首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Two recombinant classical swine fever (CSF) viruses (Flc2, Flc3) transcribed from a DNA copy of the genome of the Chinese (C) strain, a CSF virus vaccine strain, were characterized in vivo in rabbits and pigs. Rabbits were inoculated intravenously with Flc2 or Flc3, the parent C-strain virus, a biologically cloned C-strain or CSF virus strain Brescia (C.1.1.1). After 24-96 h fever was detected in the rabbits inoculated with the different C-strain viruses. Apart from those in the control group, all the C-strain inoculated rabbits had developed CSF virus neutralizing antibodies 4 weeks later and were protected against a parent C-strain challenge. In the second experiment, pigs were inoculated with the parent C-strain or recombinant C-strain virus (Flc2 or Flc3) and then challenged after 4 weeks with the virulent CSF virus strain Brescia. None of the pigs showed clinical signs of classical swine fever after vaccination or challenge, whereas the control pigs developed clinical signs typical for acute CSF. Pigs inoculated with the different C-strain viruses were not viremic after inoculation or challenge, and CSF virus neutralizing antibodies were detected from day 14 onwards. The results from both experiments demonstrated that the two recombinant viruses had retained the biological and immunogenic properties of the parent C-strain in rabbits and pigs. We conclude that the full-length cDNA of the C-strain can serve as a matrix for further development of a live recombinant CSF virus marker vaccine.  相似文献   

3.
《Vaccine》2023,41(12):2003-2012
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5’- and 3’-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.  相似文献   

4.
Dong XN  Chen Y  Wu Y  Chen YH 《Vaccine》2005,23(28):3630-3633
Our previous study proposed a protective multi-peptide-vaccine (MPV) with Freund's adjuvant against classical swine fever virus (CSFV). In this study, another candidate MPV, using aluminum adjuvant, was further examined. All immunized pigs kept healthy during the experimental period, while the control group rapidly showed clinical symptoms and died. Moreover, anti-sera from MPV-immunized pigs could interact with peptides involved in the MPV, in contrast to anti-sera from non-immunized or infected ones. This property permits MPV-immunized pigs to be easily differentiated from infected ones with simple serological method. Therefore, this new MPV is suitable to act as a candidate marker vaccine against CSFV.  相似文献   

5.
Classical swine fever (CSF) is an economically important, highly contagious swine disease caused by classical swine fever virus (CSFV). Marker vaccines and companion serological diagnostic tests are thought to be a promising strategy for future control and eradication of CSF. Previously, we have demonstrated that an adenovirus-vectored Semliki forest virus replicon construct expressing the E2 glycoprotein from CSFV, rAdV-SFV-E2, induced sterile immunity against a lethal CSFV challenge. In this study, we further evaluated the vaccine with respect to its safety, number and dose of immunization, and effects of maternally derived antibodies, re-immunization of the vaccine or co-administration with pseudorabies vaccine on the vaccine efficacy. The results showed that: (1) the vaccine was safe for mice, rabbits and pigs; (2) two immunizations with a dose as low as 6.25 × 105 TCID50 or a single immunization with a dose of 107 TCID50 rAdV-SFV-E2 provided complete protection against a lethal CSFV challenge; (3) maternally derived antibodies had no inhibitory effects on the efficacy of the vaccine; (4) the vaccine did not induce interfering anti-vector immunity; and (5) co-administration of rAdV-SFV-E2 with a live pseudorabies vaccine induced antibodies and protection indistinguishable from immunization with either vaccine administered alone. Taken together, the chimeric vaccine represents a promising marker vaccine candidate for control and eradication of CSF.  相似文献   

6.
Dong XN  Chen YH 《Vaccine》2006,24(11):1906-1913
Antigenic domain A is a highly conserved unit on envelope protein E2 of classical swine fever virus (CSFV). It was found that mutant E2 containing only unit A, with the unit BC deleted, provided immunized pigs with complete protection against the lethal challenge. In this study, six overlapping peptides (A1-A6) covering this unit were synthesized and conjugated to bovine serum albumin (BSA). Two candidate multi-peptide-vaccines (MPVs) using aluminum adjuvant successfully induced potent immunity against CSFV in pigs. Although both candidate MPVs failed to provide complete protection, they showed better protective activity than that induced by C-strain. Subsequently, neutralizing epitopes in unit A were identified using a panel of peptide-vaccines (PVs). Six candidate peptide-vaccines (PV-An, n=1-6) were separately given to six groups of pigs. Among these candidates, PV-A2 and PV-A6 exhibited the most potent protective activity, while the other four showed weaker or almost no effects. Moreover, the polyclonal antibodies induced by PV-A2 and PV-A6 were capable of neutralizing C-strain virus at the dilution 1:16 in vitro. Thus, two principal sequential neutralizing determinants covered by peptide A2 (aa792-814) and A6 (aa844-865) were demonstrated to exist in the antigenic domain A, and can be recruited in developing new effective "marker vaccine" against CSFV.  相似文献   

