首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital myopathies are clinical and genetic heterogeneous disorders characterized by skeletal muscle weakness and specific structural changes in muscle fiber. Congenital myopathy with fiber type disproportion (CFTD) is an established disorder of congenital myopathy. CFTD is characterized by non-progressive childhood neuromuscular disorders with a relatively good prognosis and type 1 fiber predominance and smallness. Congenital myopathy with type 1 fiber predominance (CMT1P) is also a distinct entity of congenital myopathy characterized by non-progressive childhood neuromuscular disorders and type 1 fiber predominance without smallness. Little is known about CMT1P. Clinical characteristics, including dysmorphic features such as hip dislocation, kyphoscoliosis, contracture, and high arch palate, were analyzed along with laboratory and muscle pathologies in six patients with CMT1P and three patients with CFTD. The clinical manifestations of CFTD and CMT1P were similar. However, the frequency of dysmorphic features is less in CMT1P than in CFTD. Long term observational studies of CMT1P are needed to determine if it will change to another form of congenital myopathy or if CMT1P is a distinct clinical entity.  相似文献   

2.
The main histological abnormality in congenital fiber type disproportion (CFTD) is hypotrophy of type 1 (slow twitch) fibers compared to type 2 (fast twitch) fibers. To investigate whether mutations in RYR1 are a cause of CFTD we sequenced RYR1 in seven CFTD families in whom the other known causes of CFTD had been excluded. We identified compound heterozygous changes in the RYR1 gene in four families (five patients), consistent with autosomal recessive inheritance. Three out of five patients had ophthalmoplegia, which may be the most specific clinical indication of mutations in RYR1. Type 1 fibers were at least 50% smaller, on average, than type 2 fibers in all biopsies. Recessive mutations in RYR1are a relatively common causeof CFTD and can be associated with extreme fiber size disproportion. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Chromosome 1p36 deletion syndrome is characterized by hypotonia, moderate to severe developmental and growth retardation, and characteristic craniofacial dysmorphism. Muscle hypotonia and delayed motor development are almost constant features of the syndrome. We report a 4-year-old Japanese girl with 1p36 deletion syndrome whose muscle pathology showed congenital fiber type disproportion (CFTD) myopathy. This is the first case report of 1p36 deletion associated with CFTD. This association may indicate that one of the CFTD loci is located at 1p36. Ski proto-oncogene −/− mice have phenotypes that resemble some of the features observed in patients with 1p36 deletion syndrome. Because fluorescent in situ hybridization analysis revealed that the human SKI gene is deleted in our patient, some genes in 1p36, including SKI proto-oncogene, may be involved in muscle hypotonia and delayed motor development in this syndrome. Received: March 4, 2002 / Accepted: July 7, 2002  相似文献   

4.
In humans, more than 140 different mutations within seven genes (ACTA1, TPM2, TPM3, TNNI2, TNNT1, TNNT3, and NEB) that encode thin filament proteins (skeletal α-actin, β-tropomyosin, γ-tropomyosin, fast skeletal muscle troponin I, slow skeletal muscle troponin T, fast skeletal muscle troponin T, and nebulin, respectively) have been identified. These mutations have been linked to muscle weakness and various congenital skeletal myopathies including nemaline myopathy, distal arthrogryposis, cap disease, actin myopathy, congenital fiber type disproportion, rod-core myopathy, intranuclear rod myopathy, and distal myopathy, with a dramatic negative impact on the quality of life. In this review, we discuss studies that use various approaches such as patient biopsy specimen samples, tissue culture systems or transgenic animal models, and that demonstrate how thin filament proteins mutations alter muscle structure and contractile function. With an enhanced understanding of the cellular and molecular mechanisms underlying muscle weakness in patients carrying such mutations, better therapy strategies can be developed to improve the quality of life.  相似文献   

