首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated hepatotoxicity induced by ticlopidine (TIC) in glutathione (GSH)-depleted rats by pre-treatment of a well-known GSH synthesis inhibitor, l-buthionine-S,R-sulfoxinine (BSO). Although sole administration of either TIC or BSO showed no signs of hepatotoxicity, combined administration of TIC with BSO induced hepatotoxicity, which was characterized by centrilobular necrosis of the hepatocytes and an elevation of plasma alanine aminotransferase activity. Administration of radio-labeled TIC in combination with BSO resulted in significantly higher covalent binding to rat liver proteins than that observed after sole dosing of radio-labeled TIC. Pre-treatment of 1-Aminobenzotriazole, a non-specific inhibitor of P450s, completely suppressed both hepatotoxicity and the increased hepatic covalent binding caused by TIC co-treatment with BSO. The results obtained in this animal model suggest that GSH depletion and covalent binding may be involved in hepatotoxicity induced by TIC. These observations may help to understand the risk factors and the mechanism of hepatotoxicity of TIC in humans.  相似文献   

2.
We have addressed in the current study the postulate whether or not carnitine deficiency would represent a risk factor in hepatotoxicity. Carnitine-deficient male Swiss albino rats were obtained following administration of d-carnitine (500 mg/kg, IP) for 10 consecutive days. Serum and liver carnitine levels, both total and free, were assessed to confirm carnitine depletion. Hepatotoxicity was induced by challenging animals with a single dose of paracetamol (1 g/kg, IP). Serum tumor necrosis factor (TNF-α) concentration, and serum activities of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) were undertaken as biomarkers for toxicity. Liver contents of reduced glutathione (GSH), malondialdehyde (MDA), total nitric oxide (NO) and myeloperoxidase (MPO) activities were also investigated. Histopathological examination of liver sections was achieved to confirm the biochemical alterations. d-carnitine altered all biochemical markers and also induced mild tissue inflammation with dilatation and congestion of central and portal veins. Paracetamol produced an obvious hepatotoxicity model that was well characterized biochemically and morphologically. Combined administration of d-carnitine and paracetamol synergistically provoked marked toxicity that was more profound than either agent given alone. The present work was further extended to elucidate any hepatoprotective effect of carnitine supplementation in such toxicity paradigm. It was apparent that l-carnitine notably ameliorated all biochemical markers and also mitigated the gross histologic alterations induced by paracetamol. Data obtained so far would suggest that carnitine deficiency could possibly be a sequela as well as a causative clue for paracetamol hepatotoxicity.  相似文献   

3.
Methimazole (MMI) (>0.1 mmol kg(-1), p.o.) given in combination with DL-buthionine sulphoximine (BSO) (3 mmol kg(-1), i.p., 1 h before MMI administration), an inhibitor of glutathione (GSH) synthesis, caused liver injury in mice. The injury was characterized by centrilobular necrosis of hepatocytes and an increase in serum alanine transaminase (ALT) activity. Methionazole (2 mmol kg(-1)) alone resulted in only a marginal increase in serum ALT activity, but produced no histopathological changes in the liver. Pretreatment with hepatic cytochrome P-450 monooxygenase inhibitors--cobalt chloride, isosafrole, methoxsalen, metyrapone and piperonyl butoxide-prevented or tended to suppress the hepatotoxicity induced by MMI in combination with BSO. Treatment with N,N-dimethylaniline and ethyl methyl sulphide, competitive substrates of flavin-containing monooxygenases (FMO), also resulted in remarkable suppression of the hepatotoxicity caused by MMI in combination with BSO. These results suggest that MMI is activated by reactions mediated by both cytochrome P-450 monooxygenases and FMO, and that the inadequate rates of detoxification of the resulting metabolite are responsible for the hepatotoxicity in GSH-depleted mice.  相似文献   

