首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group.  相似文献   

2.
H5N1 influenza virus is one of the viruses that can potentially cause an influenza pandemic. Protection of newborns against influenza virus infection could be effectively provided by maternal immunization. In this study, female mice were immunized with H5N1 HA DNA vaccine or inactivated whole-virion vaccine, and the protection provided by maternal antibodies in their offspring against a lethal homologous influenza virus challenge was compared. The results showed that maternal antibodies, whether induced by a DNA vaccine or an inactivated vaccine, could completely protect offspring aged 1-4 weeks from a lethal influenza virus challenge. Breast-feeding was the major route of transfer for maternal antibodies. Milk-derived antibodies were able to effectively protect the offspring aged 1-4 weeks from lethal influenza virus infection, whereas maternal antibodies transferred through the placenta only partially protected the offspring 1-2 weeks of age. The milk- and placenta-transferred IgG2a antibody levels in offspring from their mothers, whether vaccinated with DNA vaccine or inactivated vaccine, were higher than the IgG1 levels. Our results indicated that maternal vaccination with HA DNA, as well as with whole-virion inactivated vaccine, could offer effective protection to offspring against H5N1 influenza virus infection.  相似文献   

3.
The identification of a safe and effective adjuvant that is able to enhance mucosal immune responses is necessary for the development of an efficient inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of extracts of mycelia derived from edible mushrooms as adjuvants for intranasal influenza vaccine. The adjuvant effect of extracts of mycelia was examined by intranasal co‐administration of the extracts and inactivated A/PR8 (H1N1) influenza virus hemagglutinin (HA) vaccine in BALB/c mice. The inactivated vaccine in combination with mycelial extracts induced a high anti‐A/PR8 HA‐specific IgA and IgG response in nasal washings and serum, respectively. Virus‐specific cytotoxic T‐lymphocyte responses were also induced by administration of the vaccine with extract of mycelia, resulting in protection against lethal lung infection with influenza virus A/PR8. In addition, intranasal administration of NIBRG14 vaccine derived from the influenza A/Vietnam/1194/2004 (H5N1) virus strain administered in conjunction with mycelial extracts from Phellinus linteus conferred cross‐protection against heterologous influenza A/Indonesia/6/2005 virus challenge in the nasal infection model. In addition, mycelial extracts induced proinflammatory cytokines and CD40 expression in bone marrow‐derived dendritic cells. These results suggest that mycelial extract‐adjuvanted vaccines can confer cross‐protection against variant H5N1 influenza viruses. The use of extracts of mycelia derived from edible mushrooms is proposed as a new safe and effective mucosal adjuvant for use for nasal vaccination against influenza virus infection. J. Med. Virol. 82:128–137, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
A safe and effective adjuvant is necessary to enhance mucosal immune responses for the development of an inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of surf clam microparticles (SMP) derived from natural surf clams as an adjuvant for an intranasal influenza vaccine. The adjuvant effect of SMP was examined when co-administered intranasally with inactivated A/PR8 (H1N1) influenza virus hemagglutinin vaccine in BALB/c mice. Administration of the vaccine with SMP induced a high anti-PR8 haemagglutinin (HA)-specific immunoglobulin A (IgA) response in the nasal wash and immunoglobulin G (IgG) response in the serum, resulting in protection against both nasal-restricted infection and lethal lung infection by A/PR8 virus. In addition, administration of SMP with A/Yamagata (H1N1), A/Beijing (H1N1), or A/Guizhou (H3N2) vaccine conferred complete protection against A/PR8 virus challenge in the nasal infection model, suggesting that SMP adjuvanted vaccine can confer cross-protection against variant influenza viruses. The use of SMP is suggested as a new safe and effective mucosal adjuvant for nasal vaccination against influenza virus infection.  相似文献   

5.
Vaccination represents the most economic and effective strategy of preventing influenza pandemics. We previously demonstrated that intranasal immunization of mice with recombinant hemagglutinin and the mast cell activator C48/80 elicited protective immunity against challenge with the 2009 pandemic H1N1 influenza in mice, demonstrating that the novel C48/80 mucosal adjuvant was safe and effective. The present study demonstrated that intranasal immunization with inactivated H1N1 virus and C48/80 elicited protective immunity against lethal challenge with homologous virus, however, when the immunogen was replaced with inactivated H5N1 virus protection was lost. These observations suggested that the adjuvant effects conferred by C48/80 were virus subtype specific and that its use as a broad-spectrum adjuvant for use in immunizations against all influenza viruses needs to be further analyzed.  相似文献   

