首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Parallel imaging in the form of multiband radiofrequency excitation, together with reduced k‐space coverage in the phase‐encode direction, was applied to human gradient echo functional MRI at 7 T for increased volumetric coverage and concurrent high spatial and temporal resolution. Echo planar imaging with simultaneous acquisition of four coronal slices separated by 44mm and simultaneous 4‐fold phase‐encoding undersampling, resulting in 16‐fold acceleration and up to 16‐fold maximal aliasing, was investigated. Task/stimulus‐induced signal changes and temporal signal behavior under basal conditions were comparable for multiband and standard single‐band excitation and longer pulse repetition times. Robust, whole‐brain functional mapping at 7 T, with 2 × 2 × 2mm3 (pulse repetition time 1.25 sec) and 1 × 1 × 2mm3 (pulse repetition time 1.5 sec) resolutions, covering fields of view of 256 × 256 × 176mm3 and 192 × 172 × 176mm3, respectively, was demonstrated with current gradient performance. Magn Reson Med 63:1144–1153, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The objective of this study was to investigate the feasibility of whole‐body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the “landscape” of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. Magn Reson Med 61:244–248, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
12.
Signal‐to‐noise ratio (SNR) is a major challenge to sodium magnetic resonance imaging. Phased array coils have been shown significantly improving SNR in proton imaging over volume coils. This study investigates SNR advantage of a 15‐channel array head coil (birdcage volume coil for transmit/receive and 15‐channel array insert for receive‐only) in sodium imaging at 7 T. Phantoms and healthy human brains were scanned on a whole‐body 7 T magnetic resonance imaging scanner using a customer‐developed pulse sequence with the twisted projection imaging trajectory. Noise‐only images were acquired with blanked radiofrequency excitations for noise measurement on a pixel basis. SNR was calculated on the root of sum‐of‐squares images. When compared with the volume coil, the 15‐channel array produced SNR more than doubled at the periphery and slightly increased at the center of the phantoms and human brains. Decorrelation of noise across channels of the array coil extended the SNR‐doubled region into deep area of the brain. The spatial modulation of element sensitivities on the sum‐of‐squares combined image was removed by performing self‐calibrated sensitivity encoding parallel image reconstruction and uniform image intensity across entire field of view was attained. The 15‐channel array coil is an efficient tool to substantially improve SNR in sodium imaging on human brain. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high‐resolution three‐dimensional imaging and dynamic two‐dimensional imaging and the importance of further improvements in spatio‐temporal resolution. The purpose of the study was to describe a novel 16‐channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three‐dimensional imaging of the upper airway during static posture, 6‐fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three‐dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm2 in‐plane spatial and 84 ms temporal resolution. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
The purpose of this work was to investigated the feasibility of fully-balanced steady-state free-precession (bSSFP) pulse sequence for trabecular bone and knee cartilage imaging in vivo using ultra-high-field (UHF) MRI at 7T in comparison with pulse sequences previously used at 3T. We showed that bSSFP and spin-echo imaging is possible at higher field strengths within 3.2 W/kg specific absorption rate (SAR) constraints. All pulse sequences were numerically optimized based on measured tissue relaxation parameters from six healthy volunteers (T(1) = 820 +/- 128 ms, T(2) = 43.5 +/- 3 ms for bone marrow and T(1) = 1745 +/- 104 ms and T(2) = 30 +/- 4 ms for cartilage). From simulations of the Bloch equation, a signal-to-noise ratio (SNR) increase of more than 1.9 was predicted. Cartilage SNR of bSSFP was 2.4 times higher at 7T (51.3 +/- 4.3) compared with 3T (21.3 +/- 3.3). Bone SNR increased from 11.8 +/- 2.0 to 13.2 +/- 2.5 at the higher field strength. We concluded that there is SNR benefit and great potential for bone and cartilage imaging at higher field strength.  相似文献   

17.
18.
The purpose of this work was to assess the feasibility and efficacy of using an array coil and parallel imaging in continuous arterial spin labeling (CASL) perfusion MRI. An 8-channel receive-only array head coil was used in conjunction with a surrounding detunable volume transmit coil. The signal to noise ratio (SNR), temporal stability, cerebral blood flow (CBF), and perfusion image coverage were measured from steady state CASL scans using: a standard volume coil, array coil, and array coil with 2- and 3-fold accelerated parallel imaging. Compared to the standard volume coil, the array coil provided 3 times the average SNR increase and higher temporal stability for the perfusion weighted images, even with threefold acceleration. Although perfusion images of the array coil were affected by the inhomogeneous coil sensitivities, this effect was invisible in the quantitative CBF images, which showed highly reproducible perfusion values compared to the standard volume coil. The unfolding distortions of parallel imaging were suppressed in the perfusion images by pairwise subtraction, though they sharply degraded the raw EPI images. Moreover, parallel imaging provided the potential of acquiring more slices due to the shortened acquisition time and improved coverage in brain regions with high static field inhomogeneity. Such results highlight the potential utility of array coils and parallel imaging in ASL perfusion MRI.  相似文献   

19.

Purpose:

To implement and examine the feasibility of a three‐dimensional (3D) ultrashort TE (UTE) sequence on a 7 Tesla (T) clinical MR scanner in comparison with 3T MRI at high isotropic resolution.

Materials and Methods:

Using an in‐house built saddle coil at both field strengths we have imaged mid‐diaphysial sections of five fresh cadaveric specimens of the distal tibia. An additional in vivo scan was performed at 7 Tesla using a quadrature knee coil.

Results:

Using the same type of saddle coil at both field strengths, a significant increase in SNR at 7T compared with 3T (factor 1.7) was found. Significantly shorter T2* values were found at the higher field strength (T2* = 552.2 ± 126 μs at 7T versus T2* = 1163 ± 391 μs at 3T).

Conclusion:

UHF MRI at 7T has great potential for imaging tissues with short T2. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Murine MRI studies are conducted on dedicated MR systems, typically equipped with ultra‐high‐field magnets (≥4.7 T; bore size: ~12–25 cm), using a single transmit‐receive coil (volume or surface coil in linear or quadrature mode) or a transmit‐receive coil combination. Here, we report on the design and characterization of an eight‐channel volume receive‐coil array for murine MRI at 400 MHz. The array was combined with a volume‐transmit coil and integrated into one probe head. Therefore, the animal handling is fully decoupled from the radiofrequency setup. Furthermore, fixed tune and match of the coils and a reduced number of connectors minimized the setup time. Optimized preamplifier design was essential for minimizing the noise coupling between the elements. A comprehensive characterization of transmit volume resonator and receive coil array is provided. The performance of the coil array is compared to a quadrature‐driven birdcage coil with identical sensitive volume. It is shown that the miniature size of the elements resulted in coil noise domination and therefore reduced signal‐to‐noise‐ratio performance in the center compared to the quadrature birdcage. However, it allowed for 3‐fold accelerated imaging of mice in vivo, reducing scan time requirements and thus increasing the number of mice that can be scanned per unit of time. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号