首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As chemokine receptor CCR1 and CCR5 expression on circulating leukocytes is thought to contribute to leukocyte recruitment during renal fibrosis, the authors examined the effects of unilateral ureteral obstruction (UUO) in mice deficient for CCR1 or CCR5. Analysis of UUO kidneys from CCR1-deficient mice revealed a reduction of interstitial macrophages and lymphocytes (35% and 55%, respectively) compared with wild-type controls. CCR1-deficient mice had reduced CCR5 mRNA levels in UUO kidneys, which correlated with a reduction of CCR5+ T cell infiltrate as determined by flow cytometry. Interstitial fibroblasts, renal TGF-beta1 mRNA expression, interstitial volume, and collagen I deposits were all significantly reduced in CCR1-deficient mice. In contrast, renal leukocytes and fibrosis were unaffected in CCR5-deficient mice with UUO. However, if treated with the CCR1 antagonist BX471, CCR5-deficient mice showed a similar reduction of renal leukocytes and fibrosis as CCR1-deficient mice. To determine the underlying mechanism labeled macrophages and T cells isolated from either wild-type, CCR1-deficient, or CCR5-deficient mice were injected into wild-type mice with UUO. Three hours later, renal cell recruitment was reduced for CCR1-deficient cells or cells pretreated with BX471 compared with CCR5-deficient or wild-type cells. Thus, CCR1 but not CCR5 is required for leukocyte recruitment and fibrosis after UUO in mice. Therefore, CCR1 is a promising target for therapeutic intervention in leukocyte-mediated fibrotic tissue injury, e.g. progressive renal fibrosis.  相似文献   

2.
Objective To investigate the effect and mechanism of renal fibrosis after macrophage depletion in C3-deficient unilateral ureteral obstruction mice. Methods Renal interstitial fibrosis model was established by unilateral ureteral obstruction (UUO) in male C3-deficient mice and age-matched C57BL/6 WT mice (8-12 weeks of age). Mice were randomly divided into 4 groups, including sham operation in wild type group(WT/sham)(n=18), UUO operation in wild type group(WT/UUO)(n=18), sham operation in C3-deficient group(C3KO/sham)(n=18), and UUO operation in C3-deficient group(C3KO/UUO)(n=18). The expression of complement C3 was detected by immunohistochemical staining and renal interstitial macrophages were assessed by immunofluorescence staining. Tubulointerstitial fibrosis was observed by both HE staining and Masson staining after 14 days of UUO. Collagen accumulation and score of tubulointerstitial injury were obtained. Wild type and C3-deficient UUO mice were treated by liposome clodronate in early or late stage respectively and then interstitially infiltrated macrophages and renal fibrosis were analysed. Mice were sacrificed randomly at 3,7,14 days after UUO and obstructed kidneys were collected. Macrophage phenotype was detected by double-labeling immunofluorescence with F4/80 and iNOS for the M1, F4/80 and CD206 for the M2 macrophage subpopulation. iNOS, Arg-1 and CD206 were also detected by western blot. Results C3 deficient mice exhibited attenuated renal fibrosis, reduced collagen accumulation and tubulointerstitial injury score compared with WT mice (P<0.01). Meanwhile, macrophage depletion in early or late stage of UUO reduced renal fibrosis in WT mice, but had no effect on C3-deficient UUO mice. Decreased accumulation of M1 macrophages and expression of iNOS, increased accumulation of M2 macrophages and expression of Arg-1, CD206 were found in C3 deficient mice compared with WT mice in early stage of UUO (P<0.01). Conclusion Renal fibrosis is not reduced after depletion of macrophages in C3 deficient UUO mice due to the altered macrophage polarization.  相似文献   

