首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three members of the growth/differentiation factor (GDF) subfamily of bone morphogenetic proteins (BMPs), GDFs‐5, ‐6, and ‐7, have demonstrated the potential to augment tendon and ligament repair. To gain further insight into the in vivo role of these molecules, previous studies have characterized intact and healing tendons in mice with functional null mutations in GDF‐5 and ‐7. The primary goal of the present study was to perform a detailed characterization of the intact tendon phenotype in 4‐ and 16‐week‐old male and female GDF6?/? mice and their +/+ littermates. The results demonstrate that GDF6 deficiency was associated with an altered tendon phenotype that persisted into adulthood. Among males, GDF6?/? tail tendon fascicles had significantly less collagen and glycosaminoglycan content, and these compositional differences were associated with compromised material properties. The effect of GDF6 deficiency on tendon was sexually dimorphic, however, for among female GDF6?/? mice, neither differences in tendon composition nor in material properties were detected. The tendon phenotype that was observed in males appeared to be stronger in the tail site than in the Achilles tendon site, where some compositional differences were present, but no material property differences were detected. These data support existing in vitro studies, which suggest a potential role for BMP‐13 (the human homologue to GDF‐6) in tendon matrix modeling and/or remodeling. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1603–1611, 2009  相似文献   

2.
Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3 weeks of healing. Sprague–Dawley rats (N = 100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non‐repaired treatments, and further randomized into groups that returned to activity after 1 week (RTA1) or after 3 weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3‐weeks post‐injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF‐β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2172–2180, 2016.  相似文献   

3.
4.
NSAIDs are widely prescribed and used over the years to treat tendon injuries despite its well‐known long‐term side effects. In the last years several animal and human trials have shown that low‐level laser therapy (LLLT) presents modulatory effects on inflammatory markers, however the mechanisms involved are not fully understood. The aim of this study was to evaluate the short‐term effects of LLLT or sodium diclofenac treatments on biochemical markers and biomechanical properties of inflamed Achilles tendons. Wistar rats Achilles tendons (n = 6/group) were injected with saline (control) or collagenase at peritendinous area of Achilles tendons. After 1 h animals were treated with two different doses of LLLT (810 nm, 1 and 3 J) at the sites of the injections, or with intramuscular sodium diclofenac. Regarding biochemical analyses, LLLT significantly decreased (p < 0.05) COX‐2, TNF‐α, MMP‐3, MMP‐9, and MMP‐13 gene expression, as well as prostaglandin E2 (PGE2) production when compared to collagenase group. Interestingly, diclofenac treatment only decreased PGE2 levels. Biomechanical properties were preserved in the laser‐treated groups when compared to collagenase and diclofenac groups. We conclude that LLLT was able to reduce tendon inflammation and to preserve tendon resistance and elasticity. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1945–1951, 2012  相似文献   

5.
Heterotopic mineralization may result in tendon weakness, but effects on other biomechanical responses have not been reported. We used a needle injury, which accelerates spontaneous mineralization of murine Achilles tendons, to test two hypotheses: that injured tendons would demonstrate altered biomechanical responses; and that unilateral injury would accelerate mineralization bilaterally. Mice underwent left hind (LH) injury (I; n = 11) and were euthanized after 20 weeks along with non‐injured controls (C; n = 9). All hind limbs were examined by micro computed tomography followed by biomechanical testing (I = 7 and C = 6). No differences were found in the biomechanical responses of injured tendons compared with controls. However, the right hind (RH) tendons contralateral to the LH injury exhibited greater static creep strain and total creep strain compared with those LH tendons (p ≤ 0.045) and RH tendons from controls (p ≤ 0.043). RH limb lesions of injured mice were three times larger compared with controls (p = 0.030). Therefore, despite extensive mineralization, changes to the responses we measured were limited or absent 20 weeks postinjury. These results also suggest that bilateral occurrence should be considered where tendon mineralization is identified clinically. This experimental system may be useful to study the mechanisms of bilateral new bone formation in tendinopathy and other conditions. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1520–1528, 2013  相似文献   

