首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The F‐18 labelled methionine derivative S‐(2‐[18F]fluoroethyl)‐L‐homocysteine ([18F]FEHCys) was prepared by a one‐pot two‐step synthesis via the protected S‐(2‐bromoethyl)‐L‐homocysteine 1 and S‐(2‐chloroethyl)‐L‐homocysteine 2 precursors. The bromoethyl derivative 1 gave higher radiochemical yields (40% at 5 min) at 100°C compared with the chloro‐analogue (22% at 100°C in 30 min). However, [18F]FEHCys was found to be unstable in aqueous systems being transformed to the corresponding hydroxyl derivative within 20 min. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This study describes the synthesis of a fluoroethylated derivative of [N‐methyl‐11C]2‐(4′‐methylaminophenyl)‐6‐hydroxybenzothiazole ([11C]6‐OH‐BTA‐1; Pittsburgh Compound B (PIB)), an already established amyloid imaging agent. The [11C]methylamino group of [11C]6‐OH‐BTA‐1 was formally replaced by a fluoroethyl group in a cold synthesis via N‐alkylation of N‐Boc‐2‐(4′‐aminophenyl)‐6‐(methoxyethoxymethoxy)benzothiazole with fluoroethyl tosylate. Subsequent deprotection gave the target compound 2‐[4′‐(2‐fluoroethyl)aminophenyl]‐6‐hydroxybenzothiazole (FBTA). In a radioligand competition assay on aggregated synthetic amyloid fibrils using N‐[3H‐methyl]6‐OH‐BTA‐1, 100 nM FBTA inhibited binding with 93 ± 1 and 83 ± 1% efficiency for Aβ1–40 and Aβ1–42, respectively. For the radiosynthesis a precursor carrying a tosylethyl moiety was prepared allowing the introduction of [18F]fluoride via nucleophilic substitution with [18F]tetra‐n‐butyl‐ammonium fluoride (TBAF). Subsequent removal of all protecting groups was performed in a one‐pot procedure followed by semi‐preparative HPLC, delivering the target compound [18F]FBTA in good radiochemical yield of 21% on average and radiochemical purity of ?98% at EOS. In vitro autoradiography on human postmortem AD brain tissue slices showed intense cortical binding of [18F]FBTA (1 nM), which was displaced in presence of 6‐OH‐BTA‐1 (1 µM). Brain up‐take was evaluated in wild‐type (wt) mice with microPET imaging. Based on these results, [18F]FBTA appears to be a suitable candidate tracer for amyloid imaging in humans. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Automated synthetic procedures of [18F]fluoro‐[di‐deutero]methyl tosylate on a GE TRACERlab FX F‐N module and a non‐commercial synthesis module have been developed. The syntheses included azeotropic drying of the [18F]fluoride, nucleophilic 18F‐fluorination of bis(tosyloxy)‐[di‐deutero]methane, HPLC purification and subsequent formulation of the synthesized [18F]fluoro‐[di‐deutero]methyl tosylate (d2‐[18F]FMT) in organic solvents. Automation shortened the total synthesis time to 50 min, resulting in an average radiochemical yield of about 50% and high radiochemical purity (>98%). The possible application of this procedure to commercially available synthesis modules might be of significance for the production of deuterated 18F‐fluoromethylated imaging probes in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
One‐ and two‐step syntheses for the 18F‐labelling of 6‐[(S)‐(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1‐(2‐[18F]fluoroethyl)‐1H‐benzotriazole, [18F]FVOZ, 1 and 6‐[(S)‐(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1‐[2‐(2‐[18F]fluoroethoxy)ethyl]‐1H‐benzotriazole, [18F]FVOO, 2 were developed. In the two‐step synthesis, the nucleophilic fluorination step was performed by reacting (S)‐6‐[(4‐chlorophenyl)‐(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzotriazole (VOZ) with either the 18F‐labelled ethane‐1,2‐diyl bis(4‐methylbenzenesulfonate) or the oxydiethane‐2,1‐diyl bis(4‐methylbenzenesulfonate). The radiochemical yields were in the range of 9–13% after the 110–120 min total syntheses and the specific radioactivities were 175±7 GBq/µmol and 56 GBq/µmol for compounds 1 and 2, respectively. In the one‐step synthesis, the precursor 