首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Rationale. Atypical antipsychotics such as clozapine and olanzapine have a low liability for producing motor side effects. In addition to being D2 antagonists, these drugs have a complex binding profile that includes affinity for muscarinic, alpha, H1, and various serotonin receptors. Previous work in rats has shown that atypical antipsychotics suppress tremulous jaw movements induced by the anticholinesterase tacrine in rats. Cholinomimetic-induced jaw movements are a putative model of parkinsonian tremor, and the ability of antipsychotic drugs to suppress these movements in rats is correlated with motor side-effect liability in humans. Objective. The present work was undertaken to study the role of central serotonin receptors in the generation of cholinomimetic-induced jaw movements. Results. Systemic injections of the serotonin antagonist mianserin suppressed tacrine-induced jaw movements, with an ED50 of 2.77 mg/kg. Local injections of mianserin directly into substantia nigra pars reticulata (SNr) also suppressed tacrine-induced jaw movements. Injections into ventrolateral neostriatum, or a control site dorsal to SNr, failed to have any effects on jaw movement activity. Conclusions. These studies suggest that atypical antipsychotics may act both on striatal muscarinic receptors and nigral serotonin receptors to suppress jaw movement activity. It is possible that the unique motor properties of atypical antipsychotics result from actions on multiple receptors in several brain areas. The precise serotonin receptor subtype involved in these effects is unknown, and future work will examine the effects of drugs that act selectively on 5-HT2A and 5-HT2C receptors. Electronic Publication  相似文献   

2.
Rationale. A growing literature indicates that increased dopamine transmission in the nucleus accumbens contributes to priming-induced reinstatement of cocaine-seeking behavior. Objectives. The present experiments were designed to assess the role of D1-like dopamine receptors in the nucleus accumbens core and shell subregions in cocaine priming-induced reinstatement of drug seeking. Methods. Rats were trained to lever press for cocaine using a fixed ratio (FR) 5 schedule of reinforcement. Drug-seeking was measured by active lever presses during daily 2-h sessions. After approximately 30 days of cocaine self-administration, the animals underwent an extinction phase during which cocaine was replaced with saline. Daily extinction sessions were conducted until responding was consistently less than 10% of the response rate maintained by cocaine self-administration. After the extinction phase, priming-induced reinstatement of cocaine-seeking behavior was assessed. Results. Cocaine dose-dependently reinstated cocaine seeking, with robust drug seeking at 10 mg/kg cocaine. Administration of the D1-like dopamine receptor antagonist, SCH-23390 (0.1–1.0 μg), directly into the medial nucleus accumbens shell dose-dependently attenuated drug seeking induced by 10 mg/kg cocaine. Microinjection of 1.0 μg SCH-23390 into either the nucleus accumbens core or lateral septum had no influence on cocaine-seeking behavior. Conclusions. These results indicate that stimulation of D1-like dopamine receptors in the medial nucleus accumbens shell contributes to drug-induced reinstatement of cocaine-seeking behavior.  相似文献   

3.
Excitatory glutamatergic inputs to the subthalamic nucleus (STN), and subthalamic afferents to the substantia nigra pars reticulata (SNr) are believed to play a key role in the pathophysiology of Parkinson's disease (PD). Previously, we have shown that activation of the group I mGlus in the STN and SNr induces a direct depolarization of the neurons in these nuclei. Surprisingly, although both group I mGlus were present in the STN and SNr, mGlu5 alone mediated the DHPG-induced depolarization of the STN, and mGlu1 alone mediated the DHPG-induced depolarization of the SNr. We now report that both mGlu1 and mGlu5 are coexpressed in the same cells in both of these brain regions, and that both receptors play a role in mediating the DHPG-induced increase in intracellular calcium. Furthermore, we demonstrate that the induction of an acute PD-like state using a 16 h haloperidol treatment produces an alteration in the coupling of the group I receptors, such that post-haloperidol, DHPG-induced depolarizations are mediated by both mGlu1 and mGlu5 in the STN and SNr. Therefore, the pharmacology of the group I mGlu-mediated depolarization depends on the state of the system, and alterations in receptor coupling may be evident in pathological states such as PD.  相似文献   