6.
Tendon tissue regeneration is an important goal for orthopedic medicine. We hypothesized that implantation of Smad8/BMP2‐engineered MSCs in a full‐thickness defect of the Achilles tendon (AT) would induce regeneration of tissue with improved biomechanical properties. A 2 mm defect was created in the distal region of murine ATs. The injured tendons were then sutured together or given implants of genetically engineered MSCs (GE group), non‐engineered MSCs (CH3 group), or fibrin gel containing no cells (FG group). Three weeks later the mice were killed, and their healing tendons were excised and processed for histological or biomechanical analysis. A biomechanical analysis showed that tendons that received implants of genetically engineered MSCs had the highest effective stiffness (>70% greater than natural healing, p < 0.001) and elastic modulus. There were no significant differences in either ultimate load or maximum stress among the treatment groups. Histological analysis revealed a tendon‐like structure with elongated cells mainly in the GE group. ATs that had been implanted with Smad8/BMP2‐engineered stem cells displayed a better material distribution and functional recovery than control groups. While additional study is required to determine long‐term effects of GE MSCs on tendon healing, we conclude that genetically engineered MSCs may be a promising therapeutic tool for accelerating short‐term functional recovery in the treatment of tendon injuries. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1932–1939, 2012  相似文献   

7.
Tendon injuries are major musculoskeletal disorders. Polydeoxyribonucleotide activates the adenosine receptor subtype A2A, resulting in tissue growth and neogenesis. This experimental study confirms that polydeoxyribonucleotide can improve secretion of various growth factors, promote collagen synthesis, and restore tensile strength of the Achilles tendon in a rat model with Achilles tendon injury. Thirty‐six male Sprague‐Dawley rats, aged 7 weeks, were divided into two groups, and the Achilles tendon was transected and repaired using the modified Kessler's method. In the experimental group (n = 18), the rats received daily intraperitoneal administration of polydeoxyribonucleotide (8 mg/kg/day for 1, 2, or 4 weeks). The control groups received the same amount of normal saline. The rats were euthanized at 1, 2, and 4 weeks, and tissues from the repair site were harvested. The cross‐sectional area of the tendon was significantly increased at 2 and 4 weeks in polydeoxyribonucleotide group (p = 0.008 and p = 0.017, respectively). Moreover, tendons in the polydeoxyribonucleotide group were more resistant to mechanical stress at 2 and 4 weeks (p = 0.041 and p = 0.041, respectively). The staining levels of collagen type I in the experimental group were significantly stronger at 2 and 4 weeks (p = 0.026 and p = 0.009, respectively). Furthermore, higher expression levels of fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor β1 were detected in the experimental group at 4 weeks (p = 0.041, p = 0.026, and p = 0.041, respectively). This study confirms that polydeoxyribonucleotide can improve the tensile strength of the rats’ Achilles tendon following injury and repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1767–1776, 2018.
  相似文献   

8.
The aim of this controlled animal study was to investigate the effect of low-level laser therapy (LLLT) administered 30 min after injury to the Achilles tendon. The study animals comprised 16 Sprague Dawley male rats divided in two groups. The right Achilles tendons were injured by blunt trauma using a mini guillotine, and were treated with LLLT or placebo LLLT 30 min later. The injury and LLLT procedures were then repeated 15 hours later on the same tendon. One group received active LLLT (λ = 904 nm, 60 mW mean output power, 0.158 W/cm2 for 50 s, energy 3 J) and the other group received placebo LLLT 23 hours after LLLT. Ultrasonographic images were taken to measure the thickness of the right and left Achilles tendons. Animals were then killed, and all Achilles tendons were tested for ultimate tensile strength (UTS). All analyses were performed by blinded observers. There was a significant increase in tendon thickness in the active LLLT group when compared with the placebo group (p < 0.05) and there were no significant differences between the placebo and uninjured left tendons. There were no significant differences in UTS between laser-treated, placebo-treated and uninjured tendons. Laser irradiation of the Achilles tendon at 0.158 W/cm2 for 50 s (3 J) administered within the first 30 min after blunt trauma, and repeated after 15 h, appears to lead to edema of the tendon measured 23 hours after LLLT. The guillotine blunt trauma model seems suitable for inflicting tendon injury and measuring the effects of treatment on edema by ultrasonography and UTS. More studies are needed to further refine this model.  相似文献   

9.
High cholesterol represents a significant healthcare problem. Clinical studies have linked hypercholesterolemia to Achilles tendon xanthomas and rotator cuff tears, and research in other systems indicates detrimental effects of high cholesterol; however, understanding of its impact on tendon properties and healing is limited. We hypothesized that tendons from aging hypercholesterolemic (APOE) mice would exhibit inferior baseline and healing mechanical properties compared to controls, while younger, but mature mice would be no different. Surprisingly, tensile testing of patellar tendons from 14‐week‐old APOE mice receiving a unilateral full‐thickness central defect resulted in normalized (injured:sham) cross‐sectional areas closer to baseline (p = 0.02) compared to controls. Uninjured data from 10‐month‐old APOE mice showed a decrease in elastic modulus (p = 0.02), indicating a detrimental effect of hypercholesterolemia on tendon properties in this model. These results could benefit patients through knowledge that high cholesterol could increase the likelihood of tendon tears. Furthermore, knowledge that tendon tears are indicative of high cholesterol could provide orthopedic clinicians with an additional preventive treatment opportunity for patients with undiagnosed hypercholesterolemia. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:380–383, 2011  相似文献   