2‐{6‐[(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐1,2,3‐benzotriazol‐1‐yl}ethyl 4‐methylbenzenesulfonate (7) or 1‐[2‐(2‐bromoethoxy)ethyl]‐6‐[(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzotriazole (8) was directly labelled via an 18F nucleophilic substitution to give the corresponding tracer. The labelled compounds were obtained in 36–99% radiochemical yield after 75‐min syntheses. The specific radioactivities are 100 GBq/µmol for compound 1 and 80 GBq/µmol for compound 2. In vitro autoradiography using frozen rat brains illustrated specific binding in the medial amygdala, the bed nucleus of stria terminalis and the preoptic area, all of which corresponded well to the result of 11C‐labelled vorozole. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
[18F]2‐Fluoroethyl‐p‐toluenesulfonate also called [18F]2‐fluoroethyl tosylate has been widely used for labeling radioligands for positron emission tomography (PET). [18F]2‐Fluoroethyl‐4‐bromobenzenesulfonate, also called [18F]2‐fluoroethyl brosylate ([18F]F(CH2)2OBs), was used as an alternative radiolabeling agent to prepare [18F]FEOHOMADAM, a fluoroethoxy derivative of HOMADAM, by O‐fluoroethylating the phenolic precursor. Purified by reverse‐phase HPLC, the no‐carrier‐added [18F]F(CH2)2OBs was obtained in an average radiochemical yield (RCY) of 35%. The reaction of the purified and dried [18F]F(CH2)2OBs with the phenolic precursor was performed by heating in DMF and successfully produced [18F]FEOHOMADAM, after HPLC purification, in RCY of 21%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A synthesis method has been developed for the labelling of N‐(3‐[18F]fluoropropyl)‐2β‐carbomethoxy‐3β‐(4‐fluorophenyl)nortropane ([18F]β‐CFT‐FP), a potential radioligand for visualization of the dopamine transporters by positron emission tomography. The two‐step synthesis includes preparation of [18F]fluoropropyl tosylate and its use without purification in the fluoroalkylation of 2β‐carbomethoxy‐3β‐(4‐fluorophenyl)nortropane (nor‐β‐CFT). The final product is purified by HPLC. Optimization of the two synthesis steps resulted in a greater than 30% radiochemical yield of [18F]β‐CFT‐FP (decay corrected to end of bombardment). The synthesis time including HPLC‐purification was approximately 90 min. The radiochemical purity of the final product was higher than 99% and the specific radioactivity at the end of synthesis was typically 20 GBq/µmol. In comparison to alkylation by [18F]fluoropropyl bromide, the procedure described here results in an improved overall radiochemical yield of [18F]β‐CFT‐FP in a shorter time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, two fluorine‐18 labelled derivatives of flumazenil were described: 5‐(2′‐[18F]fluoroethyl)‐5‐desmethylflumazenil (ethyl 8‐fluoro‐5‐[18F]fluoroethyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a] [1,4]diazepine‐3‐carboxylate; [18F]FEFMZ) and 3‐(2′‐[18F]fluoro)‐flumazenil (2′‐[18F]fluoroethyl 8‐fluoro‐5‐methyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a]‐[1,4]diazepine‐3‐carbo‐ xylate; [18F]FFMZ). Since the biodistribution data of the latter were superior to those of the former we developed a synthetic approach for [18F]FFMZ starting from a commercially available precursor, thereby obviating the need to prepare a precursor by ourselves. The following two‐step procedure was developed: First, [18F]fluoride was reacted with 2‐bromoethyl triflate using the kryptofix/acetonitrile method to yield 2‐bromo‐[18F]fluoroethane ([18F]BFE). In the second step, distilled [18F]BFE was reacted with the tetrabutylammonium salt of 3‐desethylflumazenil (8‐fluoro‐5‐methyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a] [1,4]diazepine‐3‐carboxylic acid) to yield [18F]FFMZ. The synthesis of [18F]FFMZ allows for the production of up to 7 GBq of this PET‐tracer, enough to serve several patients. [18F]FFMZ synthesis was completed in less than 80 min and the radiochemical purity exceeded 98%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
