首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
  1. Responses to electrical field stimulation (EFS; 0.5–10 Hz, 0.2 ms duration, supramaximal voltage for 20 s) of non-adrenergic, non-cholinergic, (NANC) nerves were obtained in preparations of rat anococcygeus pre-contracted with titrated concentrations of phenylephrine (0.1–1 μM) to ∼40% of their maximum contraction to phenylephrine (Fmax) regardless of drug treatment.
  2. With this set level of active force, NANC nerve stimulation resulted in relaxations that were maximal (peak relaxation) at 0.5–1 Hz, abolished by tetrodotoxin (1 μM) but only minimally blocked by the nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine, (L-NOARG; 100 μM). Furthermore, the nitric oxide (NO) scavenger, oxyhaemoglobin (HbO; 30 μM) gave no further block alone or in combination with L-NOARG (100 μM). By comparison, in preparations contracted with phenylephrine to ∼70% Fmax, relaxations to NANC nerve stimulation were markedly reduced or abolished by combined treatment with L-NOARG (100 μM) and HbO (30 μM).
  3. Nifedipine (0.3 μM) significantly inhibited NANC nerve-mediated relaxations, which became frequency-dependent and abolished those resistant to L-NOARG (100 μM) and HbO (30 μM).
  4. These data suggest that a non-NO, hyperpolarizing factor and NO both contribute to NANC nerve-mediated inhibitory responses in the rat anococcygeus. However, responses to the non-NO factor were observed only in preparations contracted sub-maximally by a nifedipine-sensitive mechanism.
  相似文献   

2.
  1. The aim of the study was to determine whether a nerve-derived hyperpolarizing factor (NDHF) might contribute to non-adrenergic, non-cholinergic (NANC) relaxations of the mouse anococcygeus when low concentrations of contractile agent are used to raise tone and low frequencies of field stimulation applied; such a non-nitrergic NDHF has been proposed to contribute to NANC relaxations of the rat anococcygeus and guinea-pig taenia coli.
  2. Phenylephrine (0.1–100 μM) produced concentration-related contractions of the mouse isolated anococcygeus muscle; 0.2 μM phenylephrine (EC26) was used to raise tone in subsequent experiments.
  3. Field stimulation (0.5, 1.0 and 5.0 Hz) produced frequency-dependent relaxations of phenylephrine-induced tone. In the presence of the nitric oxide synthase inhibitor L-NG-nitro-arginine (L-NOARG; 100 μM), the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one (ODQ; 5 μM), or a combination of these two drugs, relaxations to field stimulation were abolished at all frequencies studied. Relaxations to sodium nitroprusside (0.01–5 μM) were unaffected by L-NOARG but strongly inhibited by ODQ; neither enzyme inhibitor affected relaxations to 8-Br-cyclic GMP (10 μM).
  4. Nifedipine (1 μM) reduced the contractile response to 0.2 μM phenylephrine by 38%; however, it had no effect on NANC relaxations.
  5. It is concluded that NANC relaxations of the mouse anococcygeus are purely nitrergic and that there is no significant contribution from a putative NDHF.
  相似文献   

3.
  1. We have recently demonstrated the formation of protein-bound dinitrosyl-iron complexes (DNIC) in rat aortic rings exposed to lipopolysaccharide (LPS) and shown that N-acetylcysteine (NAC) can promote vasorelaxation in these arteries, possibly via the release of nitric oxide (NO) as low molecular weight DNIC from these storage sites. The aim of the present study was to investigate further the mechanism of the relaxation induced by NAC in LPS-treated vessels.
  2. In rings incubated with LPS (10 μg ml−1 for 18 h) and precontracted with noradrenaline (NA, 3 μM) plus Nω-nitro-L-arginine methylester (L-NAME, 3 mM), the relaxation evoked by NAC (0.1 to 10 mM) was abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 μM, a selective inhibitor of soluble guanylyl cyclase) but not affected by Rp-8-bromoguanosine 3′5′-cyclic monophosphorothioate (Rp-8BrcGMPS, 60 μM a selective inhibitor of cyclic GMP-dependent protein kinase). Tetrabutylammonium (TBA, 3 mM, as a non selective K+ channels blocker) or elevated concentration of external KCl (25 or 50 mM) significantly attenuated the NAC-induced relaxation. Selective K+ channels blockers (10 μM glibenclamide, 0.1 μM charybdotoxin, 0.5 μM apamin or 3 mM 4-aminopyridine) did not affect the NAC-induced relaxation. The relaxing effect of NAC (10 mM) was not associated with an elevation of guanosine 3′ : 5′ cyclic monophosphate (cyclic GMP) in LPS-treated rings.
  3. In aortic rings precontracted with NA (0.1 μM), low molecular weight DNIC (with thiosulphate as ligand, 1 nM to 10 μM) evoked a concentration-dependent relaxation which was antagonized by ODQ (1 μM) and Rp-8BrcGMPS (150 μM) but not significantly affected by TBA (3 mM) or by the use of KCl (50 mM) as preconstricting agent. The relaxation produced by DNIC (0.1 μM) was associated with an 11 fold increase in aortic cyclic GMP content, which was completely abolished by ODQ (1 μM).
  4. Taken together with our previous data, the main finding of the present study is that the vascular relaxation induced by NAC in LPS-treated aorta, although probably related to NO through an interaction via preformed NO stores, was not mediated by activation of the cyclic GMP pathway. It may involve the activation of TBA-sensitive K+ channels. The differences in the mechanism of relaxation induced by NAC and by exogenous DNIC suggest that the generation of low molecular weight DNIC from protein-bound species does not play a major role in the NAC-induced relaxation observed in LPS-treated rat aorta. In addition, it is suggested that ODQ may display other properties than the inhibition of soluble guanylyl cyclase.
  相似文献   

