首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite reported bone loss during pregnancy and lactation, no study has shown deleterious long‐term effects of parity or breastfeeding. Studies have shown higher bone mineral density and reduced risk for fracture in parous than in nulliparous women or no effect of parity and breastfeeding, so long‐term effects are uncertain. We studied the effect of parity and breastfeeding on risk for hip, wrist and non‐vertebral fragility fractures (hip, wrist, or proximal humerus) in 4681 postmenopausal women aged 50 to 94 years in the Tromsø Study from 1994–95 to 2010, using Cox's proportional hazard models. During 51 906 person‐years, and a median of 14.5 years follow‐up, 442, 621, and 1105 of 4681 women suffered incident hip, wrist, and fragility fractures, and the fracture rates were 7.8, 11.4, and 21.3 per 1000 person‐years, respectively. The risk for hip, wrist, and fragility fracture did not differ between parous (n = 4230, 90.4%) and nulliparous women (n = 451, 9.6%). Compared with women who did not breast‐feed after birth (n = 184, 4.9%), those who breastfed (n = 3564, 95.1%) had 50% lower risk for hip fracture (HR 0.50; 95% CI 0.32 to 0.78), and 27% lower risk for fragility fracture (HR 0.73; 95% CI 0.54 to 0.99), but similar risk for wrist fracture, after adjustment for age, BMI, height, physical activity, smoking, a history of diabetes, previous fracture of hip or wrist, use of hormone replacement therapy, and length of education. Each 10 months longer total duration of breastfeeding reduced the age‐adjusted risk for hip fracture by 12% (HR 0.88; 95% CI 0.78 to 0.99, p for trend = 0.03) before, and marginally after, adjustment for BMI and other covariates (HR 0.91; 95% CI 0.80 to 1.04). In conclusion, this data indicates that pregnancy and breastfeeding has no long‐term deleterious effect on bone fragility and fractures, and that breastfeeding may contribute to a reduced risk for hip fracture after menopause. © 2011 American Society for Bone and Mineral Research  相似文献   

2.
Risk factors for fracture of the neck of the femur are relatively well established, but those for fracture at other sites are little studied. In this large population study we explore the role of age, body mass index (BMI), and physical activity on the risk of fracture at seven sites in postmenopausal women. As part of the Million Women Study, 1,154,821 postmenopausal UK women with a mean age of 56.0 (SD 4.8) years provided health and lifestyle data at recruitment in 1996 to 2001. All participants were linked to National Health Service (NHS) hospital records for day‐case or overnight admissions with a mean follow‐up of 11 years per woman. Adjusted absolute and relative risks for seven site‐specific incident fractures were calculated using Cox regression models. During follow‐up, 4931 women had a fracture of the humerus; 2926 of the forearm; 15,883 of the wrist; 9887 of the neck of the femur; 1166 of the femur (not neck); 3199 a lower leg fracture; and 10,092 an ankle fracture. Age‐specific incidence rates increased gradually with age for fractures of forearm, lower leg, ankle, and femur (not neck), and steeply with age for fractures of neck of femur, wrist, and humerus. When compared to women with desirable BMI (20.0 to 24.9 kg/m2), higher BMI was associated with a reduced risk of fracture of the neck of femur, forearm, and wrist, but an increased risk of humerus, femur (not neck), lower leg, and ankle fractures (p < 0.001 for all). Strenuous activity was significantly associated with a decreased risk of fracture of the humerus and femur (both neck and remainder of femur) (p < 0.001), but was not significantly associated with lower leg, ankle, wrist, and forearm fractures. Postmenopausal women are at a high lifetime risk of fracture. BMI and physical activity are modifiable risk factors for fracture, but their associations with fracture risk differ substantially across fracture sites. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR)  相似文献   