3.
PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction   总被引:35,自引:0,他引:35  
BACKGROUND: Progressive renal disease is characterized by the induction of plasminogen activator inhibitor-1 (PAI-1), suggesting that impaired activity of the renal plasmin cascade may play a role in renal fibrosis. METHODS: To test this hypothesis, the severity of renal fibrosis caused by unilateral ureteral obstruction (UUO) was compared in PAI-1 wild-type (+/+) and PAI-1 deficient (-/-) mice. The extent of interstitial inflammation and fibrosis, renal plasminogen activator and plasmin activity, and renal expression of profibrotic genes was evaluated after 3, 7, and 14 days of UUO. RESULTS: Renal PAI-1 mRNA levels increased 8- to 16-fold in the +/+ mice after UUO surgery, and PAI-1 protein was detected in kidney homogenates. Interstitial fibrosis was significantly attenuated in -/- mice compared with +/+ mice at day 7 and day 14, based on the interstitial area stained with picrosirius red and total kidney collagen content. However, neither the mean renal plasminogen activator nor plasmin activities were increased in -/- mice compared with +/+ mice. The number of interstitial macrophages were significantly lower in the -/- mice three and seven days after UUO; interstitial myofibroblasts were significantly fewer at three days. At the same time points, this altered interstitial cellularity was associated with a significant reduction in renal mRNA levels for transforming growth factor-beta and procollagens alpha 1(I) and alpha 1(III). CONCLUSIONS: These studies establish an important fibrogenic role for PAI-1 in the renal fibrogenic response. The results demonstrate that one important fibrosis-promoting function of PAI-1 is its role in the recruitment of fibrosis-inducing cells, including myofibroblasts and macrophages.  相似文献   

4.
5.
Progressive renal disease as a result of renal fibrosis is caused in part by an impairment of the proteolytic machinery that normally regulates matrix turnover. The goal of the present study was to determine whether genetic deficiency of tissue inhibitor of metalloproteinases-1 (TIMP-1) could attenuate interstitial fibrosis caused by unilateral ureteral obstruction (UUO). Groups of wild-type (Timp-1) mice and TIMP-1-deficient (timp-1) mice were killed after 3 and 14 d of UUO or sham operation. Timp-1 mRNA levels were significantly increased 37- and 19-fold in the wild-type mice 3 and 14 d, respectively, after UUO operation. Matrix metalloproteinase-9 (MMP-9) activity fell in all UUO groups but remained significantly higher in the timp-1 group compared with the Timp-1 group. The degree of interstitial fibrosis (kidney collagen content and percentage of tubulointerstitial area stained with picrosirius red and collagen III) was significantly increased 14 d after UUO operation, but there was no difference between the Timp-1 and timp-1 groups. Many features of the fibrogenic response were similar between the Timp-1 and timp-1 groups, including the number of myofibroblasts and the induction of genes encoding procollagen III, fibronectin, and transforming growth factor-beta. After UUO operation, renal mRNA levels for Timp-3 and plasminogen activator inhibitor-1 were significantly higher in the TIMP-1-deficient mice. The results of this study show that elimination of TIMP-1 alone does not alter the severity of interstitial fibrosis. These findings may be due to compensation by other protease inhibitors such as TIMP-2, TIMP-3, and/or plasminogen activator inhibitor-1 or to the possibility that inhibition of intrinsic MMP activity does not constitute a profibrogenic event in the kidney.  相似文献   

6.
Renal fibrosis is the final common pathway of most progressive renal diseases. C5 was recently identified as a risk factor for liver fibrosis. This study investigated the role of C5 in the development of renal tubulointerstitial fibrosis by (1) induction of renal fibrosis in wild-type and C5(-/-) mice by unilateral ureteral ligation (UUO) and (2) investigation of the effects of a C5a receptor antagonist (C5aRA) in UUO. In C5(-/-) mice, when compared with wild-type controls, markers of renal fibrosis (Sirius Red, type I collagen, fibronectin, alpha-smooth muscle actin, vimentin, and infiltrating macrophages) were significantly reduced on day 5 of UUO. On day 10, fibronectin mRNA and protein expression were still reduced in the C5(-/-) mice. Cortical mRNA of all PDGF isoforms and of TGF-beta(1) (i.e., central mediators of renal disease) were significantly reduced in C5(-/-) mice when compared with controls. Renal tubular cell expression of the C5aR was sparse in normal cortex but markedly upregulated after UUO. Treatment of wild-type UUO mice with C5aRA also led to a significant reduction of cortical Sirius Red staining, fibronectin protein expression, and PDGF-B mRNA expression on day 5. Neither genetic C5 deficiency nor C5aRA treatment caused any histologic changes in the nonobstructed kidneys. In cultured murine cortical tubular cells, C5a stimulated production of TGF-beta(1), and this was inhibited by C5aRA. Using a combined genetic and pharmacologic approach, C5, in particular C5a, is identified as a novel profibrotic factor in renal disease and as a potential new therapeutic target.  相似文献   