4.
  1. Nicotine-induced relaxation and release of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-like immunoreactivity (LI) were measured in longitudinal muscle strips from the rat gastric fundus.
  2. Under non-cholinergic conditions (0.3 μM atropine), nicotine (3–300 μM) produced concentration-dependent relaxations of the 5-hydroxytryptamine (3 μM)-precontracted strips. Under non-adrenergic non-cholinergic (NANC) conditions (0.3 μM atropine+1 μM phentolamine+1 μM nadolol), relaxations induced by sub-maximal nicotine concentrations (10 and 30 μM) were significantly smaller, while that produced by the highest concentration used (300 μM) was similar to that seen under non-cholinergic conditions.
  3. Re-exposure to the same nicotine concentration 1 h later induced smaller relaxations, indicating desensitization. The reductions seen in the second responses were proportional to the concentration used.
  4. Under non-cholinergic conditions, the relaxant response to 30 μM nicotine was abolished by hexamethonium (100 μM) and significantly reduced by tetrodotoxin (TTX, 3 μM). The TTX-resistant component was not observed under NANC conditions.
  5. NANC relaxation induced by 30 μM nicotine was significantly reduced by a specific anti-VIP serum (approximately 35% less than that seen with normal rabbit serum).
  6. Nicotine (30–300 μM) caused significant, concentration-dependent increases in the outflow of VIP- and PHI-LI from the strips; these effects were also diminished with re-exposure. The increases in both types of immunoreactivity evoked by nicotine (300 μM) were abolished by hexamethonium (300 μM), TTX (3 μM) and a calcium-free medium.
  7. These findings indicate that VIP and possibly PHI are involved in NANC relaxation of the rat gastric fundus induced by nicotine.
  相似文献   

5.
  1. The influence of the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) on non-adrenergic non-cholinergic (NANC) relaxations and the possible role of a nerve-derived hyperpolarizing factor in NANC relaxation were investigated in the rat gastric fundus.
  2. ODQ (10−6 and 10−5M) concentration-dependently inhibited the short-lasting relaxations by NO (2×10−6M–10−4M) administered as a bolus without influencing the relaxation by 3×10−8M isoprenaline. The relaxation by an infusion of NO was reduced to the same extent by 10−6 and 10−5M ODQ.
  3. The electrically induced short-lasting and sustained relaxations (40 V, 1 ms, 0.5–16 Hz, 10 s trains at 2 min interval or cumulative increase in the frequency every 2 min) in NANC conditions were inhibited to a similar extent by 10−6 and 10−5M ODQ, and by the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 3×10−4M).
  4. ODQ (10−6M) and L-NAME (3×10−4M), administered after 5, 10 or 20 min of long-term stimulation, reversed the relaxation to a similar extent (approximately 50% at 2 Hz and 20% at 8 Hz).
  5. When the tissues were contracted to 40% of maximum by adapting the concentration of prostaglandin F (PGF), the inhibitory effect of 3×10−4M L-NAME on relaxations induced by train and cumulative stimulation was the same as when tissues were contracted with 3×10−7M PGF.
  6. The findings of this study illustrate that the relaxation by exogenous and endogenous NO in the rat gastric fundus is due to activation of soluble guanylate cyclase. During long-term electrical stimulation, the partial contribution of NO to NANC relaxation is maintained but it is small at higher frequencies of stimulation. Evidence for the contribution of a nerve-derived hyperpolarizing factor to NANC relaxation was not obtained.
  相似文献   