3.
Periostin is a matricellular protein involved in bone formation and bone matrix organization, but it is also produced by other tissues. Its circulating levels have been weakly associated with bone microstructure and prevalent fractures, possibly because periostin measured by the current commercial assays does not specifically reflect bone metabolism. In this context, we developed a new ELISA for a periostin fragment resulting from cathepsin K digestion (K‐Postn). We hypothesized that circulating K‐Postn levels could be associated with bone fragility. A total of 695 women (age 65.0 ± 1.5 years), enrolled in the Geneva Retirees Cohort (GERICO), were prospectively evaluated over 4.7 ± 1.9 years for the occurrence of low‐trauma fractures. At baseline, we measured serum periostin, K‐Postn, and bone turnover markers (BTMs), distal radius and tibia microstructure by HR‐pQCT, hip and lumbar spine aBMD by DXA, and estimated fracture probability using the Fracture Risk Assessment Tool (FRAX). Sixty‐six women sustained a low‐trauma clinical fracture during the follow‐up. Total periostin was not associated with fractures (HR [95% CI] per SD: 1.19 [0.89 to 1.59], p = 0.24). In contrast, K‐Postn was significantly higher in the fracture versus nonfracture group (57.5 ± 36.6 ng/mL versus 42.5 ± 23.4 ng/mL, p < 0.001) and associated with fracture risk (HR [95%CI] per SD: 2.14 [1.54 to 2.97], p < 0.001). After adjustment for aBMD, FRAX, bone microstructure, or BTMs, K‐Postn remained significantly associated with fracture risk. The performance of the fracture prediction models was improved by adding K‐Postn to aBMD or FRAX (Harrell C index for fracture: 0.70 for aBMD + K‐Post versus 0.58 for aBMD alone, p = 0.001; 0.73 for FRAX + K‐Postn versus 0.65 for FRAX alone, p = 0.005). Circulating K‐Postn predicts incident fractures independently of BMD, BTMs, and FRAX in postmenopausal women. Hence measurement of a periostin fragment resulting from in vivo cathepsin K digestion may help to identify subjects at high risk of fracture. © 2017 American Society for Bone and Mineral Research  相似文献   

4.
Wrist fractures are common in postmenopausal women and are associated with functional decline. Fracture patterns after wrist fracture are unclear. The goal of this study was to determine the frequency and types of fractures that occur after a wrist fracture among postmenopausal women. We carried out a post hoc analysis of data from the Women's Health Initiative Observational Study and Clinical Trials (1993–2010) carried out at 40 US clinical centers. Participants were postmenopausal women aged 50 to 79 years at baseline. Mean follow‐up duration was 11.8 years. Main measures included incident wrist, clinical spine, humerus, upper extremity, lower extremity, hip, and total non‐wrist fractures and bone mineral density (BMD) in a subset. Among women who experienced wrist fracture, 15.5% subsequently experienced non‐wrist fracture. The hazard for non‐wrist fractures was higher among women who had experienced previous wrist fracture than among women who had not experienced wrist fracture: non‐wrist fracture overall (hazard ratio [HR] = 1.40, 95% confidence interval [CI] 1.33–1.48), spine (HR = 1.48, 95% CI 1.32–1.66), humerus (HR = 1.78, 95% CI 1.57–2.02), upper extremity (non‐wrist) (HR = 1.88, 95% CI 1.70–2.07), lower extremity (non‐hip) (HR = 1.36, 95% CI 1.26–1.48), and hip (HR = 1.50, 95% CI 1.32–1.71) fracture. Associations persisted after adjustment for BMD, physical activity, and other risk factors. Risk of non‐wrist fracture was higher in women who were younger when they experienced wrist fracture (interaction p value 0.02). Associations between incident wrist fracture and subsequent non‐wrist fracture did not vary by baseline BMD category (normal, low bone density, osteoporosis). A wrist fracture is associated with increased risk of subsequent hip, vertebral, upper extremity, and lower extremity fractures. There may be substantial missed opportunity for intervention in the large number of women who present with wrist fractures. © 2015 American Society for Bone and Mineral Research.  相似文献   

5.
Advanced glycation end products (AGE) in bone tissue are associated with impaired biomechanical properties and increased fracture risk. Here we examine whether serum levels of the AGE carboxy‐methyl‐lysine (CML) are associated with risk of hip fracture. We followed 3373 participants from the Cardiovascular Health Study (age 78 years; range, 68–102 years; 39.8% male) for a median of 9.22 years (range, 0.01–12.07 years). Rates of incident hip fracture were calculated by quartiles of baseline CML levels, and hazard ratios were adjusted for covariates associated with hip fracture risk. A subcohort of 1315 participants had bone mineral density (BMD) measurement. There were 348 hip fractures during follow‐up, with incidence rates of hip fracture by CML quartiles of 0.94, 1.34, 1.18, and 1.69 per 100 participant‐years. The unadjusted hazard ratio of hip fracture increased with each 1 SD increase (189 ng/mL) of CML level (hazard ratio, 1.27; 95% confidence interval [CI], 1.16–1.40]; p < 0.001). Sequential adjustment for age, gender, race/ethnicity, body mass index (BMI), smoking, alcohol consumption, prevalent coronary heart disease (CHD), energy expenditure, and estimated glomerular filtration rate (based on cystatin C), moderately attenuated the hazard ratio for fracture (1.17; 95% CI, 1.05–1.31; p = 0.006). In the cohort with BMD testing, total hip BMD was not significantly associated with CML levels. We conclude that increasing levels of CML are associated with hip fracture risk in older adults, independent of hip BMD. These results implicate AGE in the pathogenesis of hip fractures. © 2014 American Society for Bone and Mineral Research.  相似文献   