A fully automated synthesis of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) was carried out by a convenient three‐step, one‐pot procedure on the modified TRACERlab FXFN synthesizer, including [18F]fluorination of ethyl 4‐(trimethylammonium triflate)benzoate as the precursor, saponification of the ethyl 4‐[18F]fluorobenzoate with aqueous tetrapropylammonium hydroxide instead of sodium hydroxide, and conversion of 4‐[18F]fluorobenzoate salt ([18F]FBA) to [18F]SFB treated with N,N,N′,N′‐tetramethyl‐O‐(N‐succinimidyl)uranium tetrafluoroborate (TSTU). The purified [18F]SFB was used for the labeling of Tat membrane‐penetrating peptide (containing the Arg‐Lys‐Lys‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Pro‐Leu‐Gly‐Leu‐Ala‐Gly‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu sequence, [18F]CPP) through radiofluorination of lysine amino groups. The uncorrected radiochemical yields of [18F]SFB were as high as 25–35% (based on [18F]fluoride) (n=10) with a synthesis time of~40 min. [18F]CPP was produced in an uncorrected radiochemical yields of 10–20% (n=5) within 30 min (based on [18F]SFB). The radiochemical purities of [18F]SFB and [18F]CPP were greater than 95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The radiosynthesis of a new [18F]fluoroalkylating agent, [18F]fluoroacetaldehyde, is described. It was produced using the Kornblum method by oxidation with dimethyl sulphoxide of 2‐[18F]fluoroethyl p‐toluenesulphonate ([18F]FETos). In these conditions the oxidation proceeds smoothly and rapidly to the selective conversion of tosyl esters of primary alcohols to aldehydes with no carboxylic acids being produced. The chemical identity of [18F]fluoroacetaldehyde was determined by comparing its chromatographic properties as well as those of its 2,4‐dinitrophenylhydrazone (2,4‐DNPH) derivative with those of, respectively, the standard fluoroacetaldehyde and its 2,4‐DNPH derivative. Standard fluoroacetaldehyde was prepared by oxidation of fluoroethanol with pyridinium dichromate and characterized as its 2,4‐DNPH derivative by mass spectrometry. To test its reactivity with amines under reductive alkylation conditions, [18F]fluoroacetaldehyde was reacted with benzylamine used as model substrate. The chemical identity of the resulting radiolabelled product was determined to be [18F]N‐(2‐fluoroethyl)‐benzylamine by comparing its chromatographic properties with those of the synthesized standard N‐(2‐fluoroethyl)‐benzylamine characterized by 19F and 1H NMR spectroscopy and mass spectrometry. This new fluorine‐18 labelled synthon may find applications in radiolabelling peptide, protein and antibody fragments as well as in aldol condensation or in the Mannich reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Bases such as potassium carbonate and potassium bicarbonate (KHCO3) are essential for the elution of trapped [18F]fluoride from ion exchange cartridges and for the prevention of [18F]fluoride adsorption on the silica glass vial during the preparation of radiopharmaceuticals for positron emission tomography imaging. However, these bases promote the chemical decomposition of precursor compounds and the creation of unwanted organic impurities. Thus, the goal of the current study was to develop a new method for synthesizing [18F]fluoride‐labeled radiopharmaceuticals (e.g., [18F]fluoromisonizadole ([18F]FMISO)) that permits the fine control of base concentrations while minimizing adverse events. Non‐decay‐corrected radiochemical yields of 25.1 ± 5.0% and 13.3 ± 5.1% (n = 3) were achieved after solid‐phase extraction purification using automatic synthesis with GE TRACERlab MX and KHCO3 at concentrations of 14.1 and 33.0 µmol, respectively, and 1 mg of precursor (1‐(2′‐nitro‐1′‐imidazolyl)‐2‐O‐tetra‐hydropyranyl‐3‐O‐toluenesulfonyl propanediol (NITTP)). The newly developed synthesis protocol with fine base control and low precursor content permits high