首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients presenting with primary pigmented nodular adrenocortical disease (PPNAD), Carney complex (CNC), or sporadic tumors were previously found to carry germline mutations in the human type Ialpha regulatory subunit (RIalpha) of adenosine 3',5'-cyclic monophosphate (cyclic AMP [cAMP])-dependent protein kinase (PKA; PRKAR1A). Although about 90% of disease-causing PRKAR1A mutations lead to premature stop codon generation and subsequent degradation of the mutant message by nonsense-mediated mRNA decay (NMD), here we describe seven PRKAR1A mutations whose mRNAs do not seem to undergo NMD and instead result in an expressed mutant RIalpha protein. The expressed mutations (p.Ser9Asn, p.Glu60_Lys116del [Delta-exon 3], p.Arg74Cys, p.Arg146Ser, p.Asp183Tyr, p.Ala213Asp, and p.Gly289Trp) were spread over all the functional RIalpha domains, and all of them exhibited increased PKA activity, which we attribute to decreased binding to cAMP and/or the catalytic subunit. Our data further corroborate the previous finding that altered PRKAR1A function, not only haploinsufficiency, is enough to elevate PKA activity which is apparently associated with tumorigenesis in tissues affected by CNC. In some cases, as with the Delta-exon 3 mutation, we may even conclude that the presence of a mutant PRKAR1A protein may be more harmful than allelic loss.  相似文献   

2.
Cardiac myxoma is the most common cardiac tumour. Most lesions occur sporadically, but occasional lesions develop in patients with Carney complex, a syndrome characterized by cardiac myxoma, spotty pigmentation, and endocrine overactivity. Two‐thirds of patients with Carney complex harbour germline mutations in PRKAR1A, which encodes the type I regulatory subunit of protein kinase A (PKA). Most studies have not found a mutation in PRKAR1A in sporadic cardiac myxoma cases. Recent studies identified frequent mutations in PRKACA, which encodes the catalytic subunit of PKA, in cortisol‐secreting adrenocortical adenoma cases. To determine whether the PRKACA mutation is involved in the tumourigenesis of cardiac myxoma, we performed Sanger sequencing of 41 specimens of sporadic cardiac myxoma to test for the presence of mutations in the coding regions and intron–exon boundaries of PRKACA. Mutations were identified in four cases (9.7%). In contrast to the point mutations identified in adrenocortical adenoma, all mutations were in‐frame microinsertions of 18–33 bp clustered in exons 7 and 8. The mutated PRKACA proteins lost their ability to bind to PRKAR1A, and thereby lead to constitutive activation of the PKA pathway. Together with previous reports of PRKAR1A mutations in syndromic cardiac myxoma, our study demonstrates the importance of the PKA pathway in the tumourigenesis of cardiac myxoma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