6.
Bone mineral density (BMD) is a strong predictor of fracture, yet most fractures occur in women without osteoporosis by BMD criteria. To improve fracture risk prediction, the World Health Organization recently developed a country‐specific fracture risk index of clinical risk factors (FRAX) that estimates 10‐year probabilities of hip and major osteoporotic fracture. Within differing baseline BMD categories, we evaluated 6252 women aged 65 or older in the Study of Osteoporotic Fractures using FRAX 10‐year probabilities of hip and major osteoporotic fracture (ie, hip, clinical spine, wrist, and humerus) compared with incidence of fractures over 10 years of follow‐up. Overall ability of FRAX to predict fracture risk based on initial BMD T‐score categories (normal, low bone mass, and osteoporosis) was evaluated with receiver‐operating‐characteristic (ROC) analyses using area under the curve (AUC). Over 10 years of follow‐up, 368 women incurred a hip fracture, and 1011 a major osteoporotic fracture. Women with low bone mass represented the majority (n = 3791, 61%); they developed many hip (n = 176, 48%) and major osteoporotic fractures (n = 569, 56%). Among women with normal and low bone mass, FRAX (including BMD) was an overall better predictor of hip fracture risk (AUC = 0.78 and 0.70, respectively) than major osteoporotic fractures (AUC = 0.64 and 0.62). Simpler models (eg, age + prior fracture) had similar AUCs to FRAX, including among women for whom primary prevention is sought (no prior fracture or osteoporosis by BMD). The FRAX and simpler models predict 10‐year risk of incident hip and major osteoporotic fractures in older US women with normal or low bone mass. © 2011 American Society for Bone and Mineral Research  相似文献   

7.
DXA is affected by skeletal size, with smaller bones giving lower areal BMD despite equal material density. Whether this size effect confounds the use of BMD as a diagnostic and fracture risk assessment tool is unclear. We identified 16,205 women of white ethnicity ≥50 yr of age undergoing baseline hip assessment with DXA (1998–2002) from a population‐based database that contains all clinical DXA test results for the Province of Manitoba, Canada. Total hip measurements were categorized according to quartile in total hip bone area (Q1 = smallest, Q4 = largest). Longitudinal health service records were assessed for the presence of nontraumatic osteoporotic fracture codes during a mean of 3.2 yr of follow‐up after BMD testing (757 osteoporotic fractures, 186 hip fractures). Total hip bone area strongly affected osteoporosis diagnosis with much higher rates in Q1 (14.4%) than Q4 (8.9%). However, incident fracture rates were constant across all area quartiles, and prevalent fractures were paradoxically fewer in smaller area quartiles (p < 0.001 for trend). Age was a potential confounder that correlated positively with area (r = 0.12, p < 0.0001). When age was not included in a Cox regression model, Q1 seemed to have a lower rate of incident osteoporotic fractures (HR = 0.80, 95% CI = 0.66–0.98, reference Q4) and hip fractures (HR = 0.63, 95% CI = 0.43–0.94) for a given level of BMD. In age‐adjusted regression models, total hip BMD was strongly predictive of incident osteoporotic fractures (HR per SD = 1.83, 95% CI = 1.68–1.99) and hip fractures (HR per SD = 2.80, 95% CI = 2.33–3.35), but there was no independent effect of bone area (categorical or continuous). Nested matched subgroup analysis and ROC analysis confirmed that bone area had no appreciable effect on incident fractures. We conclude that total hip areal BMD categorizes a substantially higher fraction of women with smaller bone area as being osteoporotic despite younger age. Incident fracture rates correlate equally well with BMD across all bone area quartiles when adjusted for age.  相似文献   