7.
8.
Congenital obstructive nephropathy is a major cause of renal insufficiency in children. Osteopontin (OPN) is a phosphoprotein produced by the kidney that mediates cell adhesion and migration. We investigated the role of OPN in the renal response to unilateral ureteral obstruction (UUO) in neonatal mice. OPN null mutant (-/-) and wild-type (+/+) mice were subjected to sham operation or UUO within the first 2 days of life. At 7 and 21 days of age, fibroblasts (fibroblast-specific protein (FSP)-1), myofibroblasts (alpha-smooth muscle actin (SMA)), and macrophages (F4/80) were identified by immunohistochemical staining. Apoptotic cells were detected by terminal deoxy transferase uridine triphosphate nick end-labeling technique and interstitial collagen by Masson trichrome or picrosirius red stain. Compared to sham-operated or contralateral kidneys, obstructed kidneys showed increases in all parameters by 7 days, with further increases by 21 days. After 21 days UUO, there was an increase in tubular and interstitial apoptosis in OPN -/- mice as compared to +/+ animals (P<0.05). However, FSP-1- and alpha-SMA-positive cells and collagen in the obstructed kidney were decreased in OPN -/- compared to +/+ mice (P<0.05), whereas the interstitial macrophage population did not differ between groups. We conclude that OPN plays a significant role in the recruitment and activation of interstitial fibroblasts to myofibroblasts in the progression of interstitial fibrosis in the developing hydronephrotic kidney. However, OPN also suppresses apoptosis. Future approaches to limit the progression of obstructive nephropathy in the developing kidney will require targeting of specific renal compartments.  相似文献   

9.
Objective To investigate the effect of macrophage polarization on tubulointerstitial fibrosis of mouse unilateral ureteral obstruction(UUO) model. Methods Twelve male C57BL/6J mice were employed, each of which with an age of 8 to 10 weeks. UUO model was established with these mice with the method of unilateral ureteral ligation. Mice were then sacrificed on the 7th and 14th day respectively after operation, and renal tissue specimens were obtained. The authors detected collagen deposition by Masson staining, and alpha smooth muscle actin (alpha SMA) as well as collagen type I (Coll-1) mRNA by real-time quantitative PCR. The authors also detected the degree of renal interstitial macrophages infiltration and expression changes of polarization by immunofluorescence staining. Results Compared with the mice that were observed on the 7th day after operation, the degree of renal interstitial fibrosis in mice observed on the 14th day after operation was comparatively serious, the difference shown by semi-quantitative results was statistically significant (P<0.05). Moreover, mice observed on the 14th day after operation have more M2 macrophages, the difference between two groups of mice was statistically significant (P<0.05). On the contrary, there was no statistically significant difference in the degree of M1 macrophages infiltration between these two groups of mice. Conclusions In the renal interstitial fibrosis model induced by UUO, the degree of macrophage infiltration increased significantly, mainly resulted from M2 macrophage infiltration, suggesting that M2 macrophages were involved in the formation of renal fibrosis.  相似文献   