6.
  1. The aim of the present study was to investigate the effects of bradykinin and [des-Arg9]-bradykinin and their relaxant mechanisms in the mouse isolated trachea.
  2. In the resting tracheal preparations with intact epithelium, bradykinin and [des-Arg9]-bradykinin (each drug, 0.01–10 μM) induced neither contraction nor relaxation. In contrast, bradykinin (0.01–10 μM) induced concentration-dependent relaxation when the tracheal preparations were precontracted with methacholine (1 μM). The relaxation induced by bradykinin was inhibited by the B2 receptor antagonist, D-Arg0-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (Hoe 140, 0.01–1 μM) in a concentration-dependent manner whereas the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), had no inhibitory effect on bradykinin-induced relaxation. [des-Arg9]-bradykinin (0.01–10 μM) also caused concentration-dependent relaxation after precontraction with methacholine. The relaxation induced by [des-Arg9]-bradykinin was concentration-dependently inhibited by the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), whereas the B2 receptor antagonist, Hoe 140 (0.01–1 μM) was without effect.
  3. In the presence of the cyclo-oxygenase inhibitor, indomethacin (0.01–1 μM), the relaxations induced by bradykinin and [des-Arg9]-bradykinin were inhibited concentration-dependently.
  4. Two nitric oxide (NO) biosynthesis inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 100 μM) and NG-nitro-L-arginine (L-NOARG, 100 μM) had no inhibitory effects on the relaxations induced by bradykinin and [des-Arg9]-bradykinin. Neither did the selective inhibitor of the soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) inhibit the relaxations induced by bradykinin and [des-Arg9]-bradykinin.
  5. Prostaglandin E2 (PGE2, 0.01–33 μM) caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. Indomethacin (1 μM) and ODQ (10 μM) exerted no inhibitory effects on the relaxation induced by PGE2.
  6. The NO-donor, sodium nitroprusside (SNP; 0.01–100 μM) also caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. ODQ (0.1–1 μM) concentration-dependently inhibited the relaxation induced by SNP.
  7. These data demonstrate that bradykinin and [des-Arg9]-bradykinin relax the mouse trachea precontracted with methacholine by the activation of bradykinin B2-receptors and B1-receptors, respectively. The stimulation of bradykinin receptors induces activation of the cyclo-oxygenase pathway, leading to the production of relaxing prostaglandins. The NO pathway is not involved in the bradykinin-induced relaxation. The relaxation caused by NO-donors in the mouse trachea is likely to be mediated via activation of soluble guanylate cyclase.
  相似文献   

7.
  1. The effect of Tityus serrulatus scorpion venom and its toxin components on the rabbit isolated corpus cavernosum was investigated by use of a bioassay cascade.
  2. Tityus serrulatus venom (3–100 μg), acetylcholine (ACh; 0.3–30 nmol) and glyceryl trinitrate (GTN; 0.5–10 nmol) dose-dependently relaxed rabbit isolated corpus cavernosum preparations precontracted with noradrenaline (3 μM). The selective soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-alquinoxalin-1-one] (ODQ; 30 μM) increased the basal tone of the rabbit isolated corpus cavernosum and abolished the relaxations induced by the agents mentioned above. Methylene blue (30 μM) also inhibited the relaxations induced by Tityus serrulatus venom but, in contrast to ODQ, the inhibition was irreversible.
  3. The non-selective NO synthase (NOS) inhibitors NΩ-nitro-L-arginine methyl ester (L-NAME; 10 μM) and NG-iminoethyl-L-ornithine (L-NIO; 30 μM) also increased the tone of the rabbit isolated corpus cavernosum and markedly reduced both ACh- and Tityus serrulatus venom-induced relaxations without affecting those evoked by GTN. The inhibitory effect was reversed by infusion of L-arginine (300 μM), but not D-arginine (300 μM). The neuronal NOS inhibitor 1-(2-trifluoromethylphenyl) imidazole (TRIM, 100 μM) did not affect either the tone of the rabbit isolated corpus cavernosum or the relaxations induced by ACh, bradykinin (Bk), Tityus serrulatus venom and GTN. TRIM was approximately 1,000 times less potent than L-NAME in inhibiting rabbit cerebellar NOS in vitro, as measured by the conversion of [3H]-L-arginine to [3H]-L-citrulline.
  4. The protease inhibitor aprotinin (Trasylol; 10 μg ml−1) and the bradykinin B2 receptor antagonist Hoe 140 (D-Arg-[Hyp3,Thi5,D-Tic7, Oic8]-BK; 50 nM) did not affect the rabbit isolated corpus cavernosum relaxations induced by Tityus serrulatus venom. The ATP-dependent K+ channel antagonist glibenclamide (10 μM) and the Ca2+-activated K+  channel antagonists apamin (0.1 μM) and charybdotoxin (0.1 μM) also failed to affect the venom-induced relaxations. Similarly, the K+ channel blocker tetraethylammonium (TEA; 10 μM) had no effect on the venom-induced relaxations.
  5. Capsaicin (3 and 10 nmol) relaxed the rabbit isolated corpus cavernosum in a dose-dependent and non-tachyphylactic manner. Ruthenium red (30 μM), an inhibitor of capsaicin-induced responses, markedly reduced the relaxations caused by capsaicin, but failed to affect those induced by Tityus serrulatus venom. L-NAME (10 μM) had no effect on the capsaicin-induced relaxations of the rabbit isolated corpus cavernosum.
  6. The sodium channel blocker tetrodotoxin (TTX; 1 μM) abolished the relaxations of the rabbit isolated corpus cavernosum induced by Tityus serrulatus venom without affecting those evoked by capsaicin, ACh and GTN. Tetrodotoxin (1 μM) also promptly reversed the response to the venom when infused during the relaxation phase.
  7. The bioassay cascade of the toxin components purified from Tityus serrulatus venom revealed that only fractions X, XI and XII caused dose-dependent relaxations of the rabbit isolated corpus cavernosum and these were markedly reduced by either TTX (1 μM) or L-NAME (10 μM).
  8. Our results indicate that Tityus serrulatus scorpion venom (and the active fractions X, XI and XII) relaxes rabbit corpus cavernosum via the release of NO. This release is specifically triggered by the activation of capsaicin-insensitive cavernosal non-adrenergic non-cholinergic (NANC) fibres, that may possibly be nitrergic neurones. Tityus serrulatus venom may therefore provide an important tool for understanding further the mechanism of NANC nitrergic nerve activation.
  相似文献   