8.
Low body mass index (BMI) is a well‐established risk factor for fracture in postmenopausal women. Height and obesity have also been associated with increased fracture risk at some sites. We investigated the relationships of weight, BMI, and height with incident clinical fracture in a practice‐based cohort of postmenopausal women participating in the Global Longitudinal study of Osteoporosis in Women (GLOW). Data were collected at baseline and at 1, 2, and 3 years. For hip, spine, wrist, pelvis, rib, upper arm/shoulder, clavicle, ankle, lower leg, and upper leg fractures, we modeled the time to incident self‐reported fracture over a 3‐year period using the Cox proportional hazards model and fitted the best linear or nonlinear models containing height, weight, and BMI. Of 52,939 women, 3628 (6.9%) reported an incident clinical fracture during the 3‐year follow‐up period. Linear BMI showed a significant inverse association with hip, clinical spine, and wrist fractures: adjusted hazard ratios (HRs) (95% confidence intervals [CIs]) per increase of 5 kg/m2 were 0.80 (0.71–0.90), 0.83 (0.76–0.92), and 0.88 (0.83–0.94), respectively (all p < 0.001). For ankle fractures, linear weight showed a significant positive association: adjusted HR per 5‐kg increase 1.05 (1.02–1.07) (p < 0.001). For upper arm/shoulder and clavicle fractures, only linear height was significantly associated: adjusted HRs per 10‐cm increase were 0.85 (0.75–0.97) (p = 0.02) and 0.73 (0.57–0.92) (p = 0.009), respectively. For pelvic and rib fractures, the best models were for nonlinear BMI or weight (p = 0.05 and 0.03, respectively), with inverse associations at low BMI/body weight and positive associations at high values. These data demonstrate that the relationships between fracture and weight, BMI, and height are site‐specific. The different associations may be mediated, at least in part, by effects on bone mineral density, bone structure and geometry, and patterns of falling. © 2014 American Society for Bone and Mineral Research.  相似文献   

9.
This study assessed the ability of multisite quantitative ultrasound (mQUS) to predict fracture over a 5‐year follow‐up. Participants were a subset of the Canadian Multicentre Osteoporosis Study. mQUS‐assessed speed of sound (SOS in m/s) at three sites (distal radius, tibia, and phalanx) and extensive questionnaires were completed, after which participants were followed for 5 years and incident fractures recorded. Two survival analyses were completed for each site—a univariate analysis and an adjusted multivariate analysis controlling for age, antiresorptive use, femoral neck bone mineral density, number of diseases, previous fractures, body mass index (BMI), parental history of hip fracture, current smoking, current alcoholic drinks >3 per day, current use of glucocorticoids, and rheumatoid arthritis diagnosis (variables from the FRAX 10‐year fracture risk assessment tool). The unit of change for regression analyses was one standard deviation for all measurement sites, specific to site and sex. Separate analyses were completed for all clinical fractures, nonvertebral fractures, and hip fractures by sex. There were 2633 women and 1108 men included, and they experienced 204 incident fractures over 5 years (5.5% fractured). Univariate models revealed statistically significant (p < 0.05) predictive ability of mQUS for all three measurement sites for women alone for all three fracture types (one standard deviation decrease in SOS was associated with a 52% to 130% increase in the risk of fracture), but not for the men's group. The adjusted model found that measures at the distal radius and tibia in the women's group could significantly (p < 0.05) predict all clinical fractures and nonvertebral fractures within the next 5 years (one standard deviation decrease in SOS was associated with a 25% to 31% increase in the risk of fracture). mQUS provided significant 5‐year clinical fracture prediction in women, independent of bone mineral density and other significant risk factors for fracture, when measured at the distal radius and tibia sites.  相似文献   

