首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complement activation in experimental and human temporal lobe epilepsy   总被引:1,自引:0,他引:1  
We investigated the involvement of the complement cascade during epileptogenesis in a rat model of temporal lobe epilepsy (TLE), and in the chronic epileptic phase in both experimental as well as human TLE. Previous rat gene expression analysis using microarrays indicated prominent activation of the classical complement pathway which peaked at 1 week after SE in CA3 and entorhinal cortex. Increased expression of C1q, C3 and C4 was confirmed in CA3 tissue using quantitative PCR at 1 day, 1 week and 3-4 months after status epilepticus (SE). Upregulation of C1q and C3d protein expression was confirmed mainly to be present in microglia and in a few hippocampal neurons. In human TLE with hippocampal sclerosis, astroglial, microglial and neuronal (5/8 cases) expression of C1q, C3c and C3d was observed particularly within regions where neuronal cell loss occurs. The membrane attack protein complex (C5b-C9) was predominantly detected in activated microglial cells. The persistence of complement activation could contribute to a sustained inflammatory response and could destabilize neuronal networks involved.  相似文献   

2.
Purpose: Long‐lasting activation of glia occurs in brain during epileptogenesis, which develops after various central nervous system (CNS) injuries. Glia is the cell source of the biosynthesis and release of molecules that play a role in seizure recurrence and may contribute to epileptogenesis, thus representing a putative biomarker of epilepsy development and severity. In this study, we set up an in vivo longitudinal study using 1H‐magnetic resonance spectroscopy (MRS) to measure metabolite content in the rat hippocampus that could reflect the extent and the duration of glia activation. Our aim was to explore if glia activation during epileptogenesis, or in the chronic epileptic phase, can be used as a biomarker of tissue epileptogenicity (i.e., a measure of epilepsy severity). Methods: 1H‐MRS measurements were done in the adult rat hippocampus every 24 h for 7 days after status epilepticus (SE) and in chronic epileptic rats, using a 7 T Bruker Biospec MRI (magnetic resonance imaging)/MRS scanner. We studied changes in metabolite levels that reflect astrocytes (myo‐inositol, mIns; glutathione, GSH), microglia/macrophage activation and the associated neuronal cell injury/dysfunction (lactate, Lac; N‐acetyl‐aspartate, NAA). 1H‐MRS results were validated by post hoc immunohistochemistry using cell‐specific markers. Data analysis was done to determine whether correlations exist between the metabolite changes and spontaneous seizure frequency or the extent of neuronal cell loss. Key Findings: The analysis of 1H‐MRS spectra showed a progressive increase in mIns and GSH levels after SE, which was maintained in epileptic rats. Lac signal transiently increased during epileptogenesis being undetectable in chronic epileptic tissue. NAA levels were chronically reduced from day 2 post‐SE. Immunohistochemistry confirmed the activation of microglia and astrocytes and the progressive neuronal cell loss. GSH levels during epileptogenesis showed a negative correlation with the frequency of spontaneous seizures, whereas S100β levels in epileptic tissue were positively correlated with this outcome measure. A negative correlation was also found between GSH or mIns levels during epileptogenesis and the extent of neurodegeneration in hippocampus of epileptic rats. Significance: 1H‐MRS is a valuable in vivo technique for determining the extent and temporal profile of glia activation after an epileptogenic injury. S100β levels measured in the epileptic tissue may represent a biomarker of seizure frequency, whereas GSH levels during epileptogenesis could serve as a predictive marker of seizure frequency. Both mIns and GSH levels measured before the onset of spontaneous seizures predict the extent of neuronal cell loss in epileptic tissue. These findings highlight the potential of serial 1H‐MRS analysis for searching epilepsy biomarkers for prognostic, diagnostic, or therapeutic purposes.  相似文献   

3.
As several epilepsy syndromes are associated with changes in sodium channel subunits we investigated the expression of beta1 sodium channel protein in a rat epilepsy model. In this model a chronic epileptic syndrome develops after electrically induced status epilepticus (SE). Many neuropathological characteristics of mesial temporal lobe epilepsy can be reproduced (cell loss, gliosis and synaptic reorganization). In control hippocampus beta1 subunit protein was moderately expressed in neurons and weakly expressed in resting astrocytes. beta1 sodium channel immunoreactivity increased markedly within 1 week after SE mainly in astrocytes that were colocalized with vimentin (marker for reactive astrocytes). This up-regulation was still present in reactive astrocytes of chronic epileptic rats (> 3 months after SE). Considering the fact that the beta1 subunits may function as cell adhesion molecules interacting with extracellular matrix, the observed increase in reactive astrocytes might subserve a function in cellular and synaptic reorganization during epileptogenesis.  相似文献   