4.
Rationale  Repeated exposure to cocaine progressively increases drug-induced locomotor activity, which is termed behavioral sensitization. Enhanced excitatory output from the medial prefrontal cortex (mPFC), which can be modulated by group II metabotropic glutamate receptors (mGluR), is thought to play a key role in the development of sensitization to cocaine. Objectives  The present studies were designed to determine whether the ability of intra-mPFC injections of the group II mGluR agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC) to inhibit cocaine-induced motor activity and dopamine release in the nucleus accumbens is reduced in sensitized animals. Results  Initial studies demonstrated that injection of APDC (0.015–15 nmol/side) into the mPFC dose dependently reduced cocaine-induced (15 mg/kg, i.p.) motor activity. The lowest dose in the present studies that significantly reduced the acute motor-stimulant response to cocaine was 1.5 nmol/side. The specificity of the effects of APDC was confirmed by demonstrating that intra-mPFC co-injection of LY341495 (1.5 nmol/side), a group II mGluR antagonist, prevented the inhibitory actions of APDC. Finally, it was shown that intra-mPFC injection of APDC was able to prevent the initiation of behavioral and neurochemical sensitization to cocaine. Intra-mPFC APDC was also observed to block the expression of cocaine-induced sensitization after short (1 day), but not prolonged (7 and 30 days), abstinence from cocaine. Conclusions  Taken together, these data suggest that mPFC group II mGluR function is reduced following extended abstinence from repeated cocaine.  相似文献   

5.
This study examined the effect of repeated treatment with the antidepressant drugs, fluoxetine, desipramine and tranylcypromine, on dopamine receptor expression (mRNA and binding site density) in sub-regions of the nucleus accumbens and striatum of the rat. The effect of these treatments on extracellular levels of dopamine in the nucleus accumbens was also measured. Experiments using in situ hybridisation showed that the antidepressants caused a region-specific increase in D2 mRNA, this effect being most prominent in the nucleus accumbens shell. In contrast, none of the treatments increased D1 mRNA in any of the regions examined. Measurement of D2-like binding by receptor autoradiography, using the ligand [3H]YM-09151-2, revealed that both fluoxetine and desipramine increased D2-like binding in the nucleus accumbens shell; fluoxetine had a similar effect in the nucleus accumbens core. Tranylcypromine, however, had no effect on D2-like binding in the nucleus accumbens but decreased binding in the striatum. In microdialysis experiments, our data showed that levels of extracellular dopamine in the nucleus accumbens were not altered in rats treated with either fluoxetine or desipramine, but increased by tranylcypromine. From our findings, we propose that the antidepressant drugs tested enhance dopamine function in the nucleus accumbens through either increased expression of postsynaptic D2 receptors (fluoxetine and desipramine) or increased dopamine release (tranylcypromine). Received: 5 January 1998/Final version: 6 April 1998  相似文献   

6.
RATIONALE: The benzazepine and "selective" dopamine D1 receptor antagonist, SCH23390 [(R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol], shows significant affinity at native serotonin (5-HT)2C receptors. OBJECTIVES: We examined its functional actions at cloned human (h)5-HT2C receptors (VSV isoform) stably expressed in CHO cells. METHODS: Since 5-HT2C receptors are positively coupled to phospholipase C (PLC), their activation was determined by depletion of membrane-bound pools of pre-labelled [3H]phosphotidylinositol ([3H]PI). RESULTS: SCH23390 showed high affinity (Ki, 9.3 nM) at h5-HT2C sites and depleted [3H]PI with an EC50 of 2.6 nM. Its efficacy was equivalent to that of 5-HT. [3H]PI depletion elicited by SCH23390 was concentration-dependently abolished by the selective 5-HT2C antagonist, SB242,084, with a K(B) of 0.55 nM. Further, in the presence of a fixed concentration of SB242,084 (10 nM), the concentration-response curve for SCH23390 was shifted to the right without loss of maximal effect, yielding a K(B) of 0.57 nM. CONCLUSIONS: SCH23390 is a potent and high efficacy agonist at h5-HT2C receptors. Activation of 5-HT2C receptors by SCH23390 may contribute to its functional properties both in animals and in humans.  相似文献   