4.
The kidney binding of dichloro[14C]vinyl cysteine (14C-DCVC, 8 mg/kg body wt) and the kidney histopathology of DCVC (5 mg/kg body wt) were examined and compared in female C57BL mice subjected to various treatments. To evaluate the roles of organic anion transport and glutathione (GSH) status, mice were pretreated with probenecid (inhibitor of organic anion transport), l-buthionine-S,R-sulfoximine (BSO; inhibitor of GSH synthesis) or with diethyl maleate (DEM; GSH-depleting agent). In addition, the sites of 14C-DCVC binding in BSO-treated and control mice were monitored by microautoradiography. Probenecid was found to inhibit both kidney binding and toxicity of DCVC. In BSO-treated mice, DCVC binding remained roughly unchanged, whereas nephrotoxicity was severely increased and topographically extended to the subcapsular region. Microautoradiography showed that the site of DCVC binding in the straight portion of the proximal tubule was not changed by BSO. In DEM-treated mice, a clearly decreased DCVC binding was observed, while the effect on nephrotoxicity was minute. The effects of probenecid on DCVC binding and toxicity support a role for carriermediated transport of DCVC equivalents into the target cells. The BSO result suggests a protective function of GSH towards the nephrotoxicity of DCVC. Moreover, they support our previous contention that a primary lesion occurs at the site of DCVC binding, followed by a secondary, dose-dependent lesion localized outside the DCVC-binding region. In the case of DEM it is proposed that a DEM-GSH conjugate might compete for the uptake and/or activation of DCVC in the target cells.Part of this study was presented at the 10th European Drug Metabolism Workshop, Guildford, England, 6–11 July, 1986  相似文献   

5.
Gender is a factor that influences susceptibility of individuals to drug-induced liver injury in experimental animals and humans. In this study, we investigated the mechanisms underlying resistance of female mice to acetaminophen (APAP)-induced hepatotoxicity. Overnight-fasted male and female CD-1 mice were administered APAP intraperitoneally. A minor increase in serum alanine aminotransferase levels was observed in female mice after APAP administration at a dose that causes severe hepatotoxicity in males. Hepatic glutathione (GSH) depleted rapidly in the both genders prior to development of hepatotoxicity, whereas its recovery was more rapid in female than in male mice. This was consistent with higher induction of hepatic glutamate-cysteine ligase (GCL) in females. Pretreatment of mice with L-buthionine sulfoximine (BSO), an inhibitor of GCL, exaggerated APAP hepatotoxicity only in female mice, resulting in much higher hepatotoxicity in female than in male mice. In addition, hepatic GSH was markedly depleted in BSO-pretreated female mice compared with male mice, which supports severe hepatotoxicity in BSO-pretreated females. APAP treatment highly induced multidrug resistance-associated protein 4 (Mrp4) only in female mice. The resulting high Mrp4 expression could thus contribute to decreased hepatic GSH levels via sinusoidal efflux when GCL is inhibited. In conclusion, resistance to APAP hepatotoxicity in female mice and its reversal by pretreatment with BSO could be attributed to sex differences in disposition of hepatic GSH, which may generally determine susceptibility to drug-induced liver injury.  相似文献   

6.
The effects of modulators of cytochrome P450 and reduced glutathione (GSH) on the hepatotoxicity of enalapril maleate (EN) were investigated in Fischer 344 rats. Twenty-four hours following the administration of EN (1.5 to 1.8 g/kg), increased serum transaminases (ALT and AST) and hepatic necrosis were observed. Pretreatment of the animals with pregnenolone-16 alpha-carbonitrile, a selective inducer of the cytochrome P450IIIA gene subfamily, enhanced EN-induced hepatotoxicity, whereas pretreatment with the cytochrome P450 inhibitor, cobalt protoporphyrin, reduced the liver injury. Depletion of hepatic non-protein sulfhydryls (NPSHs), an indicator of GSH, by combined treatment with buthionine sulfoximine (BSO) and diethyl maleate (DEM) produced marked elevations in serum transaminases by 6 hr after EN treatment. Administered on its own, EN decreased hepatic NPSH content and when combined with the BSO/DEM pretreatment, the liver was nearly completely devoid of NPSHs. Protection from EN-induced hepatotoxicity was observed in animals administered L-2-oxothiazolidine-4-carboxylic acid, a cysteine precursor. Together, these observations suggest the involvement of cytochrome P450 in EN bioactivation and GSH in detoxification. The results corroborate previous in vitro observations pertaining to the mechanism of EN-induced cytotoxicity towards primary cultures of rat hepatocytes. Although the doses of EN used in this study were far in excess of therapeutic doses, under certain circumstances, this metabolism-mediated toxicologic mechanism could form the basis for idiosyncratic liver injury in patients receiving EN therapy.  相似文献   