5.
The ACTA1 gene encodes skeletal muscle α‐actin, which is the predominant actin isoform in the sarcomeric thin filaments of adult skeletal muscle, and essential, along with myosin, for muscle contraction. ACTA1 disease‐causing mutations were first described in 1999, when a total of 15 mutations were known. In this article we describe 177 different disease‐causing ACTA1 mutations, including 85 that have not been described before. ACTA1 mutations result in five overlapping congenital myopathies: nemaline myopathy; intranuclear rod myopathy; actin filament aggregate myopathy; congenital fiber type disproportion; and myopathy with core‐like areas. Mixtures of these histopathological phenotypes may be seen in a single biopsy from one patient. Irrespective of the histopathology, the disease is frequently clinically severe, with many patients dying within the first year of life. Most mutations are dominant and most patients have de novo mutations not present in the peripheral blood DNA of either parent. Only 10% of mutations are recessive and they are genetic or functional null mutations. To aid molecular diagnosis and establishing genotype–phenotype correlations, we have developed a locus‐specific database for ACTA1 variations ( http://waimr.uwa.edu.au ). Hum Mutat 30:1–11, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Congenital muscle fiber type disproportion (CFTD) has been described as a form of congenital myopathy characterized by the smallness and marked predominance of type 1 fibers in a muscle biopsy. Clinical manifestations include hypotonia, nonprogressive muscle weakness, joint contractures, and skeletal deformities. However, it has also been noted that the same pathologic alterations appeared in clinically diverse conditions. Recently, we experienced a family, a mother and two children, in which a muscle biopsy showed the mother to have muscle fiber type disproportion. This case was unusual in that there was a significant progression of weakness, an absence of neonatal hypotonia, and other commonly associated musculo-skeletal deformities. In this report, we describe the clinicopathologic features of the family with a brief review about muscle fiber type disproportion.  相似文献   

7.
Cardiac ankyrin repeat protein (CARP), which is structurally characterized by the presence of four ankyrin repeat motifs in its central region, is believed to be localized in the nucleus and to participate in the regulation of cardiac-specific gene expression in cardiomyocytes. However, we recently found that CARP was induced in skeletal muscle by denervation, leading us to speculate that CARP may be induced under some pathological conditions. In the present study, we immunohistochemically analyzed the expression of CARP in 11 cases of spinal muscular atrophy (SMA) and 14 cases of congenital myopathy. In SMA, CARP was expressed selectively in severely atrophic myofibers, suggesting that CARP expression may reflect the status of muscle atrophy. Furthermore, in the congenital myopathies, the expression patterns of CARP were distinct among the subtypes, which included nemaline myopathy, myotubular myopathy, central core disease, and congenital fiber type disproportion. Although CARP was preferentially expressed in severely damaged myofibers in nemaline myopathy, it was not detected in central core disease. These findings suggest that immunohistochemical evaluation of CARP may be helpful in the diagnosis of SMA and the congenital myopathies.  相似文献   

8.
Two siblings, born to healthy non-consanguineous parents, were found to be affected with congenital progressive severe myopathy. Muscle biopsy revealed fiber type disproportion with no other histological abnormalities, thus confirming the diagnosis of congenital fiber type disproportion and suggesting an autosomal recessive mode of inheritance. This, to our knowledge, is the first reported family in which a strict histological diagnosis of congenital fiber type disproportion has been made and an autosomal recessive mode of inheritance shown.  相似文献   

9.
Multiple pterygium syndrome (MPS) disorders are a phenotypically and genetically heterogeneous group of conditions characterized by multiple joint contractures (arthrogryposis), pterygia (joint webbing) and other developmental defects. MPS is most frequently inherited in an autosomal recessive fashion but X-linked and autosomal dominant forms also occur. Advances in genomic technologies have identified many genetic causes of MPS-related disorders and genetic diagnosis requires large targeted next generation sequencing gene panels or genome-wide sequencing approaches. Using the Illumina TruSightOne clinical exome assay, we identified a recurrent heterozygous missense substitution in TPM2 (encoding beta tropomyosin) in three unrelated individuals. This was confirmed to have arisen as a de novo event in the two patients with parental samples. TPM2 mutations have previously been described in association with a variety of dominantly inherited neuromuscular phenotypes including nemaline myopathy, congenital fibre-type disproportion, distal arthrogryposis and trismus pseudocamptodactyly, and in a patient with autosomal recessive Escobar syndrome and a nemaline myopathy. The three cases reported here had overlapping but variable features. Our findings expand the range of TMP2-related phenotypes and indicate that de novo TMP2 mutations should be considered in isolated cases of MPS-related conditions.  相似文献   