8.
  1. The aim of the present study was to determine the effect of nitric oxide (NO) on angiotensin-converting enzyme (ACE) activity.
  2. A biochemical study was performed in order to analyse the effect of the NO-donors, SIN-1 and diethylamine/NO (DEA/NO), and of an aqueous solution of nitric oxide on the ACE activity in plasma from 3-month old male Sprague-Dawley rats and on ACE purified from rabbit lung. SIN-1 significantly inhibited the activity of both enzymes in a concentration-dependent way between 1 and 100 μM. DEA/NO inhibited the activity of purified ACE from 0.1 μM to 10 μM and plasma ACE, with a lower potency, between 1 and 100 μM. An aqueous solution of NO (100 and 150 μM) also inhibited significantly the activity of both enzymes. Lineweaver-Burk plots indicated an apparent competitive inhibition of Hip-His-Leu hydrolysis by NO-donors.
  3. Modulation of ACE activity by NO was also assessed in the rat carotid artery by comparing contractions elicited by angiotensin I (AI) and AII. Concentration-response curves to both peptides were performed in arteries with endothelium in the presence of the guanylyl cyclase inhibitor, ODQ (10 μM), and the inhibitor of NO formation, L-NAME (0.1 mM). NO, which is still released from endothelium in the presence of 10 μM ODQ, elicited a significant inhibition of AI contractions at low concentrations (1 and 5 nM). In the absence of endothelium, 1 μM SIN-1 plus 10 μM ODQ, as well as 10 μM DEA/NO plus 10 μM ODQ induced a significant inhibition on AI-induced contractions at 1 and 5 nM and at 1–100 nM, respectively.
  4. In conclusion, we demonstrated that (i) NO and NO-releasing compounds inhibit ACE activity in a concentration-dependent and competitive way and that (ii) NO release from endothelium physiologically reduces conversion of AI to AII.
  相似文献   

9.
  1. In rat isolated hepatic arteries contracted with phenylephrine, acetylcholine and the calcium ionophore A23187 each elicit endothelium-dependent relaxations, which involve both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). However, the contribution of prostanoids to these responses, and the potential interaction between EDHF and other endothelium-derived relaxing factors have not been examined.
  2. In the presence of the NO synthase inhibitor NG-nitro-L-arginine (L-NOARG, 0.3 mM) and a mixture of charybdotoxin (0.3 μM) and apamin (0.3 μM), inhibitors of the target potassium (K) channel(s) for EDHF, acetylcholine and A23187 each induced a concentration-dependent and almost complete relaxation, which was abolished in the additional presence of indomethacin (10 μM). Thus, in addition to EDHF and NO, a relaxing factor(s) generated by cyclo-oxygenase (COX) contributes to endothelium-dependent relaxation in the rat hepatic artery.
  3. The resting membrane potentials of endothelium-intact and endothelium-denuded vascular segments were −57 mV and −52 mV, respectively (P>0.05). In intact arteries, the resting membrane potential was not affected by L-NOARG plus indomethacin, but reduced to −47 mV in the presence of charybdotoxin plus apamin. Acetylcholine and A23187 (10 μM each) elicited a hyperpolarization of 13 mV and 15 mV, respectively. The hyperpolarization induced by these agents was not affected by L-NOARG plus indomethacin (12 mV and 14 mV, respectively), but reduced in the presence of charybdotoxin plus apamin (7 mV and 10 mV, respectively), and abolished in the combined presence of charybdotoxin, apamin and indomethacin.
  4. The NO donor 3-morpholino-sydnonimine (SIN-1) induced a concentration-dependent relaxation, which was unaffected by charybdotoxin plus apamin, but abolished by the selective soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μM). SIN-1 (10 μM) did not alter the resting membrane potential in endothelium-denuded vascular segments.
  5. The COX-dependent relaxation induced by acetylcholine was abolished following exposure to 30 mM KCl, but unaffected by glibenclamide (10 μM). The prostacyclin analogue iloprost induced a concentration-dependent relaxation, which was also abolished in 30 mM KCl and unaffected by the combined treatment with glibenclamide, charybdotoxin and apamin. Iloprost (10 μM) induced a glibenclamide-resistant hyperpolarization (8 mV with and 9 mV without glibenclamide) in endothelium-denuded vascular segments.
  6. Exposure to SIN-1 or iloprost did not affect the EDHF-mediated relaxation induced by acetylcholine (i.e. in the presence of L-NOARG and indomethacin). Replacement of L-NOARG with the NO scavenger oxyhaemoglobin (10 μM) or the soluble guanylate cyclase inhibitor ODQ (10 μM) or methylene blue (10 μM), which all significantly inhibited responses to endothelium-derived NO, did not affect the acetylcholine-induced relaxation in the presence of indomethacin, indicating that endogenous NO also does not suppress EDHF-mediated responses.
  7. These results show that, in addition to EDHF and NO, an endothelium-derived hyperpolarizing factor(s) generated by COX contributes significantly to endothelium-dependent relaxation in the rat heptic artery. Neither this factor nor NO seems to regulate EDHF-mediated responses. Thus, EDHF does not serve simply as a `back-up'' system for NO and prostacyclin in this artery. However, whether EDHF modulates the NO and COX pathways remains to be determined.
  相似文献   