10.
The FRAX tool estimates an individual's fracture probability over 10 years from clinical risk factors with or without bone mineral density (BMD) measurement. The aim of our study was to compare the predicted fracture probabilities and the observed incidence of fracture in French women during a 10‐year follow‐up. The probabilities of fracture at four major sites (hip, clinical spine, shoulder, or wrist) and at the hip were calculated with the FRAX tool in 867 women aged 40 years and over from the Os des Femmes de Lyon (OFELY) cohort.The incidence of fracture was observed over 10 years. Thus 82 women sustained 95 incident major osteoporotic (OP) fractures including 17 fractures at the hip. In women aged at least 65 years (n = 229), the 10‐year predicted probabilities of fracture with BMD were 13% for major OP fractures and 5% for hip fractures, contrasting with 3.6% and 0.5% in women younger than 65 years (p < .0001). The predicted probabilities of both major OP and hip fractures were significantly higher in women with osteoporosis (n = 77, 18% and 10%) and osteopenia (n= 390, 6% and 2%) compared with women with normal BMD (n = 208, 3% and <1%; p < .0001. The predicted probabilities of fracture were two and five times higher in women who sustained an incident major OP fracture and a hip fracture compared with women who did not (p < .0001). Nevertheless, among women aged at least 65 years with low BMD values (T‐score ≤ –1; n = 199), the 10‐year predicted probability of major OP fracture with BMD was 48% lower than the observed incidence of fractures (p < .01). A 10‐year probability of major OP fracture higher than 12% identified more women with incident fractures than did BMD in the osteoporotic range (p < .05). In French women from the OFELY cohort, the observed incidence of fragility fractures over 10 years increased with age following a pattern similar to the predicted probabilities given by the FRAX tool. However, in women aged at least 65 years with low BMD, the observed incidence of fractures was substantially higher than the predicted probability. © 2010 American Society for Bone and Mineral Research.  相似文献   

11.
Primary aldosteronism (PA) is associated with increased urinary calcium excretion and osteoporosis prevalence. We studied the long‐term effect of hyperaldosterone on fracture risk and possible risk mitigation via treatments, by comparing PA patients and their essential hypertension (EH) counterparts extracted by propensity score match. We used a longitudinal population database from the Taiwan National Health Insurance, and used a validated algorithm to identify PA patients diagnosed in 1997–2010. Our sample included 2533 PA patients, including 921 patients with aldosterone‐producing adenoma (APA). Our methods for assessing excessive fracture risk included multivariable Cox regression and the competing risk regression. The incidence rate of fracture at any site was 14.4 per 1000 person‐years for PA, and 11.2 per 1000 person‐years for APA. In contrast, the incidence rate of fracture at any site was 8.3 per 1000 person‐years in EH controls for PA, and 6.5 per 1000 person‐years in EH controls for APA. Mineralocorticoid receptor antagonist (MRA) treatment might be associated with higher risk of osteoporotic fracture in the whole female PA cohort (subdistribution hazard ratio [SHR] = 2.12, p = 0.008) as well as female APA patients (SHR = 1.15, p = 0.049). As to fracture at any site, MRA treatment was also associated with higher risk; the SHR was 1.88 (p < 0.001) in the whole female PA cohort, and 2.17 (p = 0.019) in female APA patients. PA is tightly associated with higher risk of bone fracture, even in the case where the competing risk of death was controlled. Particularly, female PA patients treated with MRA were confronted with significantly higher risk in bone fracture than their EH controls. © 2017 American Society for Bone and Mineral Research.  相似文献   

12.
Osteoporosis is increasingly reported in the aging HIV‐positive population, and co‐infection with hepatitis C virus (HCV) may further increase the risk of osteoporosis. However, it remains unclear whether HCV‐related increased fracture risk is a function of the severity of liver disease. We calculated the time‐updated alanine aminotransferase to platelet ratio index (APRI) score (an indirect marker of hepatic fibrosis) in all HIV‐infected patients enrolled in the Veterans Affairs' Clinical Case Registry between 1984 and 2009. The association between HCV co‐infection and incident osteoporotic fracture (defined as closed wrist, vertebral, or hip fracture) was assessed in univariate and multivariate Cox survival models adjusting for traditional risk factors for osteoporosis and APRI score or the presence of cirrhosis. A total of 772 osteoporotic fractures were identified among 56,660 HIV‐infected patients (98.1% male; 31.3% HCV co‐infected; median age 44.0 years) contributing 305,237 patient‐years of follow‐up. Fracture rates were significantly higher among HIV/HCV patients than HIV‐only patients (2.57 versus 2.07/1000 patient‐years, relative risk = 1.24, p < 0.0001). In a Cox multivariable model including age, race, smoking, drug use, body mass index, and antiretroviral therapy, HCV co‐infection remained an independent predictor of osteoporotic fractures after controlling for presence of cirrhosis (hazard ratio [HR] = 1.32; p < 0.001) or APRI score (HR = 1.30; p = 0.003). Among HIV/HCV co‐infected patients, cirrhosis strongly predicted osteoporotic fractures (HR = 1.65; 95% confidence interval [CI] 1.11–2.44; p = 0.012), but APRI score was a weaker predictor (HR = 1.008; 95% CI 1.002–1.014; p = 0.015). In conclusion, among HIV‐infected patients, severity of liver disease partly explains the HCV‐associated increased risk of osteoporotic fractures. Other determinants of this increased risk remain to be defined. © 2013 American Society for Bone and Mineral Research.  相似文献   

