndrome and is one of the most commonly mutated genes in several cancers like lung and cervical carcinomas. These observations have led to classify LKB1 as tumour suppressor gene. Although, considerable dark zones remain, an impressive leap in the understanding of LKB1 functions has been done during the last decade. Role of LKB1 as a major actor of the AMPK/mTOR pathway connecting cellular metabolism, cell growth and tumorigenesis has been extensively studied probably to the detriment of other functions of equal importance. This review will discuss about LKB1 activity regulation, its effectors and clues on their involvement in cell polarity.  相似文献   

12.
13.
Hou X  Liu JE  Liu W  Liu CY  Liu ZY  Sun ZY 《Oncogene》2011,30(26):2933-2942
It has been suggested that adenosine monophosphate-activated protein kinase (AMPK) and 12 AMPK-related kinases (ARK), including novel (nua) kinase family 1 (NUAK1), are activated by master kinase LKB1, a major tumor suppressor. Apart from evidence to suggest that NUAK1 participates in induction of tumor survival, invasion and p53-independent cellular senescence, its detailed biological functions remain unclear. Here we showed that in the presence of wild-type LKB1, NUAK1 directly interacts with and phosphorylates p53 in vitro and in vivo. The phosphorylation of p53 induced by LKB1 required the kinase activity of NUAK1 and phosphorylation of NUAK1 at Thr211 by LKB1 was essential for its kinase activity, which leads to the conclusion that LKB1 activates NUAK1 and regulates phosphorylation of p53 through the NUAK1 kinase, at least partially. LKB1/NUAK1 activation leads to cell cycle arrest at the G(1)/S border by inducing expression of p21/WAF1. Under the regulation of LKB1, NUAK1 interacts with p53 in the nucleus and binds to the p53-responsive element of p21/WAF1 promoter. These findings have highlighted a novel role for NUAK1 in LKB1-related signaling pathways; NUAK1 can regulate cell proliferation and exert tumor suppression through direct interaction with p53.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Although AMPK is traditionally thought to play a major role in the regulation of cellular lipid and protein metabolism, recent discoveries reveal that AMPK inhibits mammalian target of rapamycin (mTOR) signaling and connects with several tumor suppressors such as liver kinase B1 (LKB1), p53, and tuberous sclerosis complex 2 (TSC2), indicating that AMPK may be a potential target for cancer prevention and treatment. For the first time, we demonstrated that apigenin, a naturally occurring nonmutagenic flavonoid, induced AMPK activation in human keratinocytes (both cultured HaCaT cell line and primary normal human epidermal keratinocytes). Through experiments with over-expression of constitutively active Akt and knockdown of LKB1 expression by siRNAs, we further found that the activation of AMPK by apigenin was not dependent on its inhibition of Akt, and was independent of the activation of upstream kinase LKB1. Instead, another upstream kinase of AMPK, calcium/calmodulin-dependent protein kinase kinase-β (CaMKKβ), was required for apigenin-induced AMPK activation. We have demonstrated that knockdown of CaMKKβ expression by siRNA or inhibition of CaMKKβ activity by either CaMKK inhibitor STO-609 or BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; a chelator of intracellular Ca(2+)) prevented apigenin-induced AMPK activation. Apigenin-induced AMPK activation inhibited mTOR signaling and further induced autophagy in human keratinocytes. These results suggest that one of the mechanisms by which apigenin exerts its chemopreventive action may be through activation of AMPK and induction of autophagy in human keratinocytes.  相似文献   

15.
The LKB1 tumour suppressor is a serine/threonine kinase that functions as master regulator of cell growth, metabolism, survival and polarity. LKB1 is frequently mutated in human cancers and research spanning the last two decades have begun decoding the cellular pathways deregulated following LKB1 inactivation. This work has led to the identification of vulnerabilities present in LKB1-deficient tumour cells. Pre-clinical studies have now identified therapeutic strategies targeting this subset of tumours that promise to benefit this large patient population harbouring LKB1 mutations. Here, we review the current efforts that are underway to translate pre-clinical discovery of therapeutic strategies targeting LKB1 mutant cancers into clinical practice.  相似文献   

16.