10.
Introduction One aim of the surgical treatment of acute Achilles tendon ruptures is to obtain a maximum primary stability of the sutured tendon. Therefore, we investigated the primary stability of sutured human Achilles tendons depending on different applied techniques. Methods The strength of 60 repaired cadaveric human Achilles tendons was tested depending on either the suture technique (Bunnell or Kessler), the suture material (PDS-thread or PDS-cord) or an additional plantaris tendon augmentation (PDS-thread with or without augmentation). Following anatomic reconstruction the repaired specimens were loaded to failure. Results The use of Bunnell's technique resulted in a stronger primary suture stability compared to Kessler's technique. Sutures carried out with a PDS-thread were of lower strength than those accomplished with a PDS-cord (Bunnell: thread 139 N ± 29.8; cord 291 N ± 55.2/Kessler: thread 137 N ± 37.3; cord 180 N ± 41.1). Sutures performed according to Bunnell's technique with a PDS-thread and an additional autologous plantaris tendon augmentation reached the highest primary stability (326 N ± 124.9). Conclusions The findings identify the Achilles tendon suture with a PDS-cord according to Bunnell's technique as a mechanically strong method. A plantaris tendon augmentation in addition to a PDS-thread can even add more stability to the Achilles tendon suture.  相似文献   

11.
12.
Acromesomelic dysplasia of the Hunter-Thompson and Grebe types are rare human disorders based on growth/differentiation factor (GDF)-5/CDMP-1 genetic mutations. Numerous skeletal abnormalities are present in these individuals, including shortened limb bones and severe dislocations of the knee. In the GDF-5 deficient brachypodism mouse, similar, although less severe, phenotypes are observed. It is unknown whether the joint dislocations observed in these disorders are due to a defect in the original formation of joints such as the knee, or to abnormalities in the tendons and ligaments themselves. We hypothesized that tendons from GDF-5 deficient mice would exhibit altered composition, mechanical properties, and ultrastructure when compared with heterozygous control littermates. GDF-5 deficient Achilles tendons were structurally weaker than controls, and structural strength differences appeared to be caused by compromised material properties: after normalizing by collagen per unit length, mutant tendons were still 50% weaker (P < 0.0001) and 50% more compliant (P < 0.001) than controls. Despite comparable levels of skeletal maturity in the two cohorts, the majority of mutant tendon failures occurred in the mid-substance of the tendon (64% of all failures), whereas the majority of control failures occurred via avulsion (92% of all failures). Mutant Achilles tendons contained 40% less collagen per microgram of DNA when compared to controls (P = 0.004). No significant difference in glycosaminoglycan (GAG)/DNA was detected. Ultrastructural analyses indicated a slight trend toward increased frequency of small diameter (30-100 nm) collagen fibrils in the mutant Achilles. Our findings suggest that increased tendon and ligament laxity may be the cause of the joint dislocations seen in patients with Hunter-Thompson and Grebe type dysplasia, rather than developmental abnormalities in the joints themselves.  相似文献   

13.
We investigated the effects of stress‐shielding on both viscoelastic properties and microstructure of collagen fibers in the Achilles tendon by proton double‐quantum filtered (1H‐DQF) NMR spectroscopy. The right hind‐limbs of 20 Japanese white rabbits were immobilized for 4 weeks in a cast with the ankle in plantarflexion. Dynamic viscoelasticity of the Achilles tendons was measured using a viscoelastic spectrometer. Proton DQF NMR signals were analyzed to determine the residual dipolar coupling of bound water molecules in the Achilles tendons. Both the dynamic storage modulus (E′) and dynamic loss modulus (E″) decreased significantly in the Achilles tendons of the stress‐shielding group. The results of the 1H‐DQF NMR examination demonstrated significantly reduced residual dipolar coupling in the Achilles tendons of this same group. The disorientation of collagen fibers by stress‐shielding should contribute to degradation of the dynamic storage and loss moduli. The alterations of the collagen fiber orientation that contributed to the function of tendinous tissue can be evaluated by performing an analysis of 1H DQF NMR spectroscopy. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1708–1712, 2013  相似文献   