radiochemical yields with minimal impurities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The no‐carrier‐added (n.c.a.) 18F‐fluoroethylamidation of the acid function of the protected nonapeptide Boc–Cys–Tyr(tBu)–Ile–Gln(Mtt)–Asn(Mtt)–Cys–Pro–Leu–Gly–OH forming the labelled peptide hormone derivative [Gly‐(2‐[18F]fluoroethyl)NH9]‐oxytocin is described. The labelling conditions were elaborated using a protected tripeptide, identical to the C‐terminal sequence of oxytocin. The prosthetic group n.c.a. 2‐[18F]fluoroethylamine was synthesised via cryptate mediated n.c.a. 18F‐fluorination of N‐Boc‐2‐(p‐toluenesulfonyloxy)ethylamine in DMSO (RCY: ca. 60%) and subsequent deprotection with a radiochemical yield of 46±5%. [18F]Fluoroethylamine was reacted with Z–Pro–Leu–Gly–OH in presence of the coupling reagent TBTU or with activated esters of the model‐tripeptide. The activated ester method as well as the condensation in presence of TBTU yielded ?90% of the 18F‐fluoroethyl‐amidated tripeptide. TBTU‐mediated condensation of n.c.a. 2‐[18F]fluoro‐ethylamine with the C‐terminal free acid group of protected oxytocin gave the radiochemical yield of about 75%. Deprotection under acidic conditions led to the formation of [Gly–(2‐[18F]fluoroethyl)NH9]oxytocin within 75 min with a radiochemical yield of about 30% as measured by analytical HPLC. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A General Electric Medical Systems (GEMS) Tracerlab FXFN fluorine‐18 synthesis module has been reconfigured to allow rapid (45 min), fully automated production of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) using the established three‐step, one‐pot synthesis procedure. Purification is by sep‐pak only and [18F]SFB is routinely obtained in 38% non‐decay corrected yield,>1 Ci/µmol specific activity, and >95% radiochemical purity (n=20). Moreover, this report includes our preliminary research efforts into improving peptide coupling reactions with [18F]SFB using microwave‐enhanced radiochemistry. Reaction times can be reduced by>90%, when compared with traditional thermal reactions, with no significant effect on radiochemical reaction yield. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We developed three novel positron‐emission tomography (PET) probes, 2‐tert‐butyl‐4‐chloro‐5‐{6‐[2‐(2[18F]fluoroethoxy)‐ethoxy]‐pyridin‐3‐ylmethoxy}‐2H‐pyridazin‐3‐one ([18F]BCPP‐EF), 2‐tert‐butyl‐4‐chloro‐5‐[6‐(4‐[18F]fluorobutoxy)‐pyridin‐3‐ylmethoxy]‐2H‐pyridazin‐3‐one ([18F]BCPP‐BF), and 2‐tert‐butyl‐4‐chloro‐5‐{6‐[2‐(2‐[11C]methoxy‐ethoxy)‐ethoxy]‐pyridin‐3‐ylmethoxy}‐2H‐pyridazin‐3‐one ([11C]BCPP‐EM), for quantitative imaging of mitochondrial complex 1 (MC‐1) activity in vivo. These three PET probes were successfully labeled by nucleophilic [18F]fluorination or by [11C]methylation of their corresponding precursor with sufficient radioactivity yield, good radiochemical purity, and sufficiently high specific radioactivity for PET measurement. The specificity of these probes for binding to MC‐1 was assessed with rotenone, a specific MC‐1 inhibitor, by a rat brain slice imaging method in vitro. Rat whole‐body imaging by small‐animal PET demonstrated that all probes showed high uptake levels in the brain as well as in the heart sufficient to image them clearly. The rank order of uptake levels in the brain and the heart just after injection was as follows: high in [18F]BCPP‐BF, intermediate in [11C]BCPP‐EM, and low in [18F]BCPP‐EF. The kinetics of [18F]BCPP‐EF and [11C]BCPP‐EM provided a reversible binding pattern, whereas [18F]BCPP‐BF showed nonreversible accumulation‐type kinetics in the brain and heart. Metabolite analyses indicated that these three compounds were rapidly metabolized in the plasma but relatively stable in the rat brain up to 60 min post‐injection. The present study demonstrated that [18F]BCPP‐EF could be a useful PET probe for quantitative imaging of MC‐1 activity in the living brain by PET.  相似文献   

14.