10.
  1. Levcromakalim caused concentration-dependent relaxations of methoxamine-induced tone in both endothelium-denuded and intact vessels. Its potency was reduced by the nitric oxide donor, S-nitroso-N-acetylpenicillamine (SNAP; 0.1 μM or 1 μM) in both denuded and intact vessels. The maximal relaxation (Rmax) was reduced only in denuded vessels.
  2. SNAP was more potent in endothelium-denuded than intact vessels but there were no differences in Rmax. Glibenclamide (10 μM) did not affect relaxation to SNAP in endothelium-denuded or intact vessels.
  3. The soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) increased the potency and Rmax of levcromakalim in endothelium-intact vessels. ODQ had no effect in denuded vessels.
  4. ODQ (10 μM) reduced the vasorelaxant potency of SNAP in both intact and endothelium-denuded vessels by 190-fold and 620-fold, respectively.
  5. 8-bromo cyclic GMP (10 or 30 μM) reduced both the potency and Rmax of levcromakalim in de-endothelialized vessels, but had no effect in intact vessels although it reduced both the potency and Rmax of levcromakalim in intact vessels incubated with ODQ (10 μM).
  6. In the presence of ODQ (10 μM), SNAP (0.1 μM or 1 μM) reduced the potency of levcromakalim in intact vessels, without altering Rmax, but had no effect in denuded vessels. SNAP (50 μM) reduced both the potency and Rmax of levcromakalim in intact and endothelium-denuded vessels.
  7. Therefore, although SNAP causes relaxation principally through generation of cyclic GMP, it can modulate the actions of levcromakalim through mechanisms both dependent on, and independent of, cyclic GMP; the former predominate in endothelium-denuded vessels and the latter in intact vessels.
  相似文献   

11.
  1. The effects of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the NO scavenger, oxyhaemoglobin (HbO) and high extracellular K+ upon endothelium-dependent relaxation to bradykinin were investigated in human isolated small coronary arteries.
  2. Endothelium-dependent relaxations to bradykinin were compared in vessels contracted to ∼50% of their maximum contraction to 124 mM KCl Krebs solution, regardless of treatments, with the thromboxane A2 mimetic, U46619 and acetylcholine. All relaxations were expressed as percentage reversal of the initial level of active force.
  3. L-NOARG (100 μM) caused a small but significant, 12% (P<0.01), decrease in the maximum relaxation (Rmax: 91.5±5.4%) to bradykinin but did not significantly affect the sensitivity (pEC50: 8.08±0.17). Increasing the concentration of L-NOARG to 300 μM had no further effect on the pEC50 or Rmax to bradykinin. HbO (20 μM) and a combination of HbO (20 μM) and L-NOARG (100 μM) reduced Rmax to bradykinin by 58% (P<0.05) and 54% (P<0.05), respectively. HbO (20 μM) and L-NOARG (100 μM, combined but not HbO (20 μM) alone, caused a significant 11 fold (P<0.05) decrease in sensitivitiy to bradykinin. HbO (20 μM) decreased the sensitivity to the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), approximately 17 fold (P<0.05).
  4. Raising the extracellular concentration of K+ isotonically to 30 mM, reduced the Rmax to bradykinin from 96.6±3.1% to 43.9±10.1% (P<0.01) with no significant change in sensitivity. A combination of HbO, L-NOARG and high K+ (30 mM) abolished the response to bradykinin. High K+ did not change either the sensitivity or maximum relaxation to SNAP.
  5. In conclusion, L-NOARG does not completely inhibit endothelial cell NO synthesis in human isolated small coronary arteries. By comparison, HbO appeared to block all the effects of NO in this tissue and revealed that most of the relaxation to bradykinin was due to NO. The non-NO -dependent relaxation to bradykinin in the human isolated small coronary arteries appeared to be mediated by a K+-sensitive vasodilator mechanism, possibly endothelium-derived hyperpolarizing factor (EDHF).
  相似文献   