14.
To determine the effect of loading conditions on the length of primary cilia in tendon cells in situ, freshly harvested rat tail tendons were stress‐deprived (SD) for up to 72 h, cyclically loaded at 3% strain at 0.17 Hz for 24 h, or SD for 24 h followed by cyclic loading (CL) for 24 h. Tendon sections were stained for tubulin, and cilia measured microscopically. In fresh control tendons, cilia length ranged from 0.6 to 2.0 µm with a mean length of 1.1 µm. Following SD, cilia demonstrated an increase (p < 0.001) in overall length at 24 h when compared to controls. Cilia length did not increase with time of SD (p = 0.329). Cilia in cyclically loaded tendons were shorter (p < 0.001) compared to all SD time periods, but were not different from 0 time controls (p = 0.472). CL for 24 h decreased cilia length in 24 h SD tendons (p < 0.001) to levels similar to those of fresh controls (p = 0.274). The results of this study demonstrate that SD resulted in an immediate and significant increase in the length of primary cilia of tendon cells, which can be reversed by cyclic tensile loading. This suggests that, as in other tissues, cilia length in tendon cells is affected by mechanical signaling from the extracellular matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:582–587, 2011  相似文献   

15.
Tendinopathy is a vexing clinical problem as its onset and development is often asymptomatic and unrecognized until tendon rupture. While extensively studied in the rotator cuff, Achilles, and patellar tendons, no study to date has examined the histological and molecular characteristics of the tendinopathic biceps long‐head (LHB). The anatomy of the LHB is unique in that it comprises intra‐ and extra‐articular portions, each exposed to differing loading patterns. Eleven LHBs post‐tenotomy were sectioned, fixed in formalin, and stained (H&E; Alcian Blue), and gross structural organization of collagen measured using polarized light microscopy. Protein expression of intra‐ and extra‐articular portions of the tenotomized biceps for IGF‐I, collagen III, and MMP‐1, ‐2, ‐3, and ‐13 was determined with Western blot analyses. The intra‐articular LHB exhibited significantly greater histological evidence of tendinopathy inclusive of increased proteoglycan (p < 0.05) and decreased organization as measured by polarized light microscopy (p < 0.01). The intra‐articular LHB also had significantly increased expression of collagen type III (p < 0.01) and of MMP‐1 and 3 (p < 0.01, p < 0.05 respectively). No significant differences were found for IGF‐I or for MMP‐2 and ‐13. The intra‐articular LHB exhibited histological characteristics of tendinopathy. Protein expression of the intra‐articular LHB did not universally display signs of tendinopathy in comparison to the extra‐articular portion of the tendon. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1379–1385, 2009  相似文献   

16.

Objective

When the endoscopic Achilles tendon repair technique is utilized, direct stitching of the ruptured site is challenging due to the frayed tendon stumps. To explore whether undesirable coaptation of the tendon stumps influences the generation of the tendons.

Methods

This study is a retrospective analysis of 46 patients who underwent a modified endoscopic Achilles tendon rupture repair from October 2018 to June 2020. Patients were divided into two groups according to the coaptation of tendon stumps on postoperative ultrasonography. Group 1 included 17 cases with undesirable coaptation (<50%), and Group 2 included 29 cases with appropriate coaptation (≥50%). Magnetic resonance imaging (MRI) was obtained postoperatively at 3, 6, and 12 months to evaluate the tendon morphological construction. Clinical evaluations were performed using the American Orthopedic Foot and Ankle Society (AOFAS) ankle-hind foot score, the Achilles Tendon Total Rupture Score (ATRS), muscle power, and the Achilles tendon resting angle at the final follow-up. Complications were also encountered. The Student's t-test and the Mann–Whitney U-test were used to assess differences among both groups.

Results

The mean follow-up time was 37.5 ± 10.6 months in Group 1 and 39.0 ± 11.6 months in Group 2, respectively. The average age in Group 1 is slightly older than in Group 2 (37.3 ± 6.1 vs. 32.7 ± 6.3, p = 0.021). The tendon cross-section areas and thickness increased initially and decreased later on postoperative MRI evaluation. It also showed a significantly higher signal/noise quotient (SNQ) in Group 1 at postoperative 3 months. At postoperative 6 and 12 months, the SNQ between both groups was similar. The AOFAS score (95.9 ± 5.1 vs. 96.2 ± 4.9, p = 0.832), ATRS score (97.0 ± 3.6 vs. 97.7 ± 3.3, p = 0.527), and muscle power (21.38 vs. 24.74, p = 0.287) were not significantly different between both groups. However, the resting angle of Group 1 was significantly larger than that of Group 2 (4.6 ± 2.4 vs. 2.4 ± 2.3, p = 0.004). There was no difference in the complications (p = 0.628).

Conclusion

Although complete regeneration can be finally achieved, the early stage of tendon stump regeneration can be prolonged due to undesirable coaptation when endoscopic Achilles tendon repair technique is applied. The prolonged high signal duration on MRI indicates the less-than-ideal regeneration of the tendon, which might lead to elongation of the tendon.  相似文献   

17.
Tendinopathy, degeneration of the tendon that leads to pain and dysfunction, is common in both sports and occupational settings, but multi‐scale mechanisms for tendinopathy are still unknown. We recently showed that micro‐scale sliding (shear) is responsible for both load transfer and damage mechanisms in the rat tail tendon; however, the rat tail tendon is a specialized non‐load‐bearing tendon, and thus the load transfer and damage mechanisms are still unknown for load‐bearing tendons. The objective of this study was to investigate the load transfer and damage mechanisms of load‐bearing tendons using the rat plantaris tendon. We demonstrated that micro‐scale sliding is a key component for both mechanisms in the plantaris tendon, similar to the tail tendon. Namely, the micro‐scale sliding was correlated with applied strain, demonstrating that load was transferred via micro‐scale sliding in the plantaris and tail tendons. In addition, while the micro‐scale strain fully recovered, the micro‐scale sliding was non‐recoverable and strain‐dependent, and correlated with tissue‐scale mechanical parameters. When the applied strain was normalized, the % magnitudes of non‐recoverable sliding was similar between the plantaris and tail tendons. Statement of clinical significance: Understanding the mechanisms responsible for the pathogenesis and progression of tendinopathy can improve prevention and rehabilitation strategies and guide therapies and the design of engineered constructs. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1827–1837, 2019  相似文献   

18.
Knowledge of patellofemoral joint biomechanics is important for understanding sex‐related dimorphism in patellofemoral pathologies and advancement of related treatments. We evaluated the hypotheses that sex differences exist in patellar tendon (PT) orientation and patellar tracking during weight‐bearing knee flexion and that they relate to differences in tibiofemoral rotation. The PT orientation and patellar tracking were measured in healthy subjects (18 male, 13 female) during weight‐bearing knee flexion, using magnetic resonance and dual fluoroscopic imaging. These data were analyzed for sex differences and correlation with previously reported tibiofemoral rotation data. The results indicated a significant effect of sex on PT orientation, particularly at low flexion angles. In females, the PT was oriented more anteriorly in the sagittal plane, more medially in the coronal plane, and showed greater external tilt in the transverse plane of the tibia (p < 0.05). Significant correlations between tibiofemoral rotation and PT orientation (p < 0.01) indicated that sex differences in coronal and transverse plane orientation of the PT relate to differences in tibiofemoral rotation. Patellar tracking did not show significant sex differences or correlation to tibiofemoral rotation. Further studies are warranted to determine implications for patellofemoral pathologies and treatments like total knee arthroplasty. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:322–328, 2010  相似文献   

19.
20.
The purpose of this study was to assess whether intra‐tendon delivery of recombinant human platelet‐derived growth factor‐BB (rhPDGF‐BB) would improve Achilles tendon repair in a rat collagenase‐induced tendinopathy model. Seven days following collagenase induction of tendinopathy, one of four intra‐tendinous treatments was administered: (i) Vehicle control (sodium acetate buffer), (ii) 1.02 µg rhPDGF‐BB, (iii) 10.2 µg rhPDGF‐BB, or (iv) 102 µg rhPDGF‐BB. Treated tendons were assessed for histopathological (e.g., proliferation, tendon thickness, collagen fiber density/orientation) and biomechanical (e.g., maximum load‐to‐failure and stiffness) outcomes. By 7 days post‐treatment, there was a significant increase in cell proliferation with the 10.2 and 102 µg rhPDGF‐BB‐treated groups (p = 0.049 and 0.015, respectively) and in thickness at the tendon midsubstance in the 10.2 µg of rhPDGF‐BB group (p = 0.005), compared to controls. All groups had equivalent outcomes by Day 21. There was a dose‐dependent effect on the maximum load‐to‐failure, with no significant difference in the 1.02 and 102 µg rhPDGF‐BB doses but the 10.2 µg rhPDGF‐BB group had a significant increase in load‐to‐failure at 7 (p = 0.003) and 21 days (p = 0.019) compared to controls. The rhPDGF‐BB treatment resulted in a dose‐dependent, transient increase in cell proliferation and sustained improvement in biomechanical properties in a rat Achilles tendinopathy model, demonstrating the potential of rhPDGF‐BB treatment in a tendinopathy application. Consequently, in this model, data suggest that rhPDGF‐BB treatment is an effective therapy and thus, may be an option for clinical applications to treat tendinopathy. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 413–420, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号