4.
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.  相似文献   

5.
6.
Summary:  We investigated expression of genes involved in the proteolytic process during epileptogenesis in a rat model of temporal lobe epilepsy (TLE). In a previous microarray study we found prominent activation of this process, which reached highest expression during the acute and latent phase (1 week after SE) in CA3 and entorhinal cortex (EC). Detailed analysis shows differences in dynamics of the changes of several protease genes such as cathepsins, caspases, matrix metalloproteinases, and plasminogen activators. Most genes were acutely upregulated while others were mainly activated during the latent phase. Interestingly several proteolytic genes were still elevated in the chronic epileptic phase. Various protease inhibitors followed a similar time course. The identification of changes in the activation of genes involved in proteolysis at critical phases during epileptogenesis could point to potential time specific targets for intervention. The fact that several proteolytic genes were still activated in the chronic epileptic phase makes them interesting candidates to modify and slow down seizure progression.  相似文献   

7.
Purpose: In a recent large‐scale gene‐expression study in a rat model of temporal lobe epilepsy (TLE) a persistent up‐regulation in the expression of the SCN7A gene was revealed. The SCN7A gene encodes an atypical sodium channel (Nax), which is involved in osmoregulation via a sensing mechanism for the extracellular sodium concentration. Herein we investigated the expression and cellular distribution of SCN7A mRNA and protein in normal and epileptic rat and human hippocampus. Methods: SCN7A/Nax expression analysis was performed by polymerase chain reaction (PCR), immunocytochemistry, and western blot analysis. Results: Increased expression of SCN7A/Nax mRNA/protein was observed during epileptogenesis and in the chronic epileptic phase in the post–status epilepticus (SE) model of TLE. The up‐regulation was confirmed in human hippocampal tissue resected from pharmacoresistant patients with hippocampal sclerosis (HS). In both epileptic rat and human hippocampus, increased Nax expression was observed in neurons and reactive astrocytes compared to control tissue. Conclusions: The increased and persistent expression of SCN7A/Nax in the epileptic rat and human hippocampus supports the possible involvement of this channel in the complex reorganization occurring within the hippocampus during the epileptogenic process in TLE. Further studies are needed for a complete understanding of the functional role of SCN7A in epilepsy.  相似文献   

8.
Purpose: Adenosine kinase (ADK) represents the key metabolic enzyme for the regulation of extracellular adenosine levels in the brain. In adult brain, ADK is primarily present in astrocytes. Several lines of experimental evidence support a critical role of ADK in different types of brain injury associated with astrogliosis, which is also a prominent morphologic feature of temporal lobe epilepsy (TLE). We hypothesized that dysregulation of ADK is an ubiquitous pathologic hallmark of TLE. Methods: Using immunocytochemistry and Western blot analysis, we investigated ADK protein expression in a rat model of TLE during epileptogenesis and the chronic epileptic phase and compared those findings with tissue resected from TLE patients with mesial temporal sclerosis (MTS). Key Findings: In rat control hippocampus and cortex, a low baseline expression of ADK was found with mainly nuclear localization. One week after the electrical induction of status epilepticus (SE), prominent up‐regulation of ADK became evident in astrocytes with a characteristic cytoplasmic localization. This increase in ADK persisted at least for 3–4 months after SE in rats developing a progressive form of epilepsy. In line with the findings from the rat model, expression of astrocytic ADK was also found to be increased in the hippocampus and temporal cortex of patients with TLE. In addition, in vitro experiments in human astrocyte cultures showed that ADK expression was increased by several proinflammatory molecules (interleukin‐1β and lipopolysaccharide). Significance: These results suggest that dysregulation of ADK in astrocytes is a common pathologic hallmark of TLE. Moreover, in vitro data suggest the existence of an additional layer of modulatory crosstalk between the astrocyte‐based adenosine cycle and inflammation. Whether this interaction also can play a role in vivo needs to be further investigated.  相似文献   