7.
It has been proposed that striatonigral GABAergic transmission in the substantia nigra reticulata (SNr) is enhanced during Parkinson's disease and subsequent l-DOPA treatment. To evaluate this proposal we determined the effects of activating dopamine D1 receptors on depolarization induced [(3)H]-GABA release and on [(3)H]-cAMP accumulation in slices of SNr of rats with unilateral 6-OHDA lesions with and without l-DOPA treatment. Denervation increased depolarization induced D1-stimulated [(3)H]-GABA release, while repeated l-DOPA treatment further enhanced this response. Both also enhanced the effects of forskolin on [(3)H]-cAMP production and [(3)H]-GABA release, while neither modified the stimulating effects of 8-Br-cAMP on the release. These results shown that, after 6-OHDA lesions and l-DOPA treatment, cAMP signaling is enhanced. Furthermore, the results suggest that activation of sites in the signaling cascade downstream of cAMP synthesis is not required to increase release.  相似文献   

8.
The present study examined the effects of acute and repeated administration of electroconvulsive shock (ECS) on levels of D1 and D2 receptor mRNAs in the nucleus accumbens and striatum (caudate-putamen) of the rat. Quantitative in situ hybridisation with35S-labelled oligonucleotide probes specific for D1 and D2 receptor mRNAs was utilised. Compared to controls, rats receiving a single ECS showed higher levels of both D1 and D2 receptor mRNAs in the nucleus accumbens 4 h, but not 24 h, after treatment. Similarly, rats receiving ECS repeatedly (five ECS in 10 days) also exhibited higher levels of D1 and D2 receptor mRNAs in the nucleus accumbens 4 h, but not 24 h, after the last treatment. The effects of single and repeated ECS treatment on dopamine receptor mRNA levels were localised to the caudal region of the nucleus accumbens. No statistically significant changes in mRNA levels were detected in the striatum of rats treated with either acute or repeated ECS. We discuss the possibility that increased expression of D1 and D2 receptors in the nucleus accumbens may be involved in the dopamine-enhancing properties of ECS detected in behavioural studies.  相似文献   

9.
SKF 83959 that has a unique antiparkinson profile in animal models of Parkinson's disease is an in vitro dopamine D1 antagonist of receptors coupled to adenylyl cyclase. We hypothesized that SKF 83959, among others, interacts with dopamine D1 receptors coupled to adenylyl cyclase in the nucleus accumbens and the prefrontal cortex. Effects of intra-accumbal injections of SKF 83959 on locomotor activity were compared to effects of the dopamine D1 agonist SKF 81297 and the dopamine D1 antagonist SCH 39166. Similarly to SCH 39166, SKF 83959 did not affect locomotor activity, but counteracted SKF 81297-induced locomotor activity. Effects of unilateral intra-prefrontal injections of SKF 83959 on rotational behaviour were compared to the effects of the dopamine D1 agonist SKF 81297 and the dopamine D1 antagonists SCH 23390 and SCH 39166 in rats selected on basis of their high locomotor response to novelty and pretreated with a subcutaneous injection of 0.75 mg/kg dexamphetamine. Like SCH 39166 and SCH 23390, SKF 83959 induced a bias for contralateral rotating and blocked the SKF 81297-induced bias for ipsilateral rotating. In conclusion, SKF 83959 is an in vivo antagonist of dopamine D1 receptors that are coupled to adenylyl cyclase in the nucleus accumbens and the prefrontal cortex. The role of these receptors in the antiparkinson profile of SKF 83959 is discussed.  相似文献   

10.
The involvement of dopamine D1 receptor systems in the reinforcing properties of opiate reward was studied by examining the effect of the dopamine D1 antagonist SCH23390 on the initiation of heroin self-administration in rats. The D1 antagonist was administered daily systemically or locally in the nucleus accumbens (NAC), after which the animals were allowed to self-administer heroin (IV) in a 3-h session for 5 consecutive days. Systemic treatment with SCH23390 (0.17 and 0.5 mg.kg–1) significantly decreased heroin intake during initiation of heroin self-administration, while a dose of 0.06 mg.kg–1 was not effective. Local administration of SCH23390 (0.5 and 2.5 µg/site) in the NAC did not affect heroin intake. Both systemic and intra-accumbal administration of SCH23390 dose dependently decreased motor behavior measured in a small open field. The attenuation of heroin intake during initiation of heroin self-administration by blockade of dopamine D1 receptor systems may be due to a decrease in the reinforcing effects of heroin or more likely to a reduction in non-reinforcement-related behavior. The dopamine D1 receptors present in the NAC are probably not involved in opiate reward.  相似文献   