3.
Melanotic Schwannomas (MS) are rare tumors that share histological features with melanocytic tumors and schwannomas. However, their genetics are poorly understood. To elucidate the genetic characteristics of MS, we performed genome‐wide studies in a series of cases. Twelve MS cases were available for the study. Genomic DNAs extracted from formalin‐fixed paraffin embedded tumor tissues were subjected to copy number (CN) and allelic imbalance (AI) analysis by Single Nucleotide Polymorphism (SNP)‐array and screened for mutations in coding exons of 341 key cancer‐associated genes using a hybrid capture‐based next‐generation sequencing (NGS) assay. Sanger sequencing was used to further verify recurrent mutations detected by NGS study. SNP‐array analysis revealed remarkably stereotypic chromosomal abnormalities in MS. Hypodiploidy was common, typically involving monosomies of chromosomes 1, 2, and 17. All 12 samples showed mutations in PRKAR1A gene, including 2 cases with 2 mutations each. The 14 mutations were scattered across PRKAR1A, and most were inactivating mutations. AI on 17q, presenting as loss of heterozygosity with or without CN losses, combined with a PRKAR1A mutation was observed in 9/12 MS cases. The remaining 3 cases included the two samples harboring two mutations in PRKAR1A. MS exhibits a stereotypic pattern of chromosomal losses. In contrast, melanomas are typically characterized by the presence of multiple CN aberrations, without demonstrable differences in the frequency of losses and gains. Inactivation of both alleles of PRKAR1A by “two hits” observed in almost all cases underscores the central role of PRKAR1A in the pathogenesis of this neoplasm. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Acrodysostosis is characterized by a peripheral dysostosis that is accompanied by short stature, midface hypoplasia, and developmental delay. Recently, it was shown that heterozygous point mutations in the PRKAR1A gene cause acrodysostosis with hormone resistance. By mutational analysis of the PRKAR1A gene we detected four different mutations (p.Arg368Stop, p.Ala213Thr, p.Tyr373Cys, and p.Arg335Cys) in four of seven affected patients with acrodysostosis. The combination of clinical results, endocrinological parameters and in silico mutation analysis gives evidence to suppose a pathogenic effect of each mutation. This assumption is supported by the de novo origin of these mutations. Apart from typical radiological abnormalities of the hand bones, elevated thyroid stimulating hormone and parathyroid hormone values as well as short stature are the most common findings. Less frequent features are characteristic facial dysmorphisms, sensorineural hearing loss and mild intellectual disability. These results lead to the conclusion that mutations of PKRAR1A are the major molecular cause for acrodysostosis with endocrinological abnormalities. In addition, in our cohort of 44 patients affected with brachydactyly type E (BDE) we detected only one sequence variant of PRKAR1A (p.Asp227Asn) with an unclear effect on protein function. Thus, we conclude that PRKAR1A mutations may play no major role in the pathogenesis of BDE.  相似文献   

5.
Stratakis CA, Tichomirowa MA, Boikos S, Azevedo MF, Lodish M, Martari M, Verma S, Daly AF, Raygada M, Keil MF, Papademetriou J, Drori‐Herishanu L, Horvath A, Tsang KM, Nesterova M, Franklin S, Vanbellinghen J‐F, Bours V, Salvatori R, Beckers A. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. The prevalence of germline mutations in MEN1, AIP, PRKAR1A, CDKN1B and CDKN2CI is unknown among pediatric patients with pituitary adenomas (PA). In this study, we screened children with PA for mutations in these genes; somatic GNAS mutations were also studied in a limited number of growth hormone (GH) or prolactin (PRL)‐secreting PA. We studied 74 and 6 patients with either isolated Cushing disease (CD) or GH‐ or PRL‐secreting PA, respectively. We also screened four pediatric patients with CD, and four with GH/PRL‐secreting tumors who had some syndromic features. There was one AIP mutation (p.Lys103Arg) among 74 CD patients. Two MEN1 mutations that occurred in patients with recurrent or difficult‐to‐treat disease were found among patients with CD. There was one MEN1 and three AIP mutations (p.Gln307ProfsX104, p.Pro114fsX, p.Lys241X) among pediatric patients with isolated GH‐ or PRL‐secreting PA and one additional MEN1 mutation in a patient with positive family history. There were no mutations in the PRKAR1A, CDKN1B, CDKN2C or GNAS genes. Thus, germline AIP or MEN1 gene mutations are frequent among pediatric patients with GH‐ or PRL‐secreting PA but are significantly rarer in pediatric CD; PRKAR1A mutations are not present in PA outside of Carney complex.  相似文献   