9.
Purpose:   We previously showed that gene expression of synaptic vesicle protein 2A (SV2A), the binding site for the antiepileptic drug levetiracetam, is reduced during epileptogenesis in the rat. Since absence of SV2A has been associated with increased epileptogenicity, changes in expression of SV2A could have consequences for the progression of epilepsy. Therefore we investigated hippocampal SV2A protein expression of temporal lobe epilepsy (TLE) patients and in rats during epileptogenesis and in the chronic epileptic phase.
Methods:   SV2A immunocytochemistry and Western blot analysis were performed on the hippocampus of autopsy controls, patients that died from status epilepticus (SE), and pharmacoresistant TLE patients. In addition, in epileptic rats, SV2A expression was determined after SE during the acute, latent, and chronic epileptic phase.
Results:   In control tissue, presynaptic SV2A was expressed in all hippocampal subfields, with strongest expression in mossy fiber terminals. SV2A positive puncta were distributed in a patchy pattern over the somata and dendrites of neurons. SV2A decreased throughout the hippocampus of TLE patients with hippocampal sclerosis (HS), compared to autopsy control, SE, and non-HS tissue. In most rats, SV2A was already decreased in the latent period especially in the inner molecular layer and stratum lucidum. Similarly as in humans, SV2A was also decreased throughout the hippocampus of chronic epileptic rats, specifically in rats with a progressive form of epilepsy.
Discussion:   These data support previous findings that reduced expression of SV2A could contribute to the increased epileptogenicity. Whether this affects the effectiveness of levetiracetam needs to be further investigated.  相似文献   

10.
Epileptogenesis is the process of developing an epileptic condition and/or its progression once it is established. The molecules that initiate, promote, and propagate remarkable changes in the brain during epileptogenesis are emerging as targets for prevention/treatment of epilepsy. Epileptogenesis is a continuous process that follows immediately after status epilepticus (SE) in animal models of acquired temporal lobe epilepsy (TLE). Both SE and epileptogenesis are potential therapeutic targets for the discovery of anticonvulsants and antiepileptogenic or disease-modifying agents. For translational studies, SE targets are appropriate for screening anticonvulsive drugs prior to their advancement as therapeutic agents, while targets of epileptogenesis are relevant for identification and development of therapeutic agents that can either prevent or modify the disease or its onset. The acute seizure models do not reveal antiepileptogenic properties of anticonvulsive drugs. This review highlights the important components of epileptogenesis and the long-term impact of intervening one of these components, nitric oxide (NO), in rat and mouse kainate models of TLE. NO is a putative pleotropic gaseous neurotransmitter and an important contributor of nitro-oxidative stress that coexists with neuroinflammation and epileptogenesis. The long-term impact of inhibiting the glial source of NO during early epileptogenesis in the rat model of TLE is reviewed. The importance of sex as a biological variable in disease modification strategies in epilepsy is also briefly discussed.  相似文献   

11.
Kang TC  Kim DS  Kwak SE  Kim JE  Won MH  Kim DW  Choi SY  Kwon OS 《Glia》2006,54(4):258-271
Recent studies have demonstrated that blockade of neuronal death in the hippocampus cannot prevent epileptogenesis in various epileptic models. These reports indicate that neurodegeneration alone is insufficient to cause epilepsy, and that the role of astrocytes in epileptogenesis should be reconsidered. Therefore, the present study was designed to elucidate whether altered morphological organization or the functionalities of astrocytes induced by status epilepticus (SE) is responsible for epileptogenesis. Glial responses (reactive microgliosis followed by astroglial death) in the dentate gyrus induced by pilocarpine-induced SE were found to precede neuronal damage and these alterations were closely related to abnormal neurotransmission related to altered vesicular glutamate and GABA transporter expressions, and mossy fiber sprouting in the dentate gyrus. In addition, newly generated astrocytes showed down-regulated expressions of glutamine synthase, glutamate dehydrogenase, and glial GABA transporter. Taken together, our findings suggest that glial responses after SE may contribute to epileptogenesis and the acquisition of the properties of the epileptic hippocampus. Thus, we believe that it is worth considering new therapeutic approaches to epileptogenesis involving targeting the inactivation of microglia and protecting against astroglial loss.  相似文献   