12.
  1. Acetylcholine (ACh) elicits an endothelium-dependent relaxation and hyperpolarization in the absence of nitric oxide (NO) and prostaglandin synthesis in the guinea-pig coronary artery (GPCA). This response has been attributed to a factor termed endothelial-derived hyperpolarizing factor (EDHF). Recently it has been suggested that EDHF may be a cytochrome P450 product of arachidonic acid (AA) i.e., an epoxyeicosatrienoic acid (EET). The present study investigated whether this pathway could account for the response to ACh observed in the GPCA in the presence of 100 μM Nω-nitro-L-arginine and 10 μM indomethacin.
  2. ACh, AA and 11,12-EET each produced concentration-dependent relaxations in arteries contracted with the H1-receptor agonist AEP (2,2-aminoethylpyridine). The AA-induced relaxation was significantly enhanced in the presence of the cyclo-oxygenase/lipoxygenase inhibitor, eicosatetranynoic acid (30 μM).
  3. The cytochrome P450 inhibitors proadifen (10 μM) and clotrimazole (10 μM) inhibited ACh, lemakalim (LEM) and AA-induced relaxation, whereas 17-octadecynoic acid (100 μM) and 7-ethoxyresorufin (10 μM) were without effect on all three vasodilators. Proadifen and clotrimazole also inhibited ACh (1 μM) and LEM (1 μM)-induced hyperpolarization.
  4. The ability of various potassium channel blockers to inhibit relaxation responses elicited with ACh, AA and 11,12-EET was also determined. Iberiotoxin (IBTX; 100 nM) was without effect on responses to ACh but significantly reduced responses to both AA and 11,12-EET. In contrast, 4-aminopyridine (4-AP; 5 mM) significantly reduced response to ACh but not responses to AA and 11,12-EET. Combined IBTX plus (4-AP) inhibited the ACh-induced relaxation to a greater extent than 4-AP alone. Apamin (1 μM), glibenclamide (10 μM) and BaCl2 (50 μM) had no significant effect on responses to ACh, AA and 11,12-EET.
  5. IBTX (100 nM) significantly reduced both 11,12-EET (33 μM) and AA (30 μM) hyperpolarization without affecting the ACh (1 μM)-induced hyperpolarization. In contrast, 4-AP significantly reduced the ACh-induced hyperpolarization without affecting either AA or 11,12-EET-induced hyperpolarizations.
  6. In summary, our results suggest that the coronary endothelium releases a factor upon application of AA which hyperpolarizes the smooth muscle. The similarity of pharmacology between AA and 11,12-EET suggests that this factor is an EET. However, the disparity of pharmacology between responses to ACh versus responses to 11,12-EET do not support the hypothesis that EETs represent the predominant factor which ACh releases from the endothelium that leads to NO- and prostaglandin-independent hyperpolarization and relaxation in the GPCA.
  相似文献   

13.
  1. We investigated the contribution of nitric oxide (NO) to inhibitory neuromuscular transmission in murine proximal colon and the possibility that citrulline is recycled to arginine to maintain the supply of substrate for NO synthesis.
  2. Intracellular microelectrode recordings were made from circular smooth muscle cells in the presence of nifedipine and atropine (both 1 μM). Electrical field stimulation (EFS, 0.3–20 Hz) produced inhibitory junction potentials (i.j.ps) composed of an initial transient hyperpolarization (fast component) followed by a slow recovery to resting potential (slow component).
  3. L-Nitro-arginine-methyl ester (L-NAME, 100 μM) selectively abolished the slow component of i.j.ps. The effects of L-NAME were reversed by L-arginine (0.2–2 mM) but not by D-arginine (2 mM). Sodium nitroprusside (an NO donor, 1 μM) reversibly hyperpolarized muscle cells. This suggests that NO mediates the slow component of i.j.ps.
  4. L-Citrulline (0.2 mM) also reversed the effects of L-NAME, and this action was maintained during sustained exposures to L-citrulline (0.2 mM). This may reflect intraneuronal recycling of L-citrulline to L-arginine.
  5. Higher concentrations of L-citrulline (e.g. 2 mM) had time-dependent effects. Brief exposure (15 min) reversed the effects of L-NAME, but during longer exposures (30 min) the effects of L-NAME gradually returned. In the continued presence of L-citrulline, L-arginine (2 mM) readily restored nitrergic transmission, suggesting that during long exposures to high concentrations of L-citrulline, the ability to generate arginine from citrulline was reduced.
  6. Aspartate (2 mM) had no effect on i.j.ps, the effects of L-NAME, or the actions of L-citrulline in the presence of L-NAME. L-Citrulline (0.2–2 mM) alone had no effect on i.j.ps under control conditions.
  7. S-methyl-L-thiocitrulline (10 μM), a novel NOS inhibitor, blocked the slow component of i.j.ps. The effects of this inhibitor were reversed by L-arginine (2 mM), but not by L-citrulline (2 mM).
  8. These results suggest that i.j.ps in the murine colon result from release of multiple inhibitory neurotransmitters. NO mediates a slow component of enteric inhibitory neurotransmission. Recycling of L-citrulline to L-arginine may sustain substrate concentrations in support of NO synthesis and this pathway may be inhibited when concentrations of L-citrulline are elevated.
  相似文献   