10.
Nemaline myopathy (NM) is a group of congenital myopathies, characterized by the presence of distinct rod-like inclusions "nemaline bodies" in the sarcoplasm of skeletal muscle fibers. To date, ACTA1, NEB, TPM3, TPM2, TNNT1, and CFL2 have been found to cause NM. We have identified recessive RYR1 mutations in a patient with severe congenital NM, through high-throughput screening of congenital myopathy/muscular dystrophy-related genes using massively parallel sequencing with target gene capture. The patient manifested fetal akinesia, neonatal severe hypotonia with muscle weakness, respiratory insufficiency, swallowing disturbance, and ophthalomoplegia. Skeletal muscle histology demonstrated nemaline bodies and small type 1 fibers, but without central cores or minicores. Congenital myopathies, a molecularly, histopathologically, and clinically heterogeneous group of disorders are considered to be a good candidate for massively parallel sequencing.  相似文献   

11.
A patient with myopathy and congenital fiber type disproportion presented at birth with arthrogryposis multiplex congenita, dislocation of the hips and mild scoliosis. Later in life she developed marked muscle weakness. A balanced chromosomal translocation t(10;17) (p11.2;q25), transmitted by the clinically healthy mother, who nevertheless showed discrete signs of myopathy, was demonstrated. DNA analysis excluded maternal uniparental disomy for loci on both chromosomes 10 and 17. We suggest that the translocation breakpoints are candidate regions for a myopathy gene.  相似文献   

12.
We report on the expression of growth associated protein (GAP)43 and neural cell adhesion molecule (NCAM) in congenital fibre type disproportion (CFTD) with myopathological additional signs of interstitial myositis. We assume that sarcolemmal GAP43 in developmental disordered myocytes plays a role in maintenance of growth morphology. In muscular dystrophy light microscopical evaluation reveals no GAP43 immunoreactivity in regenerating fibres. The expression of GAP43 seems to be a characteristic feature of CFTD. The expression of NCAM, particularly in the sarcolemma of small muscle fibres of CFTD, indicates a functional state of permanent partial denervation. Whether the steroid-responsive interstitial myositis is pathogenetically related to CFTD or a coincidental inflammation is not known. Because of the clinical and myopathological data the differential diagnosis of Emery-Dreifuss muscular dystrophy is considered.  相似文献   

13.
Our previous paper presenting electromyographic findings in patients with congenital fiber type disproportion myopathy, confirmed the myogenic character of the disease process. That group of patients was however fairly heterogenous regarding both the clinical features and the morphological changes in muscle fibers (e.g. cases with central cores). In the present study we have examined 13 children with hypotonia and muscle fiber type disproportion operated on in childhood for congenital hip dislocation. In all cases CNEMG and SFEMG with FD estimation was performed in biceps brachii and quadriceps femoris muscles. In all muscles examined either slight EMG changes indicative of myopathy or a normal EMG pattern was found. None of the patients demonstrated an evident increase in FD values. Normal FD and the recruitment pattern proportional to the force of contractures indicate that the normal number of motoneurons is preserved. Accordingly, our present findings confirm the conclusions of our previous paper.  相似文献   

14.
A male neonate presented with severe weakness, hypotonia, contractures and congenital scoliosis. Skeletal muscle specimens showed marked atrophy and degeneration of fast fibers with striking nemaline rods and hypertrophy of slow fibers that were ultrastructurally normal. A neuromuscular gene panel identified a homozygous essential splice variant in TNNT3 (chr11:1956150G > A, NM_006757.3:c.681+1G > A). TNNT3 encodes skeletal troponin‐Tfast and is associated with autosomal dominant distal arthrogryposis. TNNT3 has not previously been associated with nemaline myopathy (NM), a rare congenital myopathy linked to defects in proteins associated with thin filament structure and regulation. cDNA studies confirmed pathogenic consequences of the splice variant, eliciting exon‐skipping and intron retention events leading to a frameshift. Western blot showed deficiency of troponin‐Tfast protein with secondary loss of troponin‐Ifast. We establish a homozygous splice variant in TNNT3 as the likely cause of severe congenital NM with distal arthrogryposis, characterized by specific involvement of Type‐2 fibers and deficiency of troponin‐Tfast.  相似文献   

15.