12.
Hua LL  Lee SC 《Glia》2000,30(1):74-81
Interferon-gamma-inducible 10 kd protein (IP-10) is an ELR (Glu-Leu-Arg)(-) alpha chemokine with known chemotactic effects on T cells and monocytes, as well as anti-viral, anti-angiogenic, and anti-tumor effects. Previous studies have demonstrated that in cultured rat astrocytes and microglia, stimulation with LPS or virus can induce the expression of IP-10. In this study, we determined the pattern of IP-10 gene induction in primary human microglia and astrocytes by cytokines and LPS using ribonuclease protection assay. The expression of IP-10 mRNA was compared with that of other alpha (IL-8) and beta chemokines. The results showed that in human microglia, IP-10 expression was induced equally potently by LPS, IFNbeta or IFNgamma. "Proinflammatory" cytokines IL-1beta or TNFalpha also induced small amounts of IP-10 mRNA. "Anti-inflammatory" cytokines IL-4, IL-10 and TGFbeta were ineffective in inducing IP-10 in microglia. In human astrocytes, induction of IP-10 mRNA by cytokines was similar to that in microglia. LPS, however, was ineffective in inducing IP-10 in human astrocytes. The monocyte chemoattractant beta-chemokine I-309 mRNA was induced in human astrocytes and microglia by IFNbeta or IFNgamma, or by LPS in microglia, showing a tight co-regulation with IP-10 mRNA expression. In contrast to the potent induction of IP-10 and I-309 by IFNs in human glia, the ELR(+) alpha chemokine IL-8 mRNA was induced by IL-1beta and TNFalpha, and to a lesser extent by IFNbeta in microglia. IFNbeta but not IFNgamma was effective in inducing the expression of beta chemokines MIP-1alpha and MIP-1beta in human microglia, with the levels of mRNA similar to those induced by IL-1beta or TNFalpha. Neither MIP-1alpha nor MIP-1beta mRNAs were induced by any stimulation in human astrocytes. The induction of RANTES mRNA in microglia by IFNbeta, IL-1beta or TNFalpha was variable, showing no to low level expression depending on the case, whereas LPS provided a consistent inducing signal. In astrocytes, only cytokine combinations (IFN + IL-1beta) effectively induced the RANTES mRNA. These results demonstrate that distinct sets of chemokine genes are induced in human glial cells by cytokines and interferons. These results may have wide implications for inflammatory, vascular and neoplastic diseases of the CNS.  相似文献   

13.
Temporal lobe epilepsy (TLE) is often caused by a neurodegenerative brain insult that triggers epileptogenesis, and eventually results in spontaneous seizures, i.e., epilepsy. Understanding the mechanisms of cell death is a key for designing new drug therapies for preventing the neurodegeneration associated with TLE. Here, we investigated the expression of caspase 2, a protein involved in programmed cell death, during the course of epilepsy. We investigated caspase 2 expression in hippocampal samples derived from patients operated on for drug refractory TLE. To understand the evolution of altered-caspase 2 expression during the epileptic process, we also examined caspase 2 expression and activity in the rat hippocampus after status epilepticus-induced acute damage, during epileptogenesis, and after the onset of epilepsy. Caspase 2 expression was enhanced in the hippocampal neurons in chronic TLE patients. In rats, status epilepticus-induced caspase 2 labeling paralleled the progression of neurodegeneration. Proteolytic activation and cleavage of caspase 2 was also detected in the rat brain undergoing epileptogenesis. Our data suggest that caspase 2-mediated programmed cell death participates in the seizure-induced degenerative process in experimental and human TLE. The work was supported by The Academy of Finland, The Kuopio University Foundation, The Neurology Foundation, The North-Savo Regional Fund of the Finnish Cultural Foundation, Sigrid Juselius Foundation, and The Vaajasalo Foundation.  相似文献   

14.
Increasing evidence supports the involvement of inflammatory and immune processes in temporal lobe epilepsy (TLE). MicroRNAs (miRNA) represent small regulatory RNA molecules that have been shown to act as negative regulators of gene expression controlling different biological processes, including immune‐system homeostasis and function. We investigated the expression and cellular distribution of miRNA‐146a (miR‐146a) in a rat model of TLE as well as in human TLE. miR‐146a analysis in rat hippocampus was performed by polymerase chain reaction and immunocytochemistry at 1 week and 3–4 months after induction of status epilepticus (SE). Prominent upregulation of miR‐146a activation was evident at 1 week after SE and persisted in the chronic phase. The miR‐146a expression was confirmed to be present in reactive astrocytes. In human TLE with hippocampal sclerosis, increased astroglial expression of miR‐146a was observed mainly in regions where neuronal cell loss and reactive gliosis occurred. The increased and persistent expression of miR‐146a in reactive astrocytes supports the possible involvement of miRNAs in the modulation of the astroglial inflammatory response occurring in TLE and provides a target for future studies aimed at developing strategies against pro‐epileptogenic inflammatory signalling.  相似文献   