7.
8.
Buthionine sulphoximine (BSO) is an inhibitor of gamma-glutamylcysteine synthetase (gamma-GCS) and, consequently lowers tissue glutathione (GSH) concentrations. In fed male C3H mice, liver and kidney GSH levels were depleted by BSO in a dose dependent manner with maximum effect (35% of initial levels) occurring with doses between 0.8 and 1.6 g/kg, i.p. At these doses maximum effects on gamma-GCS and GSH were observed 2-4 hr after BSO administration; initial gamma-GCS activity and GSH content were restored approximately 16 hr post BSO. BSO, either in vivo or in vitro, had no effect on hepatic microsomal cytochrome P-450 levels, a range of cytochrome P-450 dependent enzyme activities or p-nitrophenol glucuronyl transferase activity. Similarly, BSO had no effect on phenol sulphotransferase and two GSH-transferase activities in the 105,000 g supernatant fraction. BSO had no effect on the duration of hexobarbitone induced narcosis in mice. Consistent with specific inhibition of GSH synthesis, BSO pretreatment of mice decreased the proportion of a 50 mg/kg dose of paracetamol excreted in the urine as GSH-derived conjugates but did not affect paracetamol clearance through the glucuronidation or sulphation pathways. Since BSO does not affect cytochrome P-450 or conjugating enzyme activity, its use as a specific depletor of tissue GSH in the investigation of mechanisms of xenobiotic-induced toxicities is preferable to the standard GSH-depleting agents as these have other enzymic effects.  相似文献   

9.
L-buthionine (S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, was administered to mice via drinking water for 14 days in order to establish an animal model with continuously depleted levels of GSH. No toxicity was observed at 20 mM BSO, even though a significant decrease in liver weight was observed at 30 mM BSO. GSH levels in the liver, kidney, brain, lung, heart, spleen, pancreas, small intestine, large intestine, skeletal muscle, plasma and blood cells from mice given 20 mM of BSO were all less than those from the control mice continuously throughout a 24-hr period. The ratios of the GSH levels to that of the control were 46.4% and 16.7% in the liver and kidney, respectively, suggesting a decrease in GSH conjugation activity in vivo by GSH depletion. Liver cytochrome P450 content and UDP-glucuronosyltransferase activity to p-nitrophenol were not influenced by the BSO dosing. To confirm the adequacy of this GSH-depletion model, 0.125 or 0.25% of acetaminophen (APAP) was administered via diet to this model for 14 days. Nine out of the ten mice given both 20 mM BSO and 0.25% APAP died on Day 2, and remarkable necrosis was observed in the hepatocytes and renal tubular epithelium. Moreover, focal necrosis of hepatocytes with proliferation of fibroblasts was observed on Day 15 in some mice coadministered 20 mM BSO and 0.125% APAP. However, no toxicity was observed in mice given APAP alone. Based on these results, a mouse given 20 mM of BSO via drinking water for 14 days was concluded to be an animal model with continuously depleted levels of GSH in various organs without toxicity. This model shows high susceptibility to toxicity induced by chemicals which are metabolized to electrophilic and reactive metabolite(s), such as APAP.  相似文献   