Purpose

Nemaline myopathy (NM) is a clinical heterogeneous congenital myopathy characterized by the presence of subsarcolemmal or cytoplasmic rod-like structures that call nemaline bodies in the muscle fibers. The purpose of this study was to investigate the clinical diversity and pathological features of Korean patients with NM.

Materials and Methods

Eight patients underwent analyses of clinical manifestations by a structured protocol. Diagnoses were established by a muscle biopsy.

Results

Two patients had the typical congenital type, which exhibited neonatal hypotonia and delayed motor milestone, and five patients had the childhood onset type, which exhibited mild gait disturbance as a first symptom. One patient had the adult onset type, which showed acute respiratory failure. Limb weakness was proximal-dominant occurred in six patients. Hyporeflexia was observed in most patients. Elongated faces and high arched palates and feet were also observed. On light microscopy, the nemaline bodies were observed in type 1 and 2 fibers. All patients showed type 1 predominance and atrophy. In the two cases in which ultrastructural studies were performed, typical nemaline rods and disorganized myofibrillar apparatus were detected.

Conclusion

In conclusion, the eight Korean patients in this study with NM shared common clinical expressions such as proximal limb weakness, reduced deep tendon reflex, and dysmorphic features. This study, however, showed that clinical heterogeneity ranged from typical congenital, mildly affected childhood to the adult onset form with acute respiratory failure. The pathological findings in this study were in accordance with those of other previous reports.  相似文献   

16.
Nemaline myopathy, the most common non-dystrophic congenital myopathy, is caused by mutations in six genes, all of which encode thin-filament proteins, including NEB (nebulin) and TPM3 (α tropomyosin). In contrast to the mechanisms underlying weakness in NEB-based myopathy, which are related to loss of thin-filament functions normally exerted by nebulin, the pathogenesis of muscle weakness in patients with TPM3 mutations remains largely unknown. Here, we tested the hypothesis that the contractile phenotype of TPM3-based myopathy is different from that of NEB-based myopathy and that this phenotype is a direct consequence of the loss of the specific functions normally exerted by tropomyosin. To test this hypothesis, we used a multidisciplinary approach, including muscle fiber mechanics and confocal and electron microscopy to characterize the structural and functional phenotype of muscle fibers from five patients with TPM3-based myopathy and compared this with that of unaffected control subjects. Our findings demonstrate that patients with TPM3-based myopathy display a contractile phenotype that is very distinct from that of patients with NEB-based myopathy. Whereas both show severe myofilament-based muscle weakness, the contractile dysfunction in TPM3-based myopathy is largely explained by changes in cross-bridge cycling kinetics, but not by the dysregulation of sarcomeric thin-filament length that plays a prominent role in NEB-based myopathy. Interestingly, the loss of force-generating capacity in TPM3-based myopathy appears to be compensated by enhanced thin-filament activation. These findings provide a scientific basis for differential therapeutics aimed at restoring contractile performance in patients with TPM3-based versus NEB-based myopathy.  相似文献   

17.
To date, six genes are known to cause nemaline (rod) myopathy (NM), a rare congenital neuromuscular disorder. In an attempt to find a seventh gene, we performed linkage and subsequent sequence analyses in 12 Turkish families with recessive NM. We found homozygosity in two of the families at 1q12-21.2, a region encompassing the gamma-tropomyosin gene (TPM3) encoding slow skeletal muscle alpha-tropomyosin, a known NM gene. Sequencing revealed homozygous deletion of the first nucleotide of the last exon, c.913delA of TPM3 in both families. The mutation removes the last nucleotide before the stop codon, causing a frameshift and readthrough across the termination signal. The encoded alphaTm(slow) protein is predicted to be 73 amino acids longer than normal, and the extension to the protein is hypothesised to be unable to form a coiled coil. The resulting tropomyosin protein may therefore be non-functional. The affected children in both families were homozygous for the mutation, while the healthy parents were mutation carriers. Both of the patients in Family 1 had the severe form of NM, and also an unusual chest deformity. The affected children in Family 2 had the intermediate form of NM. Muscle biopsies showed type 1 (slow) fibres to be markedly smaller than type 2 (fast) fibres. Previously, there had been five reports, only, of NM caused by mutations in TPM3. The mutation reported here is the first deletion to be identified in TPM3, and it is likely to be a founder mutation in the Turkish population.European Journal of Human Genetics (2008) 16, 1055-1061; doi:10.1038/ejhg.2008.60; published online 2 April 2008.  相似文献   