7.
Sun Y  Li HY  Tian DY  Han QY  Zhang X  Li N  Qiu HJ 《Vaccine》2011,29(46):8364-8372
Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n = 5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens.  相似文献   

8.
Li N  Qiu HJ  Zhao JJ  Li Y  Wang MJ  Lu BW  Han CG  Hou Q  Wang ZH  Gao H  Peng WP  Li GX  Zhu QH  Tong GZ 《Vaccine》2007,25(15):2907-2912
Classical swine fever virus (CSFV) causes significant losses in pig industry in many countries in Asia and Europe. The E2 glycoprotein of CSFV is the main target for neutralizing antibodies. Recently, the replicon of alphaviruses, such as Semliki Forest virus (SFV), has been developed as replicative expression vectors for gene delivery. In this study, we constructed a plasmid DNA based on SFV replicon encoding the E2 glycoprotein of CSFV and evaluated its efficacy in rabbits and pigs. The results showed that the animals immunized with the DNA vaccine developed CSFV-specific neutralizing antibodies and were protected from virulent or lethal challenge. This demonstrates that the SFV replicon-derived DNA vaccine can be a potential marker vaccine against CSFV infections.  相似文献   

9.
Dong XN  Qi Y  Ying J  Chen X  Chen YH 《Vaccine》2006,24(4):426-434
Previously, two candidate multi-peptide-vaccines (MPVs) consisted of five overlapping synthetic peptides covering the antigenic domain B/C (aa693-777) on envelope protein E2 were prepared in our lab. And they successfully induced peptide-specific neutralizing antibodies and provided pigs with complete protection from the lethal challenge of virulent classical swine fever virus (CSFV) strain Shimen. In this study, these five peptides were conjugated to bovine serum albumin (BSA), with which five groups of pigs (n=10) were inoculated, respectively. Among these candidate peptide-vaccines (PVs), PV-BC1 (BC1: aa693-716) exhibited the most potent protective activity, PV-BC3, PV-BC4 and PV-BC5 (BC3: aa723-745; BC4: aa741-760; BC5: aa757-777) had weaker effects, while no effect of PV-BC2 (BC2: aa712-727) had been detected. Moreover, the polyclonal antibodies induced by PV-BC1 and PV-BC4 were capable of neutralizing C-strain virus in vitro. Thus, a principal sequential neutralizing determinant (aa693-716) and a minor sequential neutralizing determinant (aa741-760) were proved to lie in the antigenic domain B/C, which can be recruited into developing more effective "marker vaccine" by epitope-vaccine strategy. Our study also indicates that scanning with a panel of sequential peptide-immunogens is an effective method to locate sequential neutralizing epitopes.  相似文献   

10.
We report the immunogenicity of three dendrimeric peptide vaccine candidates for classical swine fever virus (CSFV). Each dendrimeric construct contained four copies of a B-cell epitope from the E2 glycoprotein of CSFV [construct 1: E2 (694-712); 2: E2 (712-727); 3: E2 (829-842)] joined to a T-cell epitope from the NS3 protein (residues 1446-1460). Intramuscular immunization of domestic pigs with the different constructs significantly reduced the clinical score after lethal challenge with CSFV. In contrast, control pigs developed severe clinical signs of the disease. All pigs vaccinated with construct 1, containing a B-cell epitope from the E2 B-C domain, developed an antibody response that recognized not only the original dendrimeric immunogen but also its constituting E2 epitope in linear form, albeit no neutralizing antibodies were detected prior to viral challenge. Two of these pigs were partially protected, which associated with the induction of IFN-γ producing cells and of neutralizing antibodies upon challenge. Interestingly, the serological response elicited by construct 1 lacked antibodies to E2 A domain, used as infection markers. The dendrimeric approach could therefore provide a basis for the development of CSFV marker (DIVA) vaccines, and contribute to a better understanding of the immune responses against CSFV.  相似文献   