15.
Temporal lobe epilepsy (TLE) is one of the most common focal epilepsy syndromes. In a genome-wide expression study of the human TLE hippocampus we previously showed up-regulation of genes involved in chemokine signalling. Here we investigate in the rat pilocarpine model for TLE, whether changes in chemokine signalling occur during epileptogenesis and are persistent. Therefore we analysed hippocampal protein expression and cellular localisation of CCL2, CCL4, CCR1 and CCR5 after status epilepticus. We found increased CCL4 (but not CCL2) expression in specific populations of hilar astrocytes at 2 and 19 weeks after SE concomitant with a persistent up-regulation of its receptor CCR5. Our results show an early and persistent up-regulation of CCL4/CCR5 signalling during epileptogenesis and suggest that CCL4 signalling, rather than CCL2 signalling, could have a role in the epileptogenic process.  相似文献   

16.
17.
Cystatin C (CSTC), a cysteine protease inhibitor, has been implicated in the processes of neuronal degeneration and repair of the nervous system. Using serial analysis of gene expression (SAGE), we recently identified CSTC as one of the genes that are overexpressed after electrically induced status epilepticus (SE). In the present study, Western blot analysis extended the SAGE results, showing increased CSTC protein in the hippocampus and entorhinal cortex. Immunocytochemistry revealed an increase in CSTC expression in glial cells, which was first apparent 24 h after onset of SE, and persisted for at least 3 months. Double immunolabelling confirmed that both reactive astrocytes, and activated microglia were CSTC immunopositive. Within the hippocampus, up-regulation was also observed in neuronal cells within one day after SE. Up-regulation was still present in hippocampal pyramidal cells and surviving interneurons of chronic epileptic rats (3-8 months post-SE). This study demonstrates that status epilepticus leads to a widespread and persistent up-regulation of CSTC in the hippocampus and entorhinal cortex, which may represent an intrinsic neuroprotective mechanism in the course of epileptogenesis that may counteract progression of the disease.  相似文献   

18.
A prominent feature of Alzheimer's disease (AD) pathology is an abundance of activated glia (astrocytes and microglia) in close proximity to the amyloid plaques. These activated glia overexpress a number of proteins that may participate in the progression of the disease, possibly by propagation of inflammatory and oxidative stress responses. The beta-amyloid peptide 1-42 (Abeta), a major constituent of neuritic plaques, can itself induce glial activation. However, little is known about whether other plaque components, especially the upregulated glial proteins, can induce glial activation or modulate the effects of Abeta on glia. In this study, we focused on four glial proteins that are abundant in amyloid plaques and/or that are known to interact with Abeta: alpha1-antichymotrypsin (ACT), interleukin-1beta (IL-1beta), S100beta, and butyrylcholinesterase (BChE). We examined the ability of these proteins to activate rat cortical astrocyte cultures and to influence the ability of Abeta to activate astrocytes. Treatment of astrocytes with ACT, IL-1beta, or S100beta resulted in glial activation, as assessed by reactive morphology, upregulation of IL-1beta, and production of inducible nitric oxide synthase and nitric oxide. The ability of Abeta to induce astrocyte activation was also enhanced in the presence of each of these three proteins. In contrast, BChE alone did not activate astrocytes and had no effect on Abeta-induced activation. These results suggest that certain proteins produced by activated glia may contribute to the chronic glial activation seen in AD through their ability to stimulate astrocytes directly or through their ability to modulate Abeta-induced activation.  相似文献   

19.
20.
The leptomeninges covering the surface of the brain parenchyma play the physical role at the cerebrospinal fluid-blood barrier. We report here that leptomeningeal cells may transduce peripheral proinflammatory signals to the central anti-inflammatory response through the activation of glial cells in the brain parenchyma. After adjuvant injection, both microglia and astrocytes in the cerebral cortex localized in the proximity of the leptomeninges were activated. The protein levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) in the cortical extracts were significantly increased at different time after adjuvant injection. The TNF-alpha immunoreactivity was most prominent in the leptomeninges covering astrocytes. On the other hand, the IL-10 immunoreactivity was observed in both activated microglia and astrocytes localized along the leptomeninges. Cultured leptomeningeal cells covering the cerebral cortex released TNF-alpha which was significantly increased by lipopolysaccharide (LPS). Upon stimulation with LPS, cultured leptomeningeal cells also secreted interleukin-1beta and interleukin-6 with differential time-courses. When primary cultured rat astrocytes and microglia were treated with the conditioned medium of LPS-activated cultured leptomeningeal cells, the immunoreactivity of IL-10 was markedly increased. These observations strongly suggest that leptomeningeal cells release pro-inflammatory cytokines to activate both microglia and astrocytes during systemic inflammation. The activated astrocytes and microglia may in turn regulate anti-inflammatory response in the brain by providing IL-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号