6.
Odontogenic myxomas are rare benign neoplasms affecting the jaw. Myxomas of bones and other sites occur as part of Carney complex (CNC), a multiple neoplasia syndrome caused by mutations in the PRKAR1A gene, which codes for the regulatory subunit of protein kinase A (PKA). In the present study, 17 odontogenic myxomas from patients without CNC were screened for PRKAR1A mutations and PRKAR1A protein expression by immunohistochemistry (IHC). Mutations of the coding region of the PRKAR1A gene were identified in 2 tumors; both these lesions showed no or significantly decreased immunostaining of PRKAR1A in the tumor compared to that in the surrounding normal tissue. One mutation (c.725C>A) led to a nonconservative amino acid substitution in a highly conserved area of the gene (A213D); the other was a single base-pair deletion that led to a frameshift (del774C) and a stop codon 11 amino acids downstream of the mutation site; both tumors were heterozygous for the respective mutations. Of the remaining tumors, 7 of the 15 without mutations showed almost no PRKAR1A in the tumor cells, whereas IHC showed that the protein was abundant in nontumorous cells. We concluded that PRKAR1A may be involved by its down-regulation in the pathogenesis of odontogenic myxomas caused by mutations and/or other genetic mechanisms. Of the sporadic, nonfamilial tumors associated with PRKAR1A mutations, the odontogenic type was the first myxomatous lesion found to harbor somatic PRKAR1A sequence changes.  相似文献   

7.
8.
Carney complex (CNC) is an autosomal dominant multiple neoplasia syndrome, which has been linked to loci on 2p16 and 17q22-24. We recently reported that PRKAR1A, which codes for the type 1A regulatory subunit of protein kinase A (PKA), is a tumor suppressor gene on chromosome 17 that is mutated in some CNC families. To evaluate the spectrum of PRKAR1A mutations, we identified its genomic structure and screened for mutations in 54 CNC kindreds (34 families and 20 patients with sporadic disease). Fourteen families were informative for linkage analysis: four of four families that mapped to 17q had PRKAR1A mutations, whereas there were no mutations found in seven families exhibiting at least one recombination with 17q. In six of the latter, CNC mapped to 2p16. PRKAR1A mutations were also found in 12 of 20 non-informative families and 7 of 20 sporadic cases. Altogether, 15 distinct PRKAR1A mutations were identified in 22 of 54 kindreds (40.7%). In 14 mutations, the sequence change was predicted to lead to a premature stop codon; one altered the initiator ATG codon. Mutant mRNAs containing a premature stop codon were unstable, as a result of nonsense-mediated mRNA decay. Accordingly, the predicted truncated PRKAR1A protein products were absent in these cells. We conclude that (i) genetic heterogeneity exists in CNC; and (ii) all of the CNC alleles on 17q are functionally null mutations of PRKAR1A. CNC is the first human disease recognized to be caused by mutations of the PKA holoenzyme, a critical component of cellular signaling.  相似文献   

9.
Carney complex (CNC) is caused by PRKAR1A-inactivating mutations. PRKAR1A encodes the regulatory subunit type I-alpha (RIalpha) of the cAMP-dependent kinase (PKA) holoenzyme; how RIalpha insufficiency leads to tumorigenesis remains unclear. In many cells PKA inhibits the extracellular receptor kinase (ERK1/2) cascade of the mitogen-activated protein kinase (MAPK) pathway leading to inhibition of cell proliferation. We investigated whether the PKA-mediated inhibitory effect on ERK1/2 is affected in CNC cells that carry germline PRKAR1A mutations. PKA activity both at baseline and after stimulation with cAMP was augmented in cells carrying mutations. Quantitative message analysis showed that the main PKA subunits expressed were type I (RIalpha and RIbeta) but RIalpha was decreased in mutant cells. Immunoblot assays of ERK1/2 phosphorylation by the cell- and pathway-specific stimulant lysophosphatidic acid (LPA) showed activation of this pathway in a time- and concentration-dependent manner that was prevented by a specific inhibitor. There was a greater rate of growth in mutant cells; forskolin and isoproterenol inhibited LPA-induced ERK1/2 phosphorylation in normal but not in mutant cells. Forskolin inhibited LPA-induced cell proliferation and metabolism in normal cells, but stimulated these parameters in mutant cells. These data were also replicated in a pituitary tumor cell line carrying the most common PRKAR1A mutation (c.578del TG), and an in vitro construct of mutant PRKAR1A that was recently shown to lead to augmented PKA-mediated phosphorylation. We conclude that PKA activity in CNC cells is increased and that its stimulation by forskolin or isoproterenol increases LPA-induced ERK1/2 phosphorylation, cell metabolism and proliferation. Reversal of PKA-mediated inhibition of this MAPK pathway in CNC cells may contribute to tumorigenesis in this condition.  相似文献   