11.
Three chimeric classical swine fever virus (CSFV)/bovine viral diarrhoea virus (BVDV) full-length DNA copies were constructed, based on the infectious DNA copy of the CSFV vaccine strain C. The antigenic region of E2 and/or the complete E(RNS) gene were replaced by the analogous sequence of BVDV II strain 5250. Viable chimeric virus Flc11, in which E(RNS) was replaced, was directly recovered from supernatant of SK6.T7 cells transfected with full-length DNA. Viable chimeric virus Flc9, in which E2 was replaced, resulted in recovery of virus only when SK6.T7 transfected cells were maintained for several passages. However, no virus could be recovered after replacement of both E(RNS) and E2, even after 10 cell passages. Both Flc9 and Flc11 grow in swine kidney cells (SK6), stably maintain their heterologous BVDV sequences and, as assessed by monoclonal antibody typing and radio-immunoprecipitation assays, express their heterologous proteins. Flc9 showed a slower growth rate on SK6 cells than Flc11 and wild-type Flc2 virus. Replacement of E(RNS) or E2 of C-strain-based chimeric viruses did not alter cell tropism compared to wild-type C-strain virus for SK6 and FBE cells. Both Flc9 and Flc11 induced E2 or E(RNS) antibodies, which could be discriminated from those induced after wild-type virus infection, even after repeated vaccination. Furthermore, pigs were completely protected against a lethal CSFV challenge. These results indicate the feasibility of introduction of marker antigens in a live-attenuated marker C-strain vaccine for CSFV.  相似文献   

12.
Liu S  Yu X  Wang C  Wu J  Kong X  Tu C 《Vaccine》2006,24(49-50):7175-7180
Research on epitope-based vaccines is a current focus in the development of new vaccines against classical swine fever virus (CSFV). The present study aimed to engineer a quadruple antigenic epitope peptide of the CSFV immunogen E2 glycoprotein by splice overlap extension (SOE) PCR, expressed in E. coli fused with glutathione S-transferase (GST), and named rGST-4E. Enzyme-linked immunosorbent assay (ELISA) and Western blot analysis showed that purified rGST-4E had an excellent immunoreactivity with swine anti-CSFV serum and rabbit anti-E2 serum. Animal vaccination trials showed that the rGST-4E was more immunogenic than mono-epitope peptide and was able to produce effective immune protection in rabbits against challenge with hog cholera lapinized virus, and in pigs against challenge with virulent CSFV. These data show that the recombinant repeated epitope peptide could be considered a potential epitope-based vaccine for prevention of the disease.  相似文献   

13.
《Vaccine》2022,40(50):7219-7229
Classical swine fever virus (CSFV) is the etiological agent of classical swine fever, a highly contagious disease that causes significant economic losses to the swine industry. Systemic prophylactic immunization with the live attenuated vaccine, the C-strain vaccine, is one of the effective measures for CSF control. However, one of the limitations of the C-strain vaccine is that the field strains-infected animals cannot be differentiated from the C-strain vaccinated herds by serological tests (DIVA). This constraint hampers the practical usage of the C-strain vaccine to eradicate the CSF in China. In the current study, a novel CSF modified live marker vaccine candidate was constructed based on the attenuation of the prevalent 2.1 genotype strain by the deletion of two virulence associated functional residues in the CSFV Erns, H79, and C171. Meanwhile, four residues S14, G22, E24, and E25 were identified specifically for the 6B8 mAb binding to the CSFV E2 as the novel conformational epitope. Then four substitutions of S14K, G22A, E24R, and G25D were further incorporated in the double deletion construct as a negative serological marker. Finally, the double-deletion marker MLV candidate GD18-ddErnHC-KARD was rescued, and its safety and efficacy profiles were evaluated in piglets. The safety study results indicated that the candidate did not induce fever, clinical signs, or pathological lesions with a high dose of 105.0 TCID50, and in addition, no virus shedding was detected until 21 days post-inoculation. Meanwhile, the efficacy study results demonstrated that at a low dose of 103.0 TCID50, it conferred complete clinical protection and no virus shedding was detected after the challenge with a highly virulent Shimen strain. Importantly, the infected animals were differentiated using the accompanied DIVA ELISA. These results constitute a proof-of-concept for rationally designing a CSF antigenically marked modified live vaccine candidate.  相似文献   

14.
Koenig P  Lange E  Reimann I  Beer M 《Vaccine》2007,25(17):3391-3399
Wild boar are an important reservoir of Classical swine fever virus (CSFV) in several European countries, where most of the primary outbreaks in domestic pigs are directly related to the endemic disease situation in the wild boar population. Oral immunisation has been introduced as an additional control measure to accelerate CSF eradication in wild boar in Germany since 1993. Immunisation with an oral bait vaccine based on the conventionally attenuated live vaccine strain "C" proved to be safe and effective, but does not allow differentiation between infected and vaccinated animals. Therefore, we examined the vaccine efficacy of the recently constructed chimeric pestivirus CP7_E2alf, whose coding sequences for the major envelope protein E2 of BVDV strain CP7 are replaced by E2 of the CSFV strain Alfort187 [Reimann I, Depner K, Trapp S, Beer M. An avirulent chimeric pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 2004;322(1):143-57]. Following oral immunisation of wild boar, CP7_E2alf proved to be completely avirulent. Furthermore, all vaccinees were fully protected from clinical disease after a highly virulent CSFV challenge infection. The immunised animals seroconverted within 3 weeks after vaccination for CSFV E2-specific and CSFV neutralising antibodies, whereas prior to challenge infection no antibodies against CSFV E(rns) were detected with an appropriate CSFV-specific marker ELISA test. Thus, the BVDV backbone of CP7_E2alf enables serological and genetic differentiation from wild type CSFV infection. In conclusion, CP7_E2alf represents the first efficient and safe marker vaccine candidate for oral immunisation of wild boar against CSFV.  相似文献   

15.
Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious and devastating disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. Several CSFV genotypes, including 1.1, 2.1, 2.2, and 2.3, have been identified in Mainland China. The glycoprotein E2 of genotypes 1.1 and 2.1 was expressed by using a baculovirus system and tested for its protective immunity in rabbits to develop novel CSF vaccines that elicit a broad immune response. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with E2 of genotypes 1.1 (CSFV-1.1E2), 2.1 (CSFV-2.1E2), or their combination (CSFV-1.1 + 2.1E2). A commercial CSF vaccine (C-strain) and phosphate-buffered saline (PBS) were used as positive or negative controls, respectively. All animals were challenged with CSFV C-strain at 4 weeks and then boosted with the same dose. All rabbits inoculated with CSFV-1.1E2, CSFV-2.1E2, and CSFV-1.1 + 2.1E2 elicited high levels of ELISA antibody, neutralizing antibody, and lymphocyte proliferative responses to CSFV. The rabbits inoculated with CSFV-1.1E2 and CSFV-1.1 + 2.1E2 received complete protection against CSFV C-strain. Two of the four rabbits vaccinated with CSFV-2.1E2 were completely protected. These results demonstrate that CSFV-1.1E2 and CSFV-1.1 + 2.1E2 not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits. Therefore, CSFV-1.1E2 and CSFV-1.1 + 2.1E2 are promising candidate subunit vaccines against CSF.  相似文献   

16.
DNA-mediated protection against classical swine fever virus   总被引:37,自引:0,他引:37  
Yu X  Tu C  Li H  Hu R  Chen C  Li Z  Zhang M  Yin Z 《Vaccine》2001,19(11-12):1520-1525
Four eukaryotic expression plasmids containing the entire E2 gene sequence of classical swine fever virus (CSFV) were constructed: (a) pcDST, with 5' signal and 3' transmembrane sequences; (b) pcDSW, with 5' signal sequence only; (c) pcDWT, with transmembrane sequences only; and (d) pcDWW, containing the E2 gene alone. All four plasmids were readily transfected into BHK-21 cells, with pcDST and pcDSW resulting in secretion of E2 antigen. The latter two plasmids were also shown to induce a humoral immune response against CSFV in mice when administered intramuscularly, but no immune responses were detected with either pcDWT or pcDWW. The antibody level elicited by pcDSW was higher than that induced by pcDST. When pcDSW was used to immunize rabbits and pigs, both species were shown to be protected from challenge with virulent CSFV (hog cholera lapinized virus for rabbits and Shimen strain for pigs).  相似文献   

17.
Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines.  相似文献   

18.
Lin GJ  Deng MC  Chen ZW  Liu TY  Wu CW  Cheng CY  Chien MS  Huang C 《Vaccine》2012,30(13):2336-2341
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) is a highly contagious swine disease resulting in large economical losses worldwide. The viral envelope glycoprotein E(rns) and E2 are major targets for eliciting antibodies against CSFV in infected animals. A Pichia pastoris yeast expressed E2 protein (yE2) has been shown to induce a protective immune response against CSFV challenge. The purpose of this study is to determine the optimal dose of yE2 and its efficacy on the prevention of virus horizontal transmission. A yeast-expressed E(rns) (yE(rns)) protein was also included to evaluate its immunogenicity. The yE(rns) vaccinated pigs seroconverted to CSFV-E(rns)-specific antibody but no neutralizing antibody was detected and none survived after challenge infection, suggesting yE(rns) and yE2 retain correct immunogenicity but only the yE2 is able to induce a protective immune response. All three doses of yE2 (200, 300, and 400μg) could elicit high titers of neutralizing antibodies and protective responses after challenge. The yE2/200 group demonstrated a mild fever response but recovered soon, and none of the yE2/300 and yE2/400 pigs became febrile. The optimal dose of yE2 was recommended to be 300μg of the total amount of secreted proteins. In addition, the yE2 vaccine could cross-protect from all three genotypes of viruses. Further, the yE2 vaccine efficacy in preventing virus horizontal transmission was evaluated by cohabitation of unimmunized sentinels 3 days after challenge infection. All the sentinel pigs were alive and had no clinical symptoms confirming yE2 vaccine could confer a protective immune response and prevent horizontal transmission of CSFV.  相似文献   

19.
Immunization of domestic pigs with a DNA vaccine expressing the complete E2 protein of classical swine fever virus (CSFV) conferred total protection against a severe viral challenge. Immunization with three doses of plasmid pcDNA3.1/E2 elicited a consistent and specific, MHC class II restricted T cell response in the three domestic pigs analyzed, in the absence of detectable anti-CSFV antibodies in serum. Upon challenge specific T cell responses were boosted in the three vaccinated pigs, and a rapid rise in the titers of CSFV neutralizing antibodies was noticed in two of them, which correlated with a total protection. In these two pigs, neither disease symptoms were observed nor was virus detected at any time after CSFV infection. Neutralizing antibody titers were lower in the third vaccine, which developed a mild and transient peak of pyrexia. As expected, similar analyses in three control pigs (injected with the empty vector or PBS) did not reveal the induction of specific T cells or viral antibodies and, upon challenge, animals developed severe symptoms of the disease, including high titers of viremia, hyperthermia and virus spread to different organs. Control pigs developed, also, a marked leucopenia, resulting in SWC3+ (myelomonocytic cells) being the major PBMC population, and a drastic decrease CD3+ T cells. This T cell depletion was prevented in animals immunized with pcDNA3.1/E2. The total protection achieved, in the absence of CSFV antibodies before challenge, supports the relevance in the antiviral response observed of specific T cell responses primed by pcDNA3.1/E2 vaccine, which, upon challenge, led to a rapid induction of neutralizing antibodies. The observation that CSFV antibodies could only be detected in protected animals after viral challenge opens the possibility of exploring the potential of the DNA vaccine approach used to develop marker vaccines against CSF.  相似文献   

20.
《Vaccine》2018,36(48):7353-7360
The glycoprotein E2 of classical swine fever virus (CSFV) is a major immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, E2 is a suitable target antigen for the development of genetically engineered CSFV vaccines. However, these vaccines cannot generate complete protective immunity in their hosts, thereby limiting the scope of applications under field conditions. IFN-γ is an immune adjuvant that has been shown to enhance antigen immune response in various experimental models. In this study, porcine IFN-γ was used to improve the immunogenicity of the CSFV E2 subunit vaccine in pigs. Pigs were immunized with E2 subunit vaccine alone or in combination with IFN-γ. Results demonstrated that porcine IFN-γ did not enhance the CSFV-specific antibody and neutralizing antibody titers compared with the E2 subunit vaccine alone. However, co-administration of the E2 and IFN-γ subunit vaccines significantly enhanced the CSFV-specific IFN-γ expression. These findings indicated that porcine IFN-γ can increase cellular immune responses to E2 protein in pigs. Furthermore, co-immunization with E2 + IFN-γ subunit vaccine and C-strain conferred complete protection against CSFV. In contrast, E2 subunit vaccines provided incomplete protection in pigs. These results indicated that using IFN-γ as an adjuvant with CSFV E2 subunit vaccines can enhance the specific protective immune response. Therefore, E2 + IFN-γ subunit vaccine is a promising marker vaccine candidate for the control and eradication of CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号