13.
Wrist fracture is not only one of the most common osteoporotic fractures but also a predictor of future fractures at other sites. Wrist bone mineral density (BMD) is an important determinant of wrist fracture risk, with high heritability. Specific genes underlying wrist BMD variation are largely unknown. Most published genome‐wide association studies (GWASs) have focused only on a few top‐ranking single‐nucleotide polymorphisms (SNPs)/genes and considered each of the identified SNPs/genes independently. To identify biologic pathways important to wrist BMD variation, we used a novel pathway‐based analysis approach in our GWAS of wrist ultradistal radius (UD) BMD, examining approximately 500,000 SNPs genome‐wide from 984 unrelated whites. A total of 963 biologic pathways/gene sets were analyzed. We identified the regulation‐of‐autophagy (ROA) pathway that achieved the most significant result (p = .005, qfdr = 0.043, pfwer = 0.016) for association with UD BMD. The ROA pathway also showed significant association with arm BMD in the Framingham Heart Study sample containing 2187 subjects, which further confirmed our findings in the discovery cohort. Earlier studies indicated that during endochondral ossification, autophagy occurs prior to apoptosis of hypertrophic chondrocytes, and it also has been shown that some genes in the ROA pathway (e.g., INFG) may play important roles in osteoblastogenesis or osteoclastogenesis. Our study supports the potential role of the ROA pathway in human wrist BMD variation and osteoporosis. Further functional evaluation of this pathway to determine the mechanism by which it regulates wrist BMD should be pursued to provide new insights into the pathogenesis of wrist osteoporosis. © 2010 American Society for Bone and Mineral Research  相似文献   

14.
Cost‐of‐illness (COI) analysis is used to evaluate the economic burden of illness in terms of health care resource (HCR) consumption. We used the Population Health Research Data Repository for Manitoba, Canada, to identify HCR costs associated with 33,887 fracture cases (22,953 women and 10,934 men) aged 50 years and older that occurred over a 10‐year period (1996–2006) and 101,661 matched control individuals (68,859 women and 32,802 men). Costs (in 2006 Canadian dollars) were estimated for the year before and after fracture, and the change (incremental cost) was modeled using quantile regression analysis to adjust for baseline covariates and to study temporal trends. The greatest total incremental costs were associated with hip fractures (median $16,171 in women and $13,111 for men), followed by spine fractures ($8,345 in women and $6,267 in men). The lowest costs were associated with wrist fractures ($663 in women and $764 in men). Costs for all fracture types were greater in older individuals (p < 0.001). Similar results were obtained with regression‐based adjustment for baseline factors. Some costs showed a slight increase over the 10 years. The largest temporal increase in women was for hip fracture ($13 per year, 95% CI $6–$21, p < 0.001) and in men was for humerus fracture ($11 per year, 95% CI $3–$19, p = 0.007). At the population level, hip fractures were responsible for the largest proportion of the costs after age 80, but the other fractures were more important prior to age 80. We found that there are large incremental health care costs associated with incident fractures in Canada. Identifying COI from HCR use offers a cost baseline for measuring the effects of evidence‐based guidelines implementation. © 2011 American Society for Bone and Mineral Research  相似文献   

15.
Height has been associated with increased risk of fracture of the neck of femur. However, information on the association of height with fractures at other sites is limited and conflicting. A total of 796,081 postmenopausal women, who reported on health and lifestyle factors including a history of previous fractures and osteoporosis, were followed for 8 years for incident fracture at various sites by record linkage to National Health Service hospital admission data. Adjusted relative risks of fracture at different sites per 10‐cm increase in height were estimated using Cox regression. Numbers with site‐specific fractures were: humerus (3036 cases), radius and/or ulna (1775), wrist (9684), neck of femur (5734), femur (not neck) (713), patella (649), tibia and/or fibula (1811), ankle (5523), and clavicle/spine/rib (2174). The risk of fracture of the neck of femur increased with increasing height (relative risk [RR] = 1.48 per 10‐cm increase, 99% confidence interval [CI] 1.39–1.57) and the proportional increase in risk was significantly greater than for all other fracture sites (pheterogeneity < 0.001). For the other sites, fracture risk also increased with height (RR = 1.15 per 10 cm, CI 1.12–1.18), but there was only very weak evidence of a possible difference in risk between the sites (pheterogeneity = 0.03). In conclusion, taller women are at increased risk of fracture, especially of the neck of femur. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