14.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

15.
  1. The effects of the antioxidants ascorbic acid and α-tocopherol and of the metal chelator ethylenediaminetetraacetic acid (EDTA) were studied on relaxations in response to S-nitrosothiols, authentic nitric oxide (NO) and nitrergic non-adrenergic non-cholinergic stimulation of the rat gastric fundus.
  2. The S-nitrosothiols S-nitrosocysteine (1–100 nM), S-nitrosoglutathione (0.01–3 μM) and S-nitroso-N-acetylpenicillamine (0.01–3 μM) induced concentration-dependent relaxations of the rat gastric fundus muscle strips, which were precontracted with prostaglandin F. The relaxations to all S-nitrosothiols were concentration-dependently enhanced by the antioxidants ascorbic acid (0.1–3 μM) and α-tocopherol (3–30 μM) and inhibited by the metal chelator EDTA (26 μM).
  3. Ascorbic acid and α-tocopherol alone did not induce a relaxation of the precontracted rat gastric fundus muscle strip. However, when ascorbic acid (1 μM) or α-tocopherol (1 μM) were injected in the organ bath 1 minute after S-nitrosoglutathione (0.1 μM) or after S-nitroso-N-acetylpenicillamine (0.1 μM), they induced an immediate, sharp and transient relaxation. This relaxation was inhibited by the superoxide generator pyrogallol (2 μM). Such a relaxation to ascorbic acid or α-tocopherol was not observed in the presence of S-nitrosocysteine (10 nM).
  4. Electrical field stimulation (0.5–4 Hz) of the precontracted rat gastric fundus strips induced frequency-dependent nitrergic relaxations which were mimicked by authentic NO (3–300 nM) and by acidified sodium nitrite NaNO2 (0.3–10 μM). Ascorbic acid (0.3–3 μM), α-tocopherol (3–30 μM) or EDTA (26 μM) did not affect the relaxations to nitrergic stimulation, NO or NaNO2.
  5. In summary, relaxations to S-nitrosothiols in the rat gastric fundus are enhanced by the antioxidants ascorbic acid and α-tocopherol and inhibited by the metal chelator EDTA. However, relaxations to nitrergic stimulation of the rat gastric fundus or those to authentic NO were not affected by the antioxidants or by the metal chelator. These results indicate that antioxidants and metal chelators have a different effect on the biological activity of S-nitrosothiols and on that of the nitrergic neurotransmitter. Therefore, our results suggest that S-nitrosothiols do not act as intermediate compounds in nitrergic neurotransmission in the rat gastric fundus.
  相似文献   

16.
  1. Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline.
  2. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by NG-nitro-L-arginine (100 μM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity.
  3. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine.
  4. The 35 mM K+ response was insensitive to ω-conotoxin GVIA (1 μM) and nifedipine (100 μM), but could be prevented in part by ω-agatoxin IVA (0.1 and 1 μM). The inhibition caused by 0.1 μM ω-agatoxin IVA (∼30%) was enhanced by adding ω-conotoxin GVIA (1 μM) or nifedipine (100 μM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 μM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 μM ω-conotoxin GVIA plus 100 μM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX.
  5. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels are blocked.
  相似文献   

17.
  1. The aim of the present study was to determine the cellular mechanims and potential mediators involved in hypoxic dilatation of porcine small coronary arteries.
  2. Small coronary arteries were isolated from a branch of the left anterior descending artery of porcine hearts, cannulated with glass micropipettes and studied in a perfusion myograph system. At a transmural pressure of 40 mmHg, the arteries had an internal diameter of 167.8±6.6 μm (n=37).
  3. In arteries contracted with acetylcholine (ACh), hypoxia (0% O2, 30 min) caused dilatation (86.9±6.7% relaxation, n=6) in vessels with endothelium but constriction in endothelium-denuded vessels.
  4. Hypoxic vasodilatation occurring in arteries with endothelium was abolished by the KATP channel inhibitor, glibenclamide (0.44 μM), but was not affected by inhibition of nitric oxide synthase (L-NAME, 44 μM) or cyclo-oxygenase (indomethacin, 4.4 μM).
  5. Bradykinin evoked endothelium-dependent relaxation that was inhibited by L-NAME (44 μM) but not glibenclamide 0.44 μM). Cromakalim (0.1–0.3 μM), a KATP channel opener, caused relaxation that was inhibited by glibenclamide, but was not affected by L-NAME (44 μM) and/or indomethacin (4.4 μM).
  6. Endothelium-removal inhibited vasodilatation evoked by cromakalim, but increased vasodilator responses to the NO donor, SIN-1 (10−8 to 10−5M).
  7. These results indicate that hypoxia acted directly on vascular smooth muscle of small coronary arteries to cause contraction. However, this effect was overwhelmed by endothelium-dependent relaxation in response to hypoxia. This relaxation was most likely mediated by release of an endothelium-derived factor, distinct from nitric oxide or prostacyclin, that activated smooth muscle KATP-channels.
  相似文献   