10.
The end point of immune and nonimmune renal injury typically involves glomerular and tubulointerstitial fibrosis. Although numerous studies have focused on the events that lead to renal fibrosis, less is known about the mechanisms that promote cellular repair and tissue remodeling. Described is a model of renal injury and repair after the reversal of unilateral ureteral obstruction (UUO) in male C57bl/6J mice. Male mice (20 to 25 g) underwent 10 d of UUO with or without 1, 2, 4, or 6 wk of reversal of UUO (R-UUO). UUO resulted in cortical tubular cell atrophy and tubular dilation in conjunction with an almost complete ablation of the outer medulla. This was associated with interstitial macrophage infiltration; increased hydroxyproline content; and upregulated type I, III, IV, and V collagen expression. The volume density of kidney occupied by renal tubules that exhibited a brush border was measured as an assessment of the degree of repair after R-UUO. After 6 wk of R-UUO, there was an increase in the area of kidney occupied by repaired tubules (83.7 +/- 5.9%), compared with 10 d UUO kidneys (32.6 +/- 7.3%). This coincided with reduced macrophage numbers, decreased hydroxyproline content, and reduced collagen accumulation and interstitial matrix expansion, compared with obstructed kidneys from UUO mice. GFR in the 6-wk R-UUO kidneys was restored to 43 to 88% of the GFR in the contralateral unobstructed kidneys. This study describes the regenerative potential of the kidney after the established interstitial matrix expansion and medullary ablation associated with UUO in the adult mouse.  相似文献   

11.
BACKGROUND: Transforming growth factor-beta (TGF-beta) has been implicated in the development of renal fibrosis induced by unilateral ureteral obstruction (UUO). However, there is little information on signaling pathways mediating TGF-beta activity involved in molecular and cellular events leading to renal fibrosis induced by UUO. In this study, we sought to determine whether Smad3, a major signaling component of TGF-beta, mediated renal fibrosis induced by UUO. METHODS: Renal fibrosis, inflammation, and apoptosis induced by UUO were macroscopically and histologically compared between wild-type mice and Smad3 null mice. RESULTS: Gross appearance of the kidney after UUO showed relatively intact kidney in Smad3 null mice [Smad3(-/-) mice] when compared with that of wild-type mice [Smad3(+/+) mice]. Renal interstitial fibrosis based on the interstitial area stained with Aniline-blue or Sirius red solution was significantly attenuated in the obstructed kidney of Smad3(-/-) mice when compared with that of Smad3(+/+) mice. Deposition of type I and type III collagens were also significantly reduced in the obstructed kidney of Smad3(-/-) mice. In addition, the numbers of myofibroblasts, macrophages, and CD4/CD8 T cells infiltrated into the kidney after UUO were significantly attenuated in the obstructed kidney of Smad3(-/-) mice when compared with that of Smad3(+/+) mice. Furthermore, terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining after UUO showed significantly reduced number of tubular apoptotic cells in the obstructed kidney of Smad3(-/-) mice when compared with that of Smad3(+/+) mice. Endogenous Smad pathway was activated in the obstructed kidney after UUO in wild-type mice as judged by the increase of phosphorylated Smad2 or phosphorylated Smad2/3-positive cells in renal interstitial area. CONCLUSION: Smad3 deficiency attenuated renal fibrosis, inflammation, and apoptosis after UUO, suggesting that Smad3 was a key molecule mediating TGF-beta activity leading to real fibrosis after UUO.  相似文献   

12.
目的:通过抗风湿药青藤碱对UUO小鼠肾组织α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、炎症介质细胞间黏附分子(intercellular adhesion molecule1,ICAM-1)、单核细胞趋化因子(monocyte chemoattractant protein1,MCP-1)表达的影响,探讨其防治肾间质纤维化作用及其机制。方法:实验采用小鼠单侧输尿管结扎(UUO)模型,用不同剂量青藤碱进行干预,用血管紧张素受体抑制剂蒙诺作为对照。肾脏病理用HE和Masson染色;肾组织α-SMA表达采用免疫组化;ICAM-1蛋白质表达采用Western-blotting方法检测;MCP-1基因表达采用逆转录-聚合酶链式反应(RT-PCR)方法。结果:UUO模型组小鼠肾间质纤维化程度以及肾组织α-SMA的表达较假手术组显著增高,肾小管间质中炎细胞浸润亦较假手术组显著增强;青藤碱各治疗组肾间质纤维化程度、α-SMA和ICAM-1蛋白、MCP-1基因表达均显著低于模型组;蒙诺治疗亦可显著降低肾间质纤维化程度和肾组织α-SMA的表达,但对于炎细胞浸润和炎症因子抑制作用显著较青藤碱弱。而且未见其具有抑制ICAM-1表达的作用。结论:抗风湿药青藤碱可显著抑制肾间质纤维化和肌成纤维细胞的积聚,可能与其显著抑制肾组织炎症因子的表达及炎细胞浸润有关。  相似文献   