10.
Autosomal recessive hypotrichosis (ARH) is characterized by sparse hair on the scalp without other abnormalities. Three genes, DSG4, LIPH, and LPAR6 (P2RY5), have been reported to underlie ARH. We performed a mutation search for the three candidate genes in five independent Japanese ARH families and identified two LIPH mutations: c.736T>A (p.Cys246Ser) in all five families, and c.742C>A (p.His248Asn) in four of the five families. Out of 200 unrelated control alleles, we detected c.736T>A in three alleles and c.742C>A in one allele. Haplotype analysis revealed each of the two mutant alleles is derived from a respective founder. These results suggest the LIPH mutations are prevalent founder mutations for ARH in the Japanese population. LIPH encodes PA‐PLA1α (LIPH), a membrane‐associated phosphatidic acid‐preferring phospholipase A1α. Two residues, altered by these mutations, are conserved among PA‐PLA1α of diverse species. Cys246 forms intramolecular disulfide bonds on the lid domain, a crucial structure for substrate recognition, and His248 is one amino acid of the catalytic triad. Both p.Cys246Ser‐ and p.His248Asn‐PA‐PLA1α mutants showed complete abolition of hydrolytic activity and had no P2Y5 activation ability. These results suggest defective activation of P2Y5 due to reduced 2‐acyl lysophosphatidic acid production by the mutant PA‐PLA1α is involved in the pathogenesis of ARH. Hum Mutat 31:1–9, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
De novo missense mutations and in‐frame coding deletions in the X‐linked gene SMC1A (structural maintenance of chromosomes 1A), encoding part of the cohesin complex, are known to cause Cornelia de Lange syndrome in both males and females. For a long time, loss‐of‐function (LoF) mutations in SMC1A were considered incompatible with life, as such mutations had not been reported in neither male nor female patients. However, recently, the authors and others reported LoF mutations in females with intellectual disability (ID) and epilepsy. Here we present the detailed phenotype of two females with de novo LoF mutations in SMC1A, including a de novo mutation of single base deletion [c.2364del, p.(Asn788Lysfs*10)], predicted to result in a frameshift, and a de novo deletion of exon 16, resulting in an out‐of‐frame mRNA splice product [p.(Leu808Argfs*6)]. By combining our patients with the other recently reported females carrying SMC1A LoF mutations, we ascertained a phenotypic spectrum of (severe) ID, therapy‐resistant epilepsy, absence/delay of speech, hypotonia and small hands and feet. Our data show the existence of a novel phenotypic entity – distinct from CdLS – and caused by de novo SMC1A LoF mutations.  相似文献   

13.
Background: Inactivation of the human type Iα regulatory subunit (RIα) of cyclic AMP dependent protein kinase (PKA) (PRKAR1A) leads to altered kinase activity, primary pigmented nodular adrenocortical disease (PPNAD), and sporadic adrenal and other tumours.

Methods and results: A transgenic mouse carrying an antisense transgene for Prkar1a exon 2 (X2AS) under the control of a tetracycline responsive promoter (the Tg(Prkar1a*x2as)1Stra, Tg(tTAhCMV)3Uh or tTA/X2AS line) developed thyroid follicular hyperplasia and adenomas, adrenocortical hyperplasia and other features reminiscent of PPNAD, including late onset weight gain, visceral adiposity, and non-dexamethasone suppressible hypercorticosteronaemia, with histiocytic, epithelial hyperplasias, lymphomas, and other mesenchymal tumours. These lesions were associated with allelic losses of the mouse chromosome 11 Prkar1a locus, an increase in total type II PKA activity, and higher RIIß protein levels; the latter biochemical and protein changes were also documented in Carney complex tumours associated with PRKAR1A inactivating mutations and chromosome 17 PRKAR1A locus changes.

Conclusion: We conclude that the tTA/X2AS mouse line with a downregulated Prkar1a gene replicates several of the findings in Carney complex patients and their affected tissues, supporting the role of RIα as a candidate tumour suppressor gene.