16.
We used data from the Osteoporotic Fractures in Men (MrOS) study to test the hypothesis that men with higher levels of bone turnover would have accelerated bone loss and an elevated risk of fracture. MrOS enrolled 5995 subjects >65 yr; hip BMD was measured at baseline and after a mean follow‐up of 4.6 yr. Nonspine fractures were documented during a mean follow‐up of 5.0 yr. Using fasting serum collected at baseline and stored at ?190°C, bone turnover measurements (type I collagen N‐propeptide [PINP]; β C‐terminal cross‐linked telopeptide of type I collagen [βCTX]; and TRACP5b) were obtained on 384 men with nonspine fracture (including 72 hip fractures) and 947 men selected at random. Among randomly selected men, total hip bone loss was 0.5%/yr among those in the highest quartile of PINP (>44.3 ng/ml) and 0.3%/yr among those in the lower three quartiles (p = 0.01). Fracture risk was elevated among men in the highest quartile of PINP (hip fracture relative hazard = 2.13; 95% CI: 1.23, 3.68; nonspine relative hazard = 1.57, 95% CI: 1.21, 2.05) or βCTX (hip fracture relative hazard = 1.76, 95 CI: 1.04, 2.98; nonspine relative hazard = 1.29, 95% CI: 0.99, 1.69) but not TRACP5b. Further adjustment for baseline hip BMD eliminated all associations between bone turnover and fracture. We conclude that higher levels of bone turnover are associated with greater hip bone loss in older men, but increased turnover is not independently associated with the risk of hip or nonspine fracture.  相似文献   

17.
Traits of optimism and cynical hostility are features of personality that could influence the risk of falls and fractures by influencing risk‐taking behaviors, health behaviors, or inflammation. To test the hypothesis that personality influences falls and fracture risk, we studied 87,342 women enrolled in WHI‐OS. Optimism was assessed by the Life Orientation Test–Revised and cynical hostility, the cynicism subscale of the Cook‐Medley questionnaire. Higher scores indicate greater optimism and hostility. Optimism and hostility were correlated at r = –0. 31, p < 0.001. Annual self‐report of falling ≥2 times in the past year was modeled using repeated measures logistic regression. Cox proportional hazards models were used for the fracture outcomes. We examined the risk of falls and fractures across the quartiles (Q) of optimism and hostility with tests for trends; Q1 formed the referent group. The average follow‐up for fractures was 11.4 years and for falls was 7.6 years. In multivariable (MV)‐adjusted models, women with the highest optimism scores (Q4) were 11% less likely to report ≥2 falls in the past year (odds ratio [OR] = 0.89; 95% confidence intervals [CI] 0.85–0.90). Women in Q4 for hostility had a 12% higher risk of ≥2 falls (OR = 1.12; 95% CI 1.07–1.17). Higher optimism scores were also associated with a 10% lower risk of fractures, but this association was attenuated in MV models. Women with the greatest hostility (Q4) had a modest increased risk of any fracture (MV‐adjusted hazard ratio = 1. 05; 95% CI 1.01–1.09), but there was no association with specific fracture sites. In conclusion, optimism was independently associated with a decreased risk of ≥2 falls, and hostility with an increased risk of ≥2 falls, independent of traditional risk factors. The magnitude of the association was similar to aging 5 years. Whether interventions aimed at attitudes could reduce fall risks remains to be determined. © 2016 American Society for Bone and Mineral Research.  相似文献   