6.
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.  相似文献   

7.
Chitin in the form of microparticles (chitin microparticles, CMP) has been demonstrated to be a potent stimulator of macrophages, promoting T-helper-1 (Th1) activation and cytokine response. In order to examine the mucosal adjuvant effect of CMP co-administered with influenza hemagglutinin (HA) vaccine against influenza infection, CMP were intranasally co-administered with influenza HA vaccine prepared from PR8 (H1N1) virus. Inoculation of the vaccine with CMP induced primary and secondary anti-HA IgA responses in the nasal wash and anti-HA IgG responses in the serum, which were significantly higher than those of nasal vaccination without CMP, and provided a complete protection against a homologous influenza virus challenge in the nasal infection influenza model. In addition, CMP-based immunization using A/Yamagata (H1N1) and A/Guizhou (H3N2) induced PR8 HA-reactive IgA in the nasal washes and specific-IgG in the serum. The immunization with A/Yamagata and CMP resulted in complete protection against a PR8 (H1N1) challenge in A/Yamagata (H1N1)-vaccinated mice, while that with A/Guizhou (H3N2) and CMP exhibited a 100-fold reduction of nasal virus titer, demonstrating the cross-protective effect of CMP and influenza vaccine. It is suggested that CMP provide a safe and effective adjuvant for nasal vaccination with inactivated influenza vaccine.  相似文献   

8.
It is currently impossible to predict the next pandemic influenza virus strain. We have thus established a library of influenza viruses of all hemagglutinin and neuraminidase subtypes and their genes. In this article, we examine the applicability of a rapid production model for the preparation of vaccines against emerging pandemic influenza viruses. This procedure utilizes the influenza virus library, cell culture-based vaccine production, and intranasal administration to induce a cross-protective immune response. First, an influenza virus reassortant from the library, A/duck/Hokkaido/Vac-3/2007 (H5N1), was passaged 22 times (P22) in Madin-Darby canine kidney (MDCK) cells. The P22 virus had a titer of >2 ×108 PFU/ml, which was 40 times that of the original strain, with 4 point mutations, which altered amino acids in the deduced protein sequences encoded by the PB2 and PA genes. We then produced a formalin-inactivated whole-virion vaccine from the MDCK cell-cultured A/duck/Hokkaido/Vac-3/2007 (H5N1) P22 virus. Intranasal immunization of mice with this vaccine protected them against challenges with lethal influenza viruses of homologous and heterologous subtypes. We further demonstrated that intranasal immunization with the vaccine induced cross-reactive neutralizing antibody responses against the homotypic H5N1 influenza virus and its antigenic variants and cross-reactive cell-mediated immune responses to the homologous virus, its variants within a subtype, and even an influenza virus of a different subtype. These results indicate that a rapid model for emergency vaccine production may be effective for producing the next generation of pandemic influenza virus vaccines.  相似文献   

9.
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice.  相似文献   

10.
A vaccine against the novel pandemic influenza virus (2009 H1N1) is available, but several problems in preparation of vaccines against the new emerging influenza viruses need to be overcome. DNA vaccines represent a novel and powerful alternative to conventional vaccine approaches. To evaluate the ability of a DNA vaccine encoding the hemagglutinin (HA) of 2009 H1N1 to generate humoral responses and protective immunity, BALB/c mice were immunized with various doses of 2009 H1N1 HA-encoding plasmid and anti-HA total IgG, hemagglutination inhibition antibodies and neutralizing antibodies were assayed. The total IgG titers against HA correlated positively with the doses of DNA vaccine, but immunization with either a low dose (10 μg) or a higher dose (25-200 μg) of HA plasmid resulted in similar titers of hemagglutination inhibition and neutralizing antibodies, following a single booster. Further, 10 μg plasmid conferred effective protection against lethal virus challenge. These results suggested that the DNA vaccine encoding the HA of 2009 H1N1 virus is highly effective for inducing neutralizing antibodies and protective immunity. DNA vaccines are a promising new strategy for the rapid development of efficient vaccines to control new emerging pandemic influenza viruses.  相似文献   

11.
The novel influenza A(H1N1)pdm09 virus caused an influenza pandemic in 2009. IgM, IgG, and IgA antibody responses to A(H1N1)pdm09 hemagglutinin (HA) following A(H1N1)pdm09 virus infection were analyzed to understand antibody isotype responses. Age-matched control sera collected from U.S. residents in 2007 and 2008 were used to establish baseline levels of cross-reactive antibodies. IgM responses often used as indicators of primary virus infection were mainly detected in young patient groups (≤5 years and 6 to 15 years old), not in older age groups, despite the genetic and antigenic differences between the HA of A(H1N1)pdm09 virus and pre-2009 seasonal H1N1 viruses. IgG and IgA responses to A(H1N1)pdm09 HA were detected in all age groups of infected persons. In persons 17 to 80 years old, paired acute- and convalescent-phase serum samples demonstrated ≥4-fold increases in the IgG and IgA responses to A(H1N1)pdm09 HA in 80% and 67% of A(H1N1)pdm09 virus-infected persons, respectively. The IgG antibody response to A(H1N1)pdm09 HA was cross-reactive with HAs from H1, H3, H5, and H13 subtypes, suggesting that infections with subtypes other than A(H1N1)pdm09 might result in false positives by enzyme-linked immunosorbent assay (ELISA). Lower sensitivity compared to hemagglutination inhibition and microneutralization assays and the detection of cross-reactive antibodies against homologous and heterologous subtype are major drawbacks for the application of ELISA in influenza serologic studies.  相似文献   

12.
Mice that were intranasally immunized with different influenza A virus hemagglutinins (HA), derived from PR8 (H1N1), A/Yamagata (H1N1) or A/Fukuoka (H3N2) virus, together with cholera toxin B subunit as an adjuvant, were examined for protection against PR8 infection; PR8 HA and A/Yamagata HA immunization conferred complete protection, while A/Fukuoka HA immunization failed to confer protection. In parallel with protection, PR8 HA-, A/Yamagata HA-, and A/Fukuoka HA-immunized mice produced a high, a moderate and a low level of PR8 HA-reactive IgA in the respiratory tract, respectively. These IgA antibodies were not only higher in content in the nasal secretions, but also more cross-reactive than IgG. The purified IgA antibodies from respiratory tract washings of PR8 HA-immunized mice, which contained the HA-specific IgA corresponding to the amount detected in the nasal wash, were able to protect mice from PR8 challenge when transferred to the respiratory tract of naive mice. The transfer of IgA from A/Yamagata HA-immunized mice also afforded cross-protection against PR8 infection, whereas the IgA from A/Fukuoka HA-immunized mice failed to provide protection. The ability of transferred IgA to prevent viral infection was dependent on the amount of HA-reactive IgA remaining in the respiratory tract of the host at the time of infection. These experiments directly demonstrate that IgA antibodies to influenza A virus HA by themselves play a pivotal role in defence not only against homologous virus infection, but also against heterologous drift virus infection at the respiratory mucosa, the portal of entry for the viruses.  相似文献   

13.
Avian influenza subunit vaccines have been shown to be poorly immunogenic, leading to the re‐evaluation of the immunogenic and dose‐sparing potential of whole virus vaccines. In this study, we investigated the immune responses after one or two doses of intramuscular or intranasal whole inactivated influenza H5N1 virus vaccine in BALB/c mice. Serum samples and nasal washings were collected weekly post‐vaccination and analysed using enzyme‐linked immunosorbent assay (ELISA). Sera were also analysed by the haemagglutination inhibition (HI) assay. Antibody‐secreting cells were measured in lymphocytes from spleen and bone marrow via enzyme‐linked immunospot (ELISPOT). Splenocytes were stimulated in vitro, and T‐helper profiles were measured through multiplex bead assay in the supernatants, or intracellularly by multiparametric flow cytometry. Both vaccine routes induced high HI titres following the second immunization (intramuscular = 370, intranasal = 230). Moreover, the intramuscular group showed significantly higher levels of serum IgG (P < 0.01), IgG1 (P < 0.01) and IgG2a (P < 0.01) following the second vaccine dose, while the intranasal group exhibited significantly higher levels of serum IgA (P < 0.05) and local IgA (P < 0.01) in the nasal washings. Also, IgA antibody‐secreting cells were found in significantly higher numbers in the intranasal group in both the spleen (P < 0.01) and the bone marrow (P < 0.01). Moreover, Th1 (TNF‐α, IL‐2, IFN‐γ) and Th2 (IL‐4, IL‐5, IL‐10) cytokines were expressed by both groups, yet only the intranasal group expressed the Th17 marker IL‐17. As the intranasal vaccines induce local IgA and are easily administered, we suggest the intranasally administered whole virus vaccine as a promising candidate for a pandemic H5N1 vaccine.  相似文献   

14.
The use of virosomes as a vaccine platform has proven successful against several viruses. Here we examined the protective efficacy of a virosome-based vaccine consisting of avian influenza virus (AIV) A/Duck/Czech/56/H4N6 in chickens against a homologous AIV challenge. Virosomes adjuvanted with CpG-ODN or recombinant chicken interferon (IFN)-γ significantly reduced virus shedding after virus challenge. Furthermore, immunization with virosomes adjuvanted with CpG-ODN increased hemagglutination inhibition (HI) and virus-specific neutralizing serum antibodies, as well as virus-specific serum IgG and mucosal IgA responses. We also found a significant increase in the expression of type I and II interferon genes in the protected birds following virus challenge. In summary, this study demonstrated the ability of virosomes adjuvanted with CpG-ODN to reduce AIV shedding, and elicit virus-specific protective antibody responses in vaccinated birds.  相似文献   

15.
The increasing number of recent outbreaks of HPAI H5N1 in birds and humans brings out an urgent need to develop potent H5N1 vaccine regimens. Here we present a study on the intranasal vaccination of recombinant baculovirus surface-displayed hemagglutinin (BacHA) or inactivated whole H5N1 viral (IWV) vaccine with a recombinant cholera toxin B subunit (rCTB) as a mucosal adjuvant in a BALB/c mouse model. Two groups of mice were vaccinated with different doses (HA titer of log 24 or log 28) of either HA surface-displayed baculovirus or inactivated whole viral vaccine virus adjuvanted with different doses (2 μg or 10 μg) of rCTB. The vaccinations were repeated after 28 days. HA specific serum IgG and mucosal IgA antibodies were quantified by indirect ELISA, and serum neutralizing antibody titer were estimated by hemagglutination inhibition (HI) assay and virus neutralization titer assay. Functional protective efficacy of the vaccine was assessed by host challenge against HPAI H5N1 strains. The results revealed that mice co-administered with log 28 HA titer of BacHA vaccine and adjuvanted with 10 μg of rCTB had a significantly enhanced serum IgG and mucosal IgA immune response and serum microneutralization titer compared with mice administered with unadjuvanted log 24 or log 28 HA titer of BacHA alone. Also vaccination with 10 μg of rCTB and log 28 HA titer of BacHA elicited higher HA specific serum and mucosal antibody levels and serum HI titer than vaccination with log 28 HA titer of inactivated H5N1 virus adjuvanted with the same dose of rCTB. The host challenge study also showed that 10 μg rCTB combined with log 28 HA titer of BacHA provided 100% protection against 10MLD50 of homologous and heterologous H5N1 strains. The study shows that the combination of rH5 HA expressed on baculovirus surface and rCTB mucosal adjuvant form an effective mucosal vaccine against H5N1 infection. This baculovirus surface-displayed vaccine is more efficacious than inactivated H5N1 influenza vaccine when administered by intranasal route and has no biosafety concerns associated with isolation, purification and production of the latter vaccine.  相似文献   

16.
Influenza vaccines based on conserved antigens could provide cross-protection against infections by multiple subtypes of influenza A virus. Influenza matrix protein 2 (M2) is highly conserved in all influenza A strains. In this study, we deleted the transmembrane domain of the M2 of the avian influenza virus (AIV) A/Chicken/Jiangsu/7/2002 (H9N2) strain to create an M2 without a transmembrane domain, named sM2, which was efficiently expressed in Escherichia coli. The sM2 protein was administered intranasally to mice in combination with chitosan adjuvant three times at an interval of 3 weeks. Three weeks after the last immunization, the mice were challenged with a lethal dose (5 × LD50) of A/Chicken/Jiangsu/7/2002 (H9N2) virus, PR8 (H1N1) virus and A/Chicken/Henan/12/2004 (H5N1) virus. The protective immunity of the vaccine was evaluated by determining the survival rates, residual lung virus titers, body weight, and the serum antibody titers of the mice. Nasal administration of 15 μg sM2 in combination with chitosan completely protected mice against the homologous virus and protected 90 and 30% of the mice against the heterologous H1N1 and H5N1 viruses, respectively. The study indicated that the sM2 protein was a candidate antigen for a broad-spectrum influenza virus vaccine and that the adjuvant chitosan improved the efficacy of the sM2 vaccine.  相似文献   

17.
《Mucosal immunology》2015,8(1):211-220
The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine.  相似文献   

18.
The producers of influenza vaccines are not capable today to meet the global demand for an influenza vaccine in case of pandemic, so the World Health Organization recommends to develop the own influenza vaccine production in each country. A domestic preservative‐ and adjuvant‐free trivalent split vaccine against seasonal influenza was developed at the Research Institute for Biological Safety Problems. The paper presents the results of assessing safety and immunogenicity of the influenza split vaccine after single immunization of healthy volunteers aged 18‐50 years in the course of Phase I Clinical Trials. This study was randomized, blind, and placebo‐controlled. The volunteers were intramuscularly vaccinated with a dose of split vaccine or placebo. The study has shown that all local and systemic reactions had low degree of manifestation and short‐term character, so there was no need in medication. Serious side effects were not observed. On day 21 post vaccination the portion of vaccinated persons with fourfold seroconversions to influenza А/H1N1pdm09 virus was 100.0%, to influenza А/H3N2 virus—95.5%, to influenza B virus—81.8%, and in placebo group this index was 0%. Seroprotection rates against influenza А/H1N1pdm09, А/H3N2 and B viruses were 95.5, 86.3, and 72.7%, respectively. Geometric mean titers (GMT) of antibodies by day 21 post vaccination reached 175.7 for influenza А/H1N1pdm09 virus, 64.2 for influenza А/H3N2 virus, and 37.6 for influenza B virus; in placebo group GMT growth was not observed. So, the seasonal influenza split vaccine is well tolerated and fits all immunogenicity criteria for human influenza vaccines.  相似文献   

19.
Mice immunized intranasally with a formalin-inactivated A/PR/8/34 (H1N1) influenza whole virus vaccine adjuvanted with cholera toxin, outer membrane vesicles from group B meningococci or formalin-inactivated whole cell Bordetella pertussis were protected against replication of the homologous virus in the nasal cavity. Only some mice were protected against clinical illness measured as weight loss and lowered body temperature. All mice immunized subcutaneously with one-tenth the intranasal vaccine dose without adjuvant were protected against clinical illness but not against local mucosal viral replication. Replicating virus was primarily found in animals with low concentrations of immunoglobulin (Ig)-A antibodies in saliva regardless of concentrations of IgG antibodies in serum. Clinical illness was seen only in those with low serum antibodies regardless of antibody levels in saliva. Nonreplicating nasal vaccines may not be sufficiently protective unless they also have a substantial influence on systemic immunity.  相似文献   

20.
目的 通过高致病性人禽流感H5N1全病毒-MF59佐剂疫苗滴鼻免疫Balb/c小鼠,评价该疫苗所诱导的系统免疫与黏膜免疫应答效果.方法 以不同剂量抗原按比例与MF59佐剂配伍制成粘膜疫苗,滴鼻免疫Balb/c小鼠,二免2周采血检测血清IgG、IgM效价及血清中HAI(HA inhibitor)的中和抗体效价,同时收集鼻、肺灌洗液,检测其lgG和slgA抗体效价.结果 H5NI+MF59组血清抗体效价较H5NI组有显著升高(P<0.01);在各剂量组中,随着剂量的增加抗体效价呈上升趋势.12μg腭后抗体效价呈下降趋势,以HSNI+MF59(12μg)组效价最高;肺鼻灌洗液中,均可检测到特异性分泌型IrA、IsG,其中特异性分泌型IgA效价略高于IgG;抗体亚型的分布以IgG1、IgG2b为主.结论 灭活高致病性禽流感全病毒H5N1在佐剂MF59作用下可诱导机体产生体液免疫应答,同时还可以在黏膜局部产生特异性分泌型IgA、IsG,为高致病人禽流感病毒I-15N1黏膜疫苗的研制奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号