  相似文献   

14.
SMC1A encodes a structural component of the cohesin complex, which is necessary for sister chromatid cohesion. In addition to its canonical role, cohesin has been shown to be involved in gene expression regulation and maintenance of genome stability. Recently, it has been demonstrated that mutations in the SMC1A gene are responsible for Cornelia de Lange syndrome (CdLS). CdLS is a genetically heterogeneous multisystem developmental disorder with variable expressivity, typically characterized by consistent facial dysmorphia, upper extremity malformations, hirsutism, cardiac defects, growth and cognitive retardation, gastrointestinal abnormalities, and other systemic involvement. SMC1A mutations have also been identified in colorectal cancers. So far a total of 26 different mutations of the SMC1A gene have been reported. All mutations reported to date are either missense or small in‐frame deletions that maintain the open reading frame and presumably result in a protein with residual function. The mutations involve all domains of the protein but appear to cluster in key functional loci. At the functional level, elucidation of the effects that specific SMC1A mutations have on cohesin activity will be necessary to understand the etiopathology of CdLS and its possible involvement in tumorigenesis. In this review, we summarize the current knowledge of SMC1A mutations. Hum Mutat 30:1–6, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
SCN9Aencodes the voltage‐gated sodium channel Nav1.7, a protein highly expressed in pain‐sensing neurons. Mutations in SCN9A cause three human pain disorders: bi‐allelic loss of function mutations result in Channelopathy‐associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non‐truncating mutations in families with CIP: a homozygously‐inherited missense mutation found in a consanguineous Israeli Bedouin family (Nav1.7‐R896Q) and a five amino acid in‐frame deletion found in a sporadic compound heterozygote (Nav1.7‐ΔR1370‐L1374). Both of these mutations map to the pore region of the Nav1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant‐transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Nav1.7. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10‐year‐old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3′ end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy‐terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development.  相似文献   

18.
Sotos syndrome belongs to the family of overgrowth syndromes and is characterized by large head circumference, craniofacial anomalies, advanced bone age and mental retardation. The syndrome is due to haploinsufficiency of the NSD1 gene, consisting of 23 exons with an open reading frame of 8088bp, which makes mutation screening by direct sequencing quite a laborious and expensive task. We have developed a dHPLC screening protocol for mutation detection in NSD1 and identified 9 novel mutations among 33 patients, thus achieving a mutation detection efficiency comparable to direct sequencing. A real‐time quantitative PCR approach identified two patients with NSD1 deletions. Our mutation screen is compared to other studies and all published mutations and polymorphisms are summarized.  相似文献   

19.
20.
A three‐nucleotide (GAG) deletion (ΔE) in TorsinA (TOR1A) has been identified as the most common cause of dominantly inherited early‐onset torsion dystonia (DYT1). TOR1A encodes a chaperone‐like AAA+‐protein localized in the endoplasmic reticulum. Currently, only three additional, likely mutations have been reported in single dystonia patients. Here, we report two new, putative TOR1A mutations (p.A14_P15del and p.E121K) that we examined functionally in comparison with wild‐type (WT) protein and two known mutations (ΔE and p.R288Q). While inclusion formation is a characteristic feature for ΔE TOR1A, elevated levels of aggregates for other mutations were not observed when compared with WT TOR1A. WT and mutant TOR1A showed preferred degradation through the autophagy‐lysosome pathway, which is most pronounced for p.A14_P15del, p.R288Q, and ΔE TOR1A. Notably, blocking of the autophagy pathway with bafilomycin resulted in a significant increase in inclusion formation in p.E121K TOR1A. In addition, all variants had an influence on protein stability. Although the p.A14_P15del mutation affects the proposed oligomerization domain of TOR1A, this mutation did not disturb the ability to dimerize. Our findings demonstrate functional changes for all four mutations on different levels. Thus, both diagnostic and research genetic screening of dystonia patients should not be limited to testing for the ?E mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号