13.
目的 探讨mTOR信号通路在肾间质成纤维细胞增生活化过程中的调控作用,并研究其抑制剂在抗肾纤维化治疗中的可行性.方法 用8周龄雌性C57BL/6小鼠构建单侧输尿管结扎(UUO)肾间质纤维化动物模型(n=30),按数字随机法分为雷帕霉素组(n=15)及UUO组(n=15).雷帕霉素组术前1d开始腹腔注射雷帕霉素(2 mg·kg-1·d-1)至实验结束;UUO组注射生理盐水.分别于术后1、3、7、14 d处死小鼠(n=3),留肾组织进行相关检测.同时,体外实验评估雷帕霉素对TGF-β诱导鼠成纤维细胞株(NIH3T3细胞)活化的干预作用.结果 UUO小鼠肾组织中活化的肌成纤维细胞[α肌动蛋白(α-SMA)阳性]高表达mTOR通路下游效应因子pS6K.雷帕霉素显著抑制pS6K表达及肾间质中肌成纤维细胞的活化,改善肾小管间质损伤及纤维化程度.实时荧光定量PCR结果提示雷帕霉素组小鼠肾皮质组织中成纤维细胞特异蛋白1 (FSP1)、转化生长因子β(TGF-β)、结缔组织因子(CTGF)及Ⅳ型胶原蛋白基因α1 (Col 4A1)的mRNA水平显著下降.体外实验结果示TGF-β诱导小鼠成纤维细胞株( NIH3T3)的mTOR通路显著活化,并大量合成α-SMA.雷帕霉素能够明显抑制mTOR通路活性,降低细胞的纤维化活性.结论 肾间质纤维化过程中成纤维细胞内的mTOR信号通路高度活化.抑制mTOR通路能够显著降低成纤维细胞的活性,改善肾间质纤维化程度.  相似文献   

14.
Multipotent mesenchymal stem or stromal cells (MSC) have shown to improve outcome of acute renal injury models, but whether MSC can delay renal failure in chronic kidney disease is not known. We injected primary MSC or saline into mice that lack the alpha3-chain of type IV collagen (COL4A3), a model of chronic kidney disease with close similarities to human Alport disease. Weekly injections of MSC from week 6 to 10 of life prevented the loss of peritubular capillaries and reduced markers of renal fibrosis, that is, interstitial volume, numbers of smooth muscle actin-positive interstitial cells, and interstitial collagen deposits as compared to saline-injected COL4A3-deficient mice. However, renal function, that is, blood urea nitrogen, creatinine levels, proteinuria as well as survival of COL4A3-deficient mice were not affected by MSC injections. Although MSC were found to localize to kidneys of COL4A3-deficient mice after injection, differentiation into renal cells was not detected. However, MSC expressed growth factors, that is, vascular endothelial growth factor (VEGF) and bone morphogenetic protein-7 under basal culture conditions. In fact, VEGF mRNA levels were increased in kidneys of MSC-injected COL4A3-deficient mice and MSC supernatants enhance endothelial cell proliferation in vitro. Thus, weekly injections with MSC prevent loss of peritubular capillaries possibly owing to local production of growth factors rather than by differentiation into renal cells. The maintenance of interstitial vasculature is associated with less interstitial fibrosis but, is insufficient to delay renal failure and survival of COL4A3-deficient mice.  相似文献   