18.
To examine the degree of trauma in major osteoporotic fractures (MOF) in men versus women, we used data from 15,698 adults aged ≥65 years enrolled in the Osteoporotic Fractures in Men (MrOS) study (5994 men) and the Study of Osteoporotic Fractures (SOF) (9704 women). Participants were contacted tri‐annually to ascertain incident fractures, which were confirmed by radiographic reports and coded according to degree of self‐reported trauma. Trauma was classified as low (fall from ≤ standing height; fall on stairs, steps, or curb; minimal trauma other than fall [coughing, turning over]); moderate (collisions with objects during normal activity without associated fall); or high (fall from > standing height; severe trauma [motor vehicle accident, assault]). MOF included hip, clinical vertebral, wrist, and humerus fractures. Mean fracture follow‐up was 9.1 years in SOF and 8.7 years in MrOS. A total of 14.6% of the MOF in men versus 6.3% of the MOF in women were classified as high trauma (p < 0.001); men versus women more often experienced fractures resulting from severe trauma as well as from fall > standing height. High‐trauma fractures were more significantly common in men versus women at the hip (p = 0.002) and wrist (p < 0.001) but not at the spine or humerus. Among participants with MOF, the odds ratio of a fracture related to high‐trauma fracture among men versus women was 3.12 (95% confidence interval [CI] 1.70–5.71) after adjustment for traditional risk factors. Findings were similar in analyses limited to participants with hip fractures (odds ratio [OR] = 3.34, 95% CI 1.04–10.67) and those with wrist fracture (OR = 5.68, 95% CI 2.03–15.85). Among community‐dwelling older adults, MOF are more likely to be related to high trauma in men than in women. These findings are not explained by sex differences in conventional risk factors and may reflect a greater propensity among men to engage in risky behavior. © 2015 American Society for Bone and Mineral Research.  相似文献   

19.
In vitro and in vivo studies suggest that carotenoids may inhibit bone resorption, yet no previous study has examined individual carotenoid intake (other than β‐carotene) and the risk of fracture. We evaluated associations of total and individual carotenoid intake (α‐carotene, β‐carotene, β‐cryptoxanthin, lycopene, lutein + zeaxanthin) with incident hip fracture and nonvertebral osteoporotic fracture. Three hundred seventy men and 576 women (mean age, 75 ± 5 yr) from the Framingham Osteoporosis Study completed a food frequency questionnaire (FFQ) in 1988–1989 and were followed for hip fracture until 2005 and nonvertebral fracture until 2003. Tertiles of carotenoid intake were created from estimates obtained using the Willett FFQ adjusting for total energy (residual method). HRs were estimated using Cox‐proportional hazards regression, adjusting for sex, age, body mass index, height, total energy, calcium and vitamin D intake, physical activity, alcohol, smoking, multivitamin use, and current estrogen use. A total of 100 hip fractures occurred over 17 yr of follow‐up. Subjects in the highest tertile of total carotenoid intake had lower risk of hip fracture (p = 0.02). Subjects with higher lycopene intake had lower risk of hip fracture (p = 0.01) and nonvertebral fracture (p = 0.02). A weak protective trend was observed for total β‐carotene for hip fracture alone, but associations did not reach statistical significance (p = 0.10). No significant associations were observed with α‐carotene, β‐cryptoxanthin, or lutein + zeaxanthin. These results suggest a protective role of several carotenoids for bone health in older adults.  相似文献   

20.
All people are exposed to cadmium (Cd) via food; smokers are additionally exposed. High Cd exposure is associated with severe bone damage, but the public health impact in relation to osteoporosis and fractures at low environmental exposure remains to be clarified. Within the population‐based Swedish Mammography Cohort, we assessed urinary Cd [U‐Cd, µg/g of creatinine (cr)] as a marker of lifetime exposure and bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) among 2688 women. Register‐based information on fractures was retrieved from 1997 to 2009. Associations were evaluated by multivariable regression analyses. In linear regression, U‐Cd was inversely associated with BMD at the total body (p < .001), femoral neck (p = .025), total hip (p = .004), lumbar spine (p = .088), and volumetric femoral neck (p = .013). In comparison with women with U‐Cd < 0.50 µg/g of cr, those with U‐Cd ≥ 0.75 µg/g of cr had odds ratios (ORs) of 2.45 [95% confidence interval (CI) 1.51–3.97] and 1.97 (95% CI 1.24–3.14) for osteoporosis at the femoral neck and lumbar spine, respectively. Among never‐smokers, the corresponding ORs were 3.47 (95% CI 1.46–8.23) and 3.26 (95% CI 1.44–7.38). For any first fracture (n = 395), the OR was 1.16 (95% CI 0.89–1.50) comparing U‐Cd ≥ 0.50 µg/g of cr with lower levels. Among never‐smokers, the ORs (95% CIs) were 2.03 (1.33–3.09) for any first fracture, 2.06 (1.28–3.32) for first osteoporotic fracture, 2.18 (1.20–3.94) for first distal forearm fracture, and 1.89 (1.25–2.85) for multiple incident fractures. U‐Cd at low environmental exposure from food in a general population of women showed modest but significant association with both BMD and fractures, especially in never‐smokers, indicating a larger concern than previously known. © 2011 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号