18.
Congenital myopathies are clinical and genetic heterogeneous disorders characterized by skeletal muscle weakness ranging in severity. Three major forms have been identified: actin myopathy, intranuclear rod myopathy, and nemaline myopathy. Nemaline myopathy is the most common of these myopathies and is further subdivided into seven groups according to severity, progressiveness, and age of onset. At present, five genes have been linked to congenital myopathies. These include alpha-actin (ACTA1), alpha- and beta-tropomyosin (TPM3 and TPM2), troponin T (TNNT1), and nebulin (NEB). Their protein products are all components of the thin filament of the sarcomere. The mutations identified within these genes have varying impacts on protein structure and give rise to different forms of congenital myopathies. Greater understanding of muscle formation and cause of disease can be established through the study of the effect of mutations on the functional proteins. However, a major limitation in the understanding of congenital myopathies is the lack of correlation between the degree of sarcomeric disruption and disease severity. Consequently, great difficulty may be encountered when diagnosing patients and predicting the progression of the disorders. There are no existing cures for congenital myopathies, although improvements can be made to both the standard of living and the life expectancy of the patient through various therapies.  相似文献   

19.
Premasiri MK  Lee YS 《Pathology》2003,35(5):409-413
AIMS: This study attempts to determine the type and relative frequency of muscle diseases contributing to floppy and hypotonic infants in Singapore. METHODS: Eighty consecutive muscle biopsies in the Department of Pathology, National University of Singapore, in the period 1978-2000, in which a clinical diagnosis of floppy or hypotonic infant was made, were reviewed. RESULTS: The commonest cause of severe hypotonia in infancy was spinal muscular atrophy, which accounted for 33% of cases followed by congenital muscular dystrophy (13%). Eight cases (10%) of infantile type II glycogenosis (Pompe's disease) were encountered. There were seven cases of congenital myopathy, of which four were centronuclear myopathy, and one each of central core myopathy, nemaline myopathy and congenital fibre type disproportion. One case of centronuclear myopathy was associated with type I fibre smallness. Type II atrophy, which is generally considered a non-specific change, was encountered in five cases. Of interest is the relatively large number of muscle biopsies (29%) in which no significant pathological features were encountered at the light microscopic, histochemical as well as ultra-structural level. CONCLUSIONS: The study has revealed a great variety of pathology affecting the muscle of children presenting as floppy infants or with hypotonia. The muscle diseases included spinal muscular atrophy, congenital muscular dystrophies, congenital myopathies and metabolic myopathies. However, 23 (29%) cases showed no significant pathology. For this group of floppy and hypotonic infants further studies are needed.  相似文献   

20.
Fiber type distribution within a skeletal muscle, i.e. the quantification of the relative amount of type 1 (slow‐twitching) and type 2 (fast‐twitching) muscle fibers, is of great interest for the monitoring of the effects of training or the treatment of muscle diseases. The purpose of this study was to determine the feasibility of diffusion tensor imaging (DTI) as a tool for noninvasive fiber type quantification in human skeletal muscle. The right calves of 12 healthy volunteers were examined using DTI at 1.5 T. Standard DTI parameters, including fractional anisotropy (FA), and mean, radial and parallel diffusivity (MD, RD and PD, respectively), were determined in the soleus muscle. Fiber type proportion and mean fiber diameter within the soleus muscle were quantified from tissue specimens obtained via a fine needle biopsy. Linear regression analysis tested for associations between DTI and biopsy results. FA values were correlated significantly with fiber type proportion, such that higher FA values indicated a higher proportion of type 1 fibers (R2 = 0.5, p = 0.01). This was based on lower diffusivity perpendicular to the main axis of the fiber in subjects with a higher type 1 fiber proportion (RD: R2 = 0.52, p = 0.008). MD was also correlated with the proportion of type 1 fibers (R2 = 0.37, p = 0.037), whereas PD showed no significant correlation. DTI is a promising method for the noninvasive estimation of fiber type proportion in skeletal muscle. This technique may be used to monitor training effects or may be further developed as a biomarker in certain muscle diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号