11.
To investigate the role of D1 dopamine receptors in the discriminative stimulus effects of cocaine, two rhesus monkeys were trained in a two-lever, food-reinforced, drug discrimination paradigm to discriminate cocaine (0.2 mg/kg, IM) from saline. Administration of various doses of cocaine resulted in a dose-related increase in the percentage of responses that occurred on the drug-appropriate lever. Administration of the D1 antagonist SCH 23390 20 min before cocaine reduced drug-appropriate responding from 100% to 0% in all subjects and increased by 4–8-fold the cocaine dose necessary to induce drug-appropriate responding. A mutual antagonism of the rate-decreasing effects of cocaine and SCH 23390 was also observed. These findings suggest that D1 receptors play a significant role in the discriminative stimulus and rate-decreasing effects of cocaine.  相似文献   

12.
SCH 23390 is a novel benzazepine that selectively blocks dopamine receptors of the D1 subtype. Glucuronidation of this selective D1 antagonist was studied in vitro using rat liver microsomes. Methods to separate SCH 23390 glucuronide from SCH 23390 were developed which utilized either HPLC techniques or solvent extraction of SCH 23390 with 3-heptanone. Formation of a SCH 23390 glucuronide was confirmed upon incubation of SCH 23390 and UDPGA with naive rat liver microsomes. Liver enzyme activity for SCH 23390 glucuronidation was also enhanced after addition of the detergents, Lubrol or Triton X-100, to the naive liver microsomes. Kinetic analyses indicated an apparent Vmax and Km for UDPGA as 120.9 pmol/mg protein/min and 0.63 mM, and an apparent Vmax and Km for SCH 23390 as 282.4 pmol/mg protein/min and 0.41 microM. Further characterization of the liver enzyme responsible for the glucuronidation of SCH 23390 revealed a stereoselective substrate preference similar to that seen with the D1 dopamine receptor. Substrate inhibition studies indicated that SCH 23390, haloperidol, apomorphine, and alpha-naphthol demonstrated the highest affinity for the glucuronosyltransferase enzyme. However, (-)-sulpiride, raclopride, and endogenous substrates such as dopamine, serotonin, epinephrine, and norepinephrine demonstrated low affinity for the liver enzyme. These studies describe a rat liver glucuronosyltransferase with a unique substrate specificity toward selected dopaminergic agents. Finally, induction profiles revealed that neither phenobarbital (100 mg/kg, ip, for 3 days), beta-naphthoflavone (100 mg/kg, ip, for 4 days), nor 3-methylcholanthrene (80 mg/kg, ip, for 4 days) enhanced liver glucuronosyltransferase activity for SCH 23390 glucuronidation.  相似文献   

13.
The present study examined the effects of the novel nicotinic acetylcholine receptor (nAChR) antagonist, N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), after acute and repeated nicotine treatment on extracellular dopamine (DA) levels in rat nucleus accumbens (NAcc), using in vivo microdialysis. Acute nicotine (0.4mg/kg, sc) injection produced an increase (232% of basal) in extracellular DA, which was attenuated by pretreatment with the nAChR antagonist mecamylamine (4mg/kg, sc). Pretreatment with bPiDDB (1 or 3mg/kg, sc) dose-dependently reduced the increase in extracellular DA produced by nicotine (0.4mg/kg, sc), but not by amphetamine (0.5mg/kg, sc). Basal levels of NAcc DA increased in animals that had been pretreated with nicotine (0.4mg/kg, sc) for 5 days compared to saline. In addition, nicotine challenge further increased extracellular DA (237% of basal). The increase in DA in NAcc following repeated nicotine was blocked by pretreatment with mecamylamine (4mg/kg, sc) and bPiDDB (1 or 3mg/kg, sc). These results indicate that bPiDDB likely acts as an antagonist at neuronal nAChRs to inhibit DA release in NAcc after acute or repeated nicotine administration. The ability of bPiDDB to inhibit the effect of nicotine in NAcc, combined with previous studies showing decreased nicotine self-administration in rats provides support for bPiDDB as a potential lead compound for the development of a novel pharmacotherapy for nicotine dependence.  相似文献   