Purpose

Activation of AMPK by the tumor suppressor LKB1 represents an essential gatekeeping step for cells under energetic stress to prevent their growth and proliferation by inhibiting mTOR activation, until the energy supply normalizes. The LKB1/AMPK pathway is frequently downregulated in various types of cancer, thereby uncoupling tumor cell growth and proliferation from energy supply. As yet, little information is available on the role of the LKB1/AMPK pathway in tumors derived from salivary gland tissues.

Methods

We performed LKB1 protein expression and AMPK and mTOR activation analyses in several salivary gland tumor types and their respective healthy control tissues using immunohistochemistry.

Results

No significant downregulation of LKB1 expression or decreased activation of AMPK or mTOR were observed in any of the salivary gland tumors tested. In contrast, we found that the salivary gland tumors exhibited an increased rather than a decreased AMPK activation. Although the PI3K/Akt pathway was found to be activated in most of the analyzed tumor samples, the unchanged robust activity of LKB1/AMPK likely prevents (over)activation of mTOR.

Conclusion

In contrast to many other types of cancer, inactivation or downregulation of the LKB1/AMPK pathway does not substantially contribute to the pathogenesis of salivary gland tumors.
  相似文献   

17.
AMP-activated protein kinase (AMPK) is recognized as a master regulator of energy homeostasis. In concert with the AMPK-kinase LKB1, it has been shown to provide a molecular link between obesity and postmenopausal breast cancer via its actions to inhibit aromatase expression, hence estrogen production, within the breast. The anti-diabetic drug metformin is known to increase the activity of AMPK and was therefore hypothesized to inhibit aromatase expression in primary human breast adipose stromal cells. Results demonstrate that metformin significantly decreases the forskolin/phorbol ester (FSK/PMA)-induced expression of aromatase at concentrations of 10 and 50 μM. Consistent with the hypothesized actions of metformin to increase AMPK activity, treatment with 50 μM metformin results in a significant increase in phosphorylation of AMPK at Thr172. Interestingly, metformin also causes a significant increase in LKB1 protein expression and promoter activity, thereby providing for the first time an additional mechanism by which metformin activates AMPK. Furthermore, metformin inhibits the nuclear translocation of CRTC2, a CREB-coactivator known to increase aromatase expression which is also a direct downstream target of AMPK. Overall, these results suggest that metformin would reduce the local production of estrogens within the breast thereby providing a new key therapeutic tool that could be used in the neoadjuvant and adjuvant settings and conceivably also as a preventative measure in obese women.  相似文献   

18.
19.
Tuberin, the Tsc2 gene product, integrates the phosphatidylinositol 3-kinase/mitogen-activated protein kinase (mitogenic) and LKB1/AMP-activated protein kinase (AMPK; energy) signaling pathways, and previous independent studies have shown that loss of tuberin is associated with elevated AMPK signaling and altered p27 function. In Tsc2-null tumors and tumor-derived cells from Eker rats, we observed elevated AMPK signaling and concordant cytoplasmic mislocalization of p27. Cytoplasmic localization of p27 in Tsc2-null cells was reversible pharmacologically using inhibitors of the LKB1/AMPK pathway, and localization of p27 to the cytoplasm could be induced directly by activating AMPK physiologically (glucose deprivation) or genetically (constitutively active AMPK) in Tsc2-proficient cells. Furthermore, AMPK phosphorylated p27 in vitro on at least three sites including T170 near the nuclear localization signal, and T170 was shown to determine p27 localization in response to AMPK signaling. p27 functions in the nucleus to suppress cyclin-dependent kinase-2 (Cdk2) activity and has been reported to mediate an antiapoptotic function when localized to the cytoplasm. We found that cells with elevated AMPK signaling and cytoplasmic p27 localization exhibited elevated Cdk2 activity, which could be suppressed by inhibiting AMPK signaling. In addition, cells with elevated AMPK signaling and cytoplasmic p27 localization were resistant to apoptosis, which could be overcome by inhibition of AMPK signaling and relocalization of p27 to the nucleus. These data show that AMPK signaling determines the subcellular localization of p27, and identifies loss of integration of pathways controlling energy balance, the cell cycle, and apoptosis due to aberrant AMPK and p27 function as a feature of cells that have lost the Tsc2 tumor suppressor gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号