18.
  1. Relaxing factors released by the endothelium and their relative contribution to the endothelium-dependent relaxation produced by bradykinin (BK) in comparison with different vasodilator agents were investigated in human omental resistance arteries.
  2. BK produced an endothelium-dependent relaxation of arteries pre-contracted with the thromboxane A2 agonist, U46619. The B2 receptor antagonist, Hoe 140 (0.1, 1 and 10 μM), produced a parallel shift to the right of the concentration-response curve to BK with a pA2 of 7.75.
  3. Neither the cyclo-oxygenase inhibitor, indomethacin (10 μM) alone, the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME, 300 μM) alone, the nitric oxide scavenger, oxyhaemoglobin (Hb, 10 μM) alone, nor the combination of L-NAME plus Hb affected the concentration-response curve to BK. Conversely, the combination of indomethacin with either L-NAME or Hb attenuated but did not abolish the BK-induced relaxation. By contrast, the relaxations produced by the Ca2+ ionophore, calcimycin (A23187), and by the inhibitor of sarcoplasmic reticulum Ca2+-ATPase, thapsigargin (THAPS), were abolished in the presence of indomethacin plus L-NAME. Also, the presence of indomethacin plus L-NAME produced contraction of arteries with functional endothelium.
  4. The indomethacin plus L-NAME resistant component of BK relaxation was abolished in physiological solution (PSS) containing 40 mM KCl and vice versa. However, in the presence of KCl 40 mM, indomethacin plus L-NAME did not affect the nitric oxide donor, S-N-acetylpenicillamine-induced relaxation.
  5. The indomethacin plus L-NAME resistant component of the relaxation to BK was significantly attenuated by the K+ channel blocker tetrabutylammonium (TBA, 1 mM). However, it was not affected by other K+ channel blockers such as apamin (10 μM), 4-aminopyridine (100 μM), glibenclamide (10 μM), tetraethylammonium (10 mM) and charybdotoxin (50 nM).
  6. In the presence of indomethacin plus L-NAME, the relaxation produced by BK was not affected by the phospholipase A2 inhibitor, quinacrine (10 μM) or by the inhibitor of cytochrome P450, SKF 525a (10 μM). Another cytochrome P450 inhibitor, clotrimazole (10 μM) which also inhibits K+ channels, inhibited the relaxation to BK.
  7. These results show that BK induces endothelium-dependent relaxation in human small omental arteries via multiple mechanisms involving nitric oxide, cyclo-oxygenase derived prostanoid(s) and another factor (probably an endothelium-derived hyperpolarizing factor). They indicate that nitric oxide and cyclo-oxygenase derivative(s) can substitute for each other in producing relaxation and that the third component is not a metabolite of arachidonic acid, formed through the cytochrome P-450 pathway, in these arteries.
  相似文献   

19.
  1. To investigate the participation of guanylyl cyclase in the muscarinic regulation of the cardiac L-type calcium current (ICa), we examined the effects of three guanylyl cyclase inhibitors, 1H-[1,2,4]oxidiazolo[4,3-a]quinoxaline-1-one (ODQ), 6-anilino-5,8-quinolinedione (LY 83583), and methylene blue (MBlue), on the β-adrenoceptor; muscarinic receptor and nitric oxide (NO) regulation of ICa and on the muscarinic activated potassium current IK,ACh, in frog atrial and ventricular myocytes.
  2. ODQ (10 μM) and LY 83583 (30 μM) antagonized the inhibitory effect of an NO-donor (S-nitroso-N-acetylpenicillamine, SNAP, 1 μM) on the isoprenaline (Iso)-stimulated ICa which was consistent with their inhibitory action on guanylyl cyclase. However, MBlue (30 μM) had no effect under similar conditions.
  3. In the absence of SNAP, LY 83583 (30 μM) potentiated the stimulations of ICa by either Iso (20 nM), forskolin (0.2 μM) or intracellular cyclic AMP (5–10 μM). ODQ (10 μM) had no effect under these conditions, while MBlue (30 μM) inhibited the Iso-stimulated ICa.
  4. LY 83583 and MBlue, but not ODQ, reduced the inhibitory effect of up to 10 μM acetylcholine (ACh) on ICa.
  5. MBlue, but not LY 83583 and ODQ, antagonized the activation of IK,ACh by ACh in the presence of intracellular GTP, and this inhibition was weakened when IK,ACh was activated by intracellular GTPγS.
  6. The potentiating effect of LY 83583 on Iso-stimulated ICa was absent in the presence of either DL-dithiothreitol (DTT, 100 μM) or a combination of superoxide dismutase (150 u ml−1) and catalase (100 u ml−1).
  7. All together, our data demonstrate that, among the three compounds tested, only ODQ acts in a manner which is consistent with its inhibitory action on the NO-sensitive guanylyl cyclase. The two other compounds produced severe side effects which may involve superoxide anion generation in the case of LY 83583 and alteration of β-adrenoceptor and muscarinic receptor-coupling mechanisms in the case of MBlue.
  相似文献   

20.
  1. In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 μM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery.
  2. Inhibitors of adenosine 5′-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 μM), voltage-sensitive K-channels (KV; dendrotoxin-I, 0.1 μM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 μM) and large (BKCa; iberiotoxin, 0.1 μM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine.
  3. Synthetic charybdotoxin (0.1 μM), an inhibitor of BKCa and KV, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited.
  4. A combination of charybdotoxin (0.1 μM) and apamin (0.1 μM) abolished the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 μM) and apamin (0.1 μM).
  5. Ciclazindol (10 μM), an inhibitor of KV in rat portal vein smooth muscle, inhibited the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 μM) was combined with apamin (0.1 μM).
  6. Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 μM) and apamin (0.1 μM), whereas each toxin had little effect alone.
  7. The results suggest that KV, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic action of apamin and charybdotoxin (or ciclazindol) could indicate that both KV and SKCa are activated by EDHF. However, a single type of K-channel, which may be structurally related to KV and allosterically regulated by apamin, could also be the target for EDHF.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号