15.
16.
目的探讨STAT3抑制剂S3I-201对小鼠实验性肾小管间质纤维化的保护作用。 方法采用单侧输尿管梗阻手术的方法建立肾小管间质纤维化模型。将实验小鼠随机分为药物假手术组(Sham+S3I-201),安慰剂假手术组(Sham+Vehicle),药物造模组(UUO+S3I-201),安慰剂造模组(UUO+Vehicle)4组,通过腹腔注射S3I-201溶液(药物)或0.05%DMSO PBS(安慰剂)给药,每天给药一次。造模第7天时留取肾脏标本,用Masson染色和颜色面积测算法评估胶原蛋白沉积的情况。用qRT-PCR法检测肾组织内趋化因子配体16(CXCL16),白介素-1β(IL-1β),细胞间黏附分子1(ICAM-1),转化生长因子-β(TGF-β),肿瘤坏死因子(TNF-α)的mRNA表达,用免疫组化法染色和免疫印迹法检测PDGFRβ蛋白在梗阻肾脏内的表达。 结果UUO+Vehicle小鼠的肾间质胶原蛋白沉积显著高于Sham+Vehicle组(P<0.05)。UUO+Vehicle小鼠肾组织CXCL16,IL-1β,ICAM-1,TGF-β,TNF-α的mRNA表达显著高于Sham+Vehicle组(P<0.05),UUO+Vehicle小鼠肾组织血小板来源生长因子受体β(PDGFRβ)蛋白表达显著高于Sham+Vehicle组(P<0.05)。经过S3I-201治疗7 d后,UUO+S3I-201小鼠的上述各项指标均显著低于UUO+Vehicle(P<0.05)。 结论S3I-201通过抑制多种细胞因子的mRNA表达,以及降低PDGFRβ蛋白的表达,减轻实验性肾小管间质纤维化小鼠的肾间质炎症反应,从而发挥肾脏保护作用。  相似文献   

17.
目的 探讨Janus蛋白酪氨酸激酶-信号转导子和转录激活子(JAK-STAT)通路在小鼠单侧输尿管梗阻(UUO)模型.肾间质纤维化过程中的作用.方法 选用30只雄性Balb/c小鼠建立小鼠UUO模型(n=24)和假手术小鼠(n=6),术后第1、4、7和14天检测JAK-STAT磷酸化情况.另把18只雄性Balb/c小鼠随机分为假手术组、UUO模型组和治疗组,每组各6只.治疗组在建模前2 h开始给予选择性JAK2抑制剂AG490治疗,每天1次;模型组仅注射溶媒.术后第14天处死动物.组织学评估肾小管损伤和.肾间质纤维化程度;免疫组化检测肾脏巨噬细胞浸润和α-SMA表达;RT-PCR检测Ⅲ型胶原和单核细胞趋化蛋白(MCP)1 mRNA表达;Western印迹检测JAK2和STATl磷酸化.结果 JAK2-STAT1在UUO模型中被激活,其磷酸化水平与病情、肾小管组织学损害以及.肾间质纤维化相一致.AG490能显著抑制JAK2和STAT1的磷酸化(P<0.01).AG490治疗显著减轻肾小管损害[(21.7±1.7)%比(49.4±1.0)%]和肾间质纤维化(1.0±0.1比2.3±0.2)、α-SMA表达(0.9±0.1比2.1±0.2)和巨噬细胞积聚[(13.3±1.6)细胞/HPF比(34.4±1.0)细胞/HPF](均P<0.01).AG490治疗显著抑制Ⅲ型胶原和MCP-1 mRNA表达.结论 JAK-STAT信号通路在肾小管间质炎性反应和纤维化中发挥重要作用.  相似文献   

18.
Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1(lacZ) knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh protein activated Gli1 and induced α-smooth muscle actin (α-SMA), desmin, fibronectin, and collagen I expression, suggesting that Shh signaling promotes myofibroblast activation and matrix production. Blockade of Shh signaling with cyclopamine abolished the Shh-mediated induction of Gli1, Snail1, α-SMA, fibronectin, and collagen I. In vivo, the kidneys of Gli1-deficient mice were protected against the development of interstitial fibrosis after obstructive injury. In wild-type mice, cyclopamine did not affect renal Shh expression but did inhibit induction of Gli1, Snail1, and α-SMA. In addition, cyclopamine reduced matrix expression and mitigated fibrotic lesions. These results suggest that tubule-derived Shh mediates epithelial-mesenchymal communication by targeting interstitial fibroblasts after kidney injury. We conclude that Shh/Gli1 signaling plays a critical role in promoting fibroblast activation, production of extracellular matrix, and development of renal interstitial fibrosis.  相似文献   