14.
The effects of manipulating dopamine D1 and D2 receptors on grooming was studied in the mouse. SKF 38393 (D1 agonist) and low doses of SCH 23390 (D1 antagonist) promoted grooming activity. SCH 23390 in neuroleptic doses, RU 24213 (D2 agonist), apomorphine and amphetamine (mixed D1/D2 agonists) and haloperidol (D2 antagonist) all suppressed the tendency of normal mice to groom, though probably by different mechanisms. Duration and frequency of grooming could be influenced differentially by these drugs. The findings suggest opposing roles for dopamine D1 and D2 receptors in the expression of grooming in the mouse.  相似文献   

15.
Rationale Although passive administration of heroin to drug-naive rats increases extracellular dopamine (DA) in the nucleus accumbens (NAc), its ability to do so also after active drug exposure (self-administration) is debated. Objectives This study investigated by repeated microdialysis sampling the inter- and intrasession changes in the responsiveness of the NAc shell and core DA and the behavioral effects of active and passive heroin exposure in the intravenous self-administration/yoked paradigm. Materials and methods Rats were implanted with jugular catheters and bilateral intracerebral chronic guide cannulae. Nose poking in the active hole by master rats resulted in heroin administration to the same subjects and to their yoked mates. Concentric microdialysis probes were inserted daily in the guide cannulae, and changes in dialysate DA in response to heroin exposure (0.05 mg/kg) were monitored in the same subject for 90 min for 4 weeks. Behavior associated with heroin exposure, distinguished into nonstereotyped and stereotyped, was also recorded. Results Dialysate DA increased preferentially in the shell of master rats from the first session (+112%) and throughout the 4 weeks of self-administration (+130–140%). In yoked rats, a preferential but lesser increase in DA in the shell was observed only on the first session (+60%), as the DA response in the NAc core increased progressively (+25–118%), so that within a week, the shell/core ratio was reversed, and this pattern was maintained for the following 2 weeks. Yoked rats showed a progressive and larger increase in stereotyped behaviors than master rats. Conclusions Chronic heroin self-administration increases extracellular DA preferentially in the NAc shell. Response-noncontingent heroin administration is particularly prone, compared to response-contingent administration, to induce behavioral and biochemical sensitization.  相似文献   

16.
Rationale Recent reports have demonstrated that gamma-aminobutyric acid (GABA)-ergic compounds attenuate the reinforcing effects of cocaine in rats. Baclofen, a GABAB receptor agonist, appears to be particularly effective in this respect, suggesting that GABAB receptor activation is critically involved in mediating anti-cocaine effects. Amphetamine, like cocaine, is a psychomotor stimulant with high abuse potential in humans.Objectives The purpose of the present investigation was to determine whether baclofen may attenuate the reinforcing effects of d-amphetamine (dAMPH) in rats. Dose–response curves were generated to examine the effect of three doses of baclofen (1.8, 3.2 or 5.6 mg/kg, IP) on dAMPH intravenous self-administration (IVSA). Separate groups were trained to self-administer two doses of dAMPH (0.1 mg/kg or 0.2 mg/kg per injection) under either a fixed-ratio (FR) or progressive ratio (PR) schedule of reinforcement. Microdialysis was performed in an additional group of rats to examine the effect of baclofen on dAMPH-induced increases in dopamine (DA) efflux in the nucleus accumbens (NAc).Results Pretreatment with baclofen produced dose-dependent reductions in responding for dAMPH under both the FR and PR schedules, and attenuated dAMPH-induced increases in DA levels in the NAc.Conclusion These results add to previous findings showing that baclofen attenuates the reinforcing effects of psychostimulant drugs, and suggest that further investigation into the effects of GABAB receptor agonists on drug self-administration is warranted.  相似文献   