A slightly modified automated commercial synthesis system for preparation of O‐(2‐[18F]fluoroethyl)‐l‐tyrosine (FET), an amino acid tracer for tumor imaging with positron emission tomography, is described. Direct nucleophilic fluorination of [18F]fluoride with 1,2‐di(4‐methylphenylsulfonyloxy)ethane on a quaternary 4‐(4‐methylpiperidinyl)‐pyridinium functionalized polystyrene anion exchange resin gave 1‐[18F]‐2‐(4‐methylphenylsulfonyloxy)ethane, then [18F]fluoroalkylation of l‐tyrosine yielded FET. The overall radiochemical yield with no decay correction was about 8–10%, the whole synthesis time was about 52 min, and the radiochemical purity was above 95%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Microfluidics technology has emerged as a powerful tool for the radiosynthesis of positron emission tomography (PET) and single‐photon emission computed tomography radiolabeled compounds. In this work, we have exploited a continuous flow microfluidic system (Advion, Inc., USA) for the [18F]‐fluorine radiolabeling of the malonic acid derivative, [18F] 2‐(5‐fluoro‐pentyl)‐2‐methyl malonic acid ([18F]‐FPMA), also known as [18F]‐ML‐10, a radiotracer proposed as a potential apoptosis PET imaging agent. The radiosynthesis was developed using a new tosylated precursor. Radiofluorination was initially optimized by manual synthesis and served as a basis to optimize reaction parameters for the microfluidic radiosynthesis. Under optimized conditions, radio‐thin‐layer chromatography analysis showed 79% [18F]‐fluorine incorporation prior to hydrolysis and purification. Following hydrolysis, the [18F]‐FPMA was purified by C18 Sep‐Pak, and the final product was analyzed by radio‐HPLC (high‐performance liquid chromatography). This resulted in a decay‐corrected 60% radiochemical yield and ≥98% radiochemical purity. Biodistribution data demonstrated rapid blood clearance with less than 2% of intact [18F]‐FPMA radioactivity remaining in the circulation 60 min post‐injection. Most organs showed low accumulation of the radiotracer, and radioactivity was predominately cleared through kidneys (95% in 1 h). Radio‐HPLC analysis of plasma and urine samples showed a stable radiotracer at least up to 60 min post‐injection.  相似文献   

16.
[18F]Fluoroethyl bromide ([18F]FEtBr) is a useful synthetic precursor to synthesize 18F‐labeled compounds. However, the lower reactivity of [18F]FEtBr with amine, phenol and amide functional groups than that of [11C]CH3I partly limits its wide application in the synthesis of [18F]fluoroethylated compounds. The aim of this study was to increase the reactivity of [18F]FEtBr with various nucleophilic substrates for PET tracers containing amine, phenol and amide moieties. The present strategies included (1) adding NaI into the reaction mixture of [18F]FEtBr and substrate, where [18F]FEtI is reversibly formed and becomes more reactive; (2) converting [18F]FEtBr into much more reactive [18F]FEtOTf, similar to conversion of [11C]CH3I into [11C]CH3OTf. By these efforts, the [18F]fluoroethylation efficiency of various substrates containing amine, phenol and amide groups with [18F]FEtBr/NaI and [18F]FEtOTf was significantly improved, compared with the corresponding reaction efficiency with [18F]FEtBr. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Recent publications reported high uptake of the carbon‐11 labelled 11β‐hydroxylase inhibitors (R)–[O–methyl‐11C]metomidate ([11C]MTO) and (R)–[O–ethyl‐11C]etomidate ([11C]ETO) in adrenocortical incidentalomas with excellent selectivity for positron emission tomography (PET). In our studies [18F]FETO, (the [18F]fluoroethyl ester of etomidate, (R)‐1‐(1‐phenylethyl)‐1H‐imidazole‐5‐carboxylic acid, 2′‐[18F]fluoroethyl ester), an analogue of [11C]MTO and [11C]ETO was chosen due to the suspected similarity of the pharmacokinetic and pharmacodynamic properties, and was prepared in the following two step procedure: First, [18F]fluoride was reacted with 2‐bromoethyl triflate using the kryptofix/acetonitrile method to yield 2–bromo‐[18F]fluoroethane ([18F]BFE). In the second step, [18F]BFE was reacted with the tetrabutylammonium salt of (R)‐1‐(1‐phenylethyl)‐1H‐imidazole‐5‐carboxylic acid to yield [18F]FETO, a novel inhibitor of the 11β‐hydroxylase. The proposed synthesis of [18F]FETO allows the production of sufficient amounts of this new PET‐tracer to serve 1–2 patients with an overall synthesis time of less than 80 min. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Reactions of no‐carrier‐added (NCA) [18F]β‐fluoroethyl tosylate with amine, phenol or carboxylic acid to form the corresponding [18F]N‐(β‐fluoroethyl)amine, [18F]β‐fluoroethyl ether or [18F]β‐fluoroethyl ester, were found to be rapid (2–10 min) and efficient (51–89% conversion) under microwave‐enhanced conditions. These conditions allow reactants to be heated rapidly to 150°C in a low boiling point solvent, such as acetonitrile, and avoid the need to use high boiling point solvents, such as DMSO and DMF, to promote reaction. The microwave‐enhanced reactions gave about 20% greater radiochemical yields than thermal reactions performed at similar temperatures and over similar reaction times. With a bi‐functional molecule, such as DL‐pipecolinic acid, [18F]β‐fluoroethyl tosylate reacts exclusively with the amino group. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
As model reactions for the introduction of 18F into protected aromatic amino acids, the replacement of NO2, Cl, Br and F by [18F]fluoride in 2‐isophthalaldehyde and 2‐terephthalaldehyde derivatives which model 18F‐DOPA and 18F‐tyrosine was investigated by comparing labelling yields and reaction rates with those of corresponding mono‐aldehyde compounds. All isophthalaldehydes showed maximum radiochemical yields (79 to 86%) at 140°C and in comparison with the corresponding mono‐aldehydes the reaction proceeded faster. At lower temperature the reaction already resulted in high yields, e.g. 2‐nitroisophthalaldehyde was labelled with a yield of 78% at 25°C after 7 min, whereas 2‐nitrobenzaldehyde only reached a yield of 1.7% under the same reaction conditions. The 18F/NO2 exchange in nitroterephthalaldehydes proceeded more slowly and with lower radiochemical yields when compared with corresponding isophthalaldehydes and monoaldehydes. The decarbonylation of 18F‐labelled aromatic dialdehydic compounds with 4 eq. of Wilkinson's catalyst at 150°C in benzonitrile resulted in high yields, e.g. 2‐[18F]fluoro‐5‐methoxyisophthalaldehyde and 4‐[18F]fluoro‐2‐methoxy‐5‐methylisophthalaldehyde were decarbonylated efficiently with yields of 67±3% and 72±2%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
18F‐labelled fluoroalkylamines are attractive reagents for the preparation of positron emission tomography tracers containing amine, amide, and N‐heterocyclic moieties. Herein, we report that 2‐[18F]fluoroethylamine can be obtained from 2‐[18F]fluoroethyl azide by reduction with elemental copper under acidic conditions. Azide to amine reduction was achieved in near quantitative analytical yields within 30 min by heating a solution of 2‐[18F]fluoroethyl azide in the presence of copper wire and aqueous trifluoroacetic acid. Subsequent reaction of 2‐[18F]fluoroethylamine with benzoyl chloride in the presence of triethylamine provided N‐[18F]fluoroethyl benzamide in 63% decay‐corrected radiochemical yield from 2‐[18F]fluoroethyl azide. The utility of the Cu(0)/H+ azide reduction method was further exemplified by preparation of the potential GABAA tracer 9H‐β‐carboline N‐2‐[18F]fluoroethylamide, which was obtained in 46% decay‐corrected radiochemical yield by reaction of 2‐[18F]fluoroethylamine with the corresponding 9H‐β‐carboline pentafluorophenyl ester. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号