19.
CCR2 signaling contributes to ischemia-reperfusion injury in kidney   总被引:7,自引:0,他引:7  
Examined were CCR2-deficient mice to clarify the contribution of macrophages via monocyte chemoattractant protein 1 (MCP-1 or CCL2)/CCR2 signaling to the pathogenesis of renal ischemia-reperfusion injury. Also evaluated was the therapeutic effects via the inhibition of MCP-1/CCR2 signaling with propagermanium (3-oxygermylpropionic acid polymer) and RS-504393. Renal artery and vein of the left kidney were occluded with a vascular clamp for 60 min. A large number of infiltrated cells and marked acute tubular necrosis in outer medulla after renal ischemia-reperfusion injury was observed. Ischemia-reperfusion induced the expression of MCP-1 mRNA and protein in injured kidneys, followed by CCR2-positive macrophages in interstitium in wild-type mice. The expression of MCP-1 was decreased in CCR2-deficient mice compared with wild-type mice. The number of interstitial infiltrated macrophages was markedly smaller in the CCR2-deficient mice after ischemia-reperfusion. CCR2-deficient mice decreased the number of interstitial inducible nitric oxide synthase-positive cells after ischemia-reperfusion. The area of tubular necrosis in CCR2-deficient mice was significantly lower than that of wild-type mice after ischemia-reperfusion. In addition, CCR2-deficient mice diminished KC, macrophage inflammatory protein 2, epithelial cell-derived neutrophil-activating peptide 78, and neutrophil-activating peptide 2 expression compared with wild-type mice accompanied with the reduction of interstitial granulocyte infiltration. Similarly, propagermanium and RS-504393 reduced the number of interstitial infiltrated cells and tubular necrosis up to 96 h after ischemia-reperfusion injury. These results revealed that MCP-1 via CCR2 signaling plays a key role in the pathogenesis of renal ischemia-reperfusion injury through infiltration and activation of macrophages, and it offers a therapeutic target for ischemia-reperfusion.  相似文献   

20.
BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of chronic kidney disease based on its up-regulated expression and on the beneficial effects of PAI-1 inhibition or depletion in experimental models. PAI-1 is a multifunctional protein and the mechanisms that account for its profibrotic effects have not been fully elucidated. METHODS: The present study was designed to investigate PAI-1-dependent fibrogenic pathways by comparing the unilateral ureteral obstruction model (UUO) (days 3, 7, and 14) in PAI-1-overexpressing mice (PAI-1 tg) to wild-type mice, both on a C57BL6 background. RESULTS: Following UUO, total kidney PAI-1 mRNA and/or protein levels were significantly higher in the PAI-1 tg mice (N= 6 to 8/group) and fibrosis severity was significantly worse (days 3, 7, and 14), measured both as Sirius red-positive interstitial area (e.g., 10 +/- 3.2% vs. 4.5 +/- 1.0%) (day 14) and total kidney collagen (e.g., 11.1 +/- 1.7 vs. 6.2 +/- 1.3 microg/mg) (day 14). By day 14, the expression of two normal tubular proteins, E-cadherin and Ksp-cadherin, were significantly lower in the PAI-1 tg mice (3.2 +/- 0.5% vs. 11.7 +/- 5.9% and 2.6 +/- 1.6) vs. 6.2 +/- 0.8%, respectively), implying more extensive tubular damage. At least four fibrogenic pathways were differentially expressed in the PAI-1 tg mice. First, interstitial macrophage recruitment was more intense (P < 0.05 days 3 and 14). Second, interstitial myofibroblast density was greater (P < 0.05 days 3 and 7) despite similar numbers of proliferating tubulointerstitial cells. Third, transforming growth factor-beta1 (TGF-beta1) and collagen I mRNA were significantly higher. Finally, urokinase activity was significantly lower (P < 0.05 days 7 and 14) despite similar mRNA levels. Gene microarray studies documented that that the deletion of this single profibrotic gene had far-reaching consequences on renal cellular responses to chronic injury. CONCLUSION: These data provide further evidence that PAI-1 is directly involved in interstitial fibrosis and tubular damage via two primary overlapping mechanisms: early effects on interstitial cell recruitment and late effects associated with decreased urokinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号