17.
This study examined the role of the strychnine-insensitive glycine binding site of the NMDA receptor in prepulse inhibition (PPI) of the acoustic startle response (ASR) in rats. PPI is an operational measure of gating processes which normally lead to a diminished ASR when a startling stimulus is preceded by a weak prepulse. PPI is impaired in schizophrenics and, therefore, experimentally induced PPI deficits in rats can be regarded as a model for gating deficits in schizophrenia. Local administration of 7-chlorokynurenate (7-CLKYN), an antagonist of the strychnine-insensitive glycine site of the NMDA receptor, into the nucleus accumbens reduced PPI. This sensorimotor gating deficit was antagonized by systemic pretreatment of the rats with the glycine site agonist D-cycloserine, indicating that the effect of 7-CLKYN was due to a blockade of the NMDA receptor associated glycine binding site. A similar deficit in PPI was observed after intra-accumbal administration of the competitive NMDA receptor antagonist AP-5. PPI was normal after injecting these drugs into the anterodorsal striatum. The hypothesis that the PPI deficit is accompanied by a change in dopamine release was tested by a neurochemical analysis of the effects of local injection of 7-CLKYN. Microdialysis data showed no increase of accumbal and striatal dopamine release after blockade of the glycine site with 7-CLKYN. Our data demonstrate that the glycine/NMDA receptor in the nucleus accumbens plays a important role in sensorimotor information processing that depends not on a hyperactive dopamine system. Received: 24 May 1996/Final version: 26 September 1996  相似文献   

18.
The affinity of the dopamine-1 (D-1) selective antagonist SCH 23390 (SCH) towards the dopamine-2 (D-2) receptor population present in the anterior pituitary (AP) was assessed in vitro and in vivo. [3H]Spiperone binding was used as biochemical marker for D-2 receptors in the rat AP and prolactin (PRL) was determined as a measure of the functional response to AP-D-2 blockade. SCH displayed weak activity in inhibiting [3H]spiperone binding in both AP and striatal membranes. The affinity was similar to that exhibited by sulpiride (μ molar range) but lower than that of haloperidol (HAL) (nmolar range). However inhibition of [3H]spiperone by SCH in the AP occurred in a biphasic manner indicating the existence of two D-2 sites with different affinity for the compound. SCH produced a transient and dose-dependent increase in plasma PRL levels when given by the subcutaneous (s.c.) route. A significant rise of PRL levels was observed only 30 min after the administration of high doses of SCH by the intraperitoneal (i.p.) route. SCH counteracted the inhibiting effect of apomorphine on PRL release and potentiated the stimulation effect of low doses of sulpiride on PRL secretion. The low affinity of SCH towards AP-D-2 receptors could be responsible for the small and short-lived increase in PRL secretion. This effect occurred at doses higher than those active in tests predictive for antipsychotic activity, which may depend directly on interaction with D-1 receptors. This study therefore indicates the threshold dose of SCH effective in stimulating the D-2 receptor in vivo thus providing a valuable tool to separate the effects of D-1 or D-2 receptors.  相似文献   

19.
Male rats were adapted to a 22-hr water-deprivation schedule, and to a 15-min choice test, in which water was available in one drinking tube, and water, 0.064%, 0.16%, 0.4%, 1.0%, or 2.5% NaCl solution, respectively, was available in a second. A typical saline preference-aversion function was obtained. The selective dopamine D-1 agonist, SK&F 38393 (3.0 mg/kg, IP), significantly depressed choice of hypertonic saline solutions (1.0% and 2.5% NaCl solutions), without affecting preference for hypotonic saline solutions. In contrast, the selective dopamine D-1 antagonist, SCH 23390 (0.1 mg/kg, SC), significantly increased the preference measure in the case of hypertonic solutions. These data indicate a role for D-1 receptors in dopaminergic mediation of the descending limb of the saline preference-aversion function.  相似文献   

20.
The goal of this study was to determine whether dopamine D2 and/or D1 receptors in the shell and the core of the nucleus accumbens of rats have a differential role in turning behaviour. Unilateral injection of a mixture of the dopamine D2 receptor agonist quinpirole (10 µg) and the dopamine D1 receptor agonist 1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7, 8-diol (SKF 38393, 5 µg) into the shell of the nucleus accumbens produced contralateral turning, when doses which per se were ineffective were injected. This effect was far greater than that found after similar injections into the core of the nucleus accumbens. The effect elicited from the shell was significantly attenuated by prior administration of either the dopamine D2 receptor antagonistl-sulpiride (25 ng/0.5 µl) or the dopamine D1 receptor antagonist (8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol (SCH 23390, 0.5 µg/0.5 µl) into the same region. These data together with the fact thatl-sulpiride is known to be a valid tool to differentiate the involvement of distinct regions within the shell underlie the conclusion that dopamine D2 and D1 receptors in the shell, but not the core, of the nucleus accumbens play a critical role in the contralateral turning induced by unilateral injection of dopamine receptor agonists into this nucleus. The results are discussed in view of the known output pathways of the shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号