10.
Andrographis paniculata (Family: Acanthaceae) and Swertia chirayita (Family: Gentianaceae) are two controversial medicinal plants used as Kiriyattu, having similar therapeutic action and are used as a hepatoprotective and hepatostimulative agent. A. paniculata grows in southern parts of India and S. chirayita in the Himalayan region. The present work concerns on the ability of the extracts of these plants to offer protection against acute hepatotoxicity induced by paracetamol (150 mg/kg) in Swiss albino mice. Oral administration of A. paniculata or S. chirayita extract (100–200 mg/kg) offered a significant dose dependent protection against paracetamol induced hepatotoxicity as assessed in terms of biochemical and histopathological parameters. The paracetamol induced elevated levels of serum marker enzymes such as serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT), alkaline phosphatase (ALP), and bilirubin in peripheral blood serum and distorted hepatic tissue architecture along with increased levels of lipid peroxides (LPO) and reduction of superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione peroxidase (GPx) in liver tissue. Administration of the plant extracts after paracetamol insult restored the levels of these parameters to control (untreated) levels. Thus the present study revealed that the extracts of A. paniculata or S. chirayita offered protection against hepatotoxicity induced by paracetamol.  相似文献   

11.
Cellular glutathione antioxidant system plays important roles in counteracting hepatotoxins-induced oxidative stress injury. The present study was designed to observe the differences of this system in newly weaned and young mice liver and its involvement in the susceptibility to isoline-induced liver injury. Our results showed that liver reduced glutathione (GSH) amounts were higher in newly weaned mice than young mice. Glutamate-cysteine ligase (GCL) activity was higher in newly weaned mice due to the higher expression of catalytic subunit of GCL (GCLC) protein and mRNA. However, the activities of glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) were higher in young mice liver, which might be due to the higher expression of GR, GPx-1, and GST-Pi proteins. Next, the results of AST analysis and histopathological evaluation showed that newly weaned mice demonstrated more severe liver injury induced by isoline. Furthermore, liver GSH amounts and the activities of GR, GPx, and GST were all lower in newly weaned mice than young mice after treated with isoline. Depletion of cellular GSH by d,l-buthionine-(S, R)-sulfoximine (BSO) aggravated isoline-induced cytotoxicity, while N-acetyl-l cysteine (NAC) ameliorated such cytotoxicity. Furthermore, the inhibitors of GR, GPx, and GST all aggravated isoline-induced cytotoxicity. In conclusion, our results demonstrated the differences of glutathione antioxidant system between newly weaned and young mice liver. Meanwhile, our results also revealed age-dependent liver injury induced by isoline for the first time, which might be due to the different responses of glutathione antioxidant system to isoline between newly weaned and young mice.  相似文献   

12.
Triptolide (TP) shows promising anti‐inflammatory and antitumor activity but with severe toxicity. TP is a natural reactive electrophile containing three epoxide groups, which are usually linked to hepatotoxicity via their ability to covalently bind to cellular macromolecules. In this study, metabolic pathways leading to detoxification of TP were evaluated in glutathione (GSH)‐depleted (treated with L‐buthionine‐S,R‐sulfoxinine, BSO) and aminobenzotriazole (ABT; a non‐specific inhibitor for P450s)‐treated mice. The toxicity of TP in mice was evaluated in terms of mortality and levels of serum alanine transaminase (ALT). In incubates with NADPH‐ and GSH‐supplemented liver microsomes, seven GSH conjugates derived from TP were detected. In mice, these hydrolytically unstable GSH conjugates underwent γ‐glutamyltranspeptidase/dipeptidases‐mediated hydrolysis leading to two major cysteinylglycine conjugates, which underwent further hydrolysis by dipeptidases to form two cysteine conjugates of TP. In ABT‐treated mice, the hydroxylated metabolites of TP were found at a lower level than normal mice, and their subsequent conjugated metabolites were not found. The level of cysteinylglycine and cysteine conjugates derived from NADPH‐independent metabolism increased in mice treated with both TP and BSO (or ABT), which could be the stress response to toxicity of TP. Compared with normal mice, mortality and ALT levels were significantly higher in TP‐treated mice, indicating the toxicity of TP. Pretreatment of ABT increased the toxicity caused by TP, whereas the mortality decreased in GSH‐depleted mice. Metabolism by cytochrome P450 enzymes to less reactive metabolites implied a high potential for detoxification of TP. The GSH conjugation pathway also contributed to TP's detoxification in mice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This study examined the effects and possible mechanisms of rifampin against acetaminophen-induced hepatotoxicity in mice. Rifampin significantly enhanced the biotransformation of acetaminophen, evidenced by the increase in p-aminophenol formation in rifampin-treated microsomes and the increase in plasma clearance rate of acetaminophen. Pretreatment with rifampin significantly decreased serum alanine transaminase (ALT) activities, aspartate transaminase (AST) activities and prevented severe liver necrosis following acetaminophen overdose. The contents and activities of microsomal drug-metabolizing enzyme were less affected in rifampin-pretreated mice in comparison to the animals treated with acetaminophen alone. Rifampin was capable of increasing glutathione (GSH) level and GSH reductase activity and reducing GSH depletion and the decrease in GSH reductase activity by acetaminophen in mice. In addition, it was found that the microsomal Ca2+-ATPase activity was not directly related to acetaminophen toxic species generated in the P450 enzyme system in vitro. These findings suggest that rifampin has species-specific effects on the liver against acetaminophen-induced hepatotoxicity in mice, which increase the level of GSH by promoting GSH regeneration.  相似文献   

14.
Behavioral evidence for tolerance and supersensitivity during and after chronic (30 day) administration of bromocriptine (BRC) or bromocriptine + L-dopa in mice was assessed by measuring wheel running (WR) behavior during and after chronic drug administration, and apomorphine- and methylphenidate-(MP-) induced stereotyped gnawing after termination of chronic injections. In both BRC and BRC +L-dopa groups, tolerance developed fairly quickly to the depressing effect of BRC on WR seen on day 1 of drug administration. Mice receiving BRC showed significant increases in WR by week 2 of chronic drug administration, which persisted for at least two days after the termination of chronic injections. During the first week after termination of chronic injections, low doses of both apomorphine and MP induced significantly more stereotyped gnawing in BRC and BRC + L-dopa mice than in the control mice or the mice treated with L-dopa alone. This behavioral evidence for dopaminergic supersensitivity after chronic BRC administration may have relevance for the clinical use of BRC in combination with L-dopa or other dopamine agonists.  相似文献   

15.
Tienilic acid is reported to be converted into electrophilic metabolites by cytochrome P450 (CYP) in vitro. In vivo, however, the metabolites have not been detected and their effect on liver function is unknown. We previously demonstrated that tienilic acid decreased the GSH level and upregulated genes responsive to oxidative/electrophilic stresses, such as heme oxygenase-1 (Ho-1), glutamate-cysteine ligase modifier subunit (Gclm) and NAD(P)H dehydrogenase quinone 1 (Nqo1), in rat liver, as well as inducing hepatotoxicity by co-treatment with the glutathione biosynthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO). In this study, for the first time, we identified a glutathione-tienilic acid adduct, a stable conjugate of putative electrophilic metabolites with glutathione (GSH), in the bile of rats given a single oral dose of tienilic acid (300mg/kg). Furthermore, a tienilic acid-induced decrease in the GSH level and upregulation of Ho-1, Gclm and Nqo1 were completely blocked by pretreatment with the CYP inhibitor 1-aminobenzotriazole (ABT, 66mg/kg, i.p.). The increase in the serum ALT level and hepatocyte necrosis resulting from the combined dosing of BSO and tienilic acid was prevented by ABT, despite a low hepatic GSH level. These findings suggest that the electrophilic metabolites of tienilic acid produced by CYP induce electrophilic/oxidative stresses in the rat liver and this contributes to the hepatotoxicity of tienilic acid under impaired GSH biosynthesis.  相似文献   

16.
Phenytoin, 5,5-diphenylhydantoin (DPH), is widely used as an anticonvulsant agent. Severe hepatic injury rarely occurs in patients who received DPH. The development of liver injury is thought to be caused by reactive metabolites; however, the metabolites suggested to contribute to hepatotoxicity have not yet been detected in vivo and their effect on developing the liver injury is largely unknown. We recently demonstrated that DPH treatment decreased hepatic glutathione (GSH) contents, and GSH-depleted condition exacerbated DPH-induced liver injury in mice. The aim of the present study was to identify the reactive metabolite and to investigate the role of P450-mediated metabolisms in DPH-induced liver injury. We identified a novel GSH-conjugated (GS)-DPH, a conjugate of putative electrophilic arene oxide intermediate with GSH, in the bile of mice with DPH-induced liver injury. In plasma, cysteine- or N-acetylcysteine-conjugated DPH was detected, and these thiol conjugates levels were correlated with the plasma alanine aminotransferase (ALT) levels. These changes were significantly reduced by pretreatment with P450 inhibitor. Furthermore, the increases of hepatic P450 activities were in parallel with elevation of plasma thiol conjugates levels. These findings suggest that the arene oxide intermediate, which can be converted to thiol conjugates, is involved in DPH-induced liver injury.  相似文献   

17.
1. The roles of cytochrome P450 monooxygenases (P450) and glutathione (GSH) in styrene hepatotoxicity were investigated in mice by pretreating with either phenobarbital (PB; P450 inducer), SKF 525A (P450 inhibitor), N -acetylcysteine (NAC; GSH precursor), or saline (vehicle control) prior toa6-h exposure toeither 500 ppm styrene on air. 2. Styrene caused hepatocellular degeneration or necrosis in all groups; these changes were more extensive and severe in mice pretreated with PB. Styrene significantly increased relative liver weights and serum ALT and SDH levels only in mice pretreated with PB. NAC did not prevent GSH depletion or hepatotoxicity. 3. In the fatof SKF 525A-pretreated mice a slight but statistically significant increase in styrene levels was observed, suggesting thatmetabolism was decreased; the SO styrene ratio in the fatofPB-pretreated mice showed a slight, but statistically significant, increase indicating a slight increase in styrene metabolism. Neither SKF 525A nor PB caused changes in microsomal enzyme activity in vitro. 4. These results suggest that styrene may be activated by a pathway not totally dependent upon P450 enzyme activity, or more likely that PB and SKF 525A are not specific for the P450 enzymes involved in activation and detoxification of styrene.  相似文献   

18.
Several previous reports have demonstrated that chronic administration of both directly and indirectly acting dopamine agonists produces a supersensitive behavioral response to challenge doses of dopamine agonists when compared to the responses induced by acute administration of these drugs. That is, a given dose of a dopamine agonist will produce a greater response after chronic dopamine agonist treatment than is observed upon acute administration of that dose. A similar behavioral phenomenon resulting from chronic administration of dopamine antagonists has been suggested to be due to an increase in the number of dopamine receptors present in relevant brain areas. The same hypothesis has been put forward for the hypersensitivity induced by chronic dopamine agonist administration. The present study was designed to investigate the effect of chronic administration of high doses of both direct and indirect dopamine agonists on the dopamine receptors labeled by 3H-spiroperidol. Groups of animals (CD-1 mice) were sacrificed 1, 3 and 5 days following the last chronic injection. Striatal tissue from these mice was incubated with 3H-spiroperidol and dopamine receptor binding evaluated. Affinity of the receptors for the ligand was unaltered by treatments. The receptors labeled by 3H-spiroperidol showed no significant differences in number following the chronic administration of high doses of apomorphine (30 mg/kg). The B max was significantly decreased at only one time period following chronic administration of dextroamphetamine (4 mg/kg); however, these was a dramatic 30% reduction in the B max in striatal tissue from those mice treated with N-n-propylnorapomorphine. These results suggest that the hypersensitive behavioral response in mice following chronic administration of direct and indirect acting dopamine agonists is not due to an increase in the number of dopamine receptors in the striatum which are labeled by 3H-spiroperidol.  相似文献   

19.
Butylated hydroxytoluene (2,6-di-tert-butyl-4-methylphenol, BHT) has been reported to be a lung toxicant. Mice treated with BHT (200-800 mg/kg, po) in combination with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BOS; 1 hr before and 2 hr after BHT, 4 mmol/kg per dose, ip) developed hepatotoxicity characterized by an increase in serum glutamic pyruvic transaminase (GPT) activity and centrilobular necrosis of hepatocytes. The hepatotoxic response was both time- and dose-dependent. BHT (up to 800 mg/kg) alone produced no evidence of liver injury. As judged by the observation of normal serum GPT, drug metabolism inhibitors such as SKF-525A, piperonyl butoxide, and carbon disulfide prevented the hepatotoxic effect of BHT given in combination with BSO. On the other hand, pretreatment with cedar wood oil resulted in increased hepatic injury in mice treated with both BHT and BSO. Pretreatment with phenobarbital also tended to increase hepatic injury as judged by changes in serum GPT. These results suggest that BHT is activated by a cytochrome-P-450-dependent metabolic reaction and that the hepatotoxic effect is caused by inadequate rates of detoxification of the reactive metabolite in mice depleted of hepatic GSH by BSO administration. The hepatotoxic potencies of BHT-related compounds also were examined in BSO-treated animals. For hepatotoxicity, the phenolic ring must have benzylic hydrogen atoms at the 4 position and an ortho-alkyl group(s) that moderately hinders the hydroxyl group. These structural requirements essentially are the same as those for the toxic potency in the lung (T. Mizutani, I. Ishida, K. Yamamoto, and K. Tajima (1982), 62, 273-281) and support the hypothesis that BHT-quinone methide plays a role in producing liver damage in mice with depressed hepatic GSH levels.  相似文献   

20.
Groups of male and female F-344 rats and B6C3F1 mice were exposed to 15000 ppm ethyl chloride (monochloroethane, ECL) or to air for 5 days (6 h/day). In this report, features of GSH-dependent ECL metabolism in the animals are described. A concurrent report describes the features of the cytochrome P450-dependent oxidative ECL metabolism (Fedtke et al. 1994). ECL conjugation to GSH in hepatic cytosolic fractions was catalyzed by GSHS-transferases. The specific activities were 0.16±0.03 and 0.17±0.01 nmol ECL conjugated/(min mg protein) in air treated male and female F-344 rats, respectively. These activities were not significantly altered by the ECL treatment. Compared with rats, the GSH-transferase activities towards ECL were generally higher in male and female B6C3F1 mice (0.71±0.19 and 1.01±0.19, respectively) and were slightly decreased by ECL treatment. The ECL conjugation to GSH resulted in a marked reduction of the GSH concentration in the lung and the uterus after 5 days of exposure. In contrast, liver and kidney GSH concentrations were affected only to a minor degree. FormedS-ethyl-glutathione was converted to the mercapturic acidS-ethyl-N-acetyl-L-cysteine (SENACys), which was detected in the urine of both species. In addition, the non-acetylated intermediateS-ethyl-L-cysteine (SECys) was excreted in mouse urine but not in rat urine. The cumulative amounts of SENACys and SECys excreted after 5 days were up to fivefold higher in mice than in rats and the excretion kinetics were species specific. The results are discussed with regard to a 2 year bioassay with F-344 rats and B6C3F1 mice exposed to 15000 ppm ECL (NTP 1989). In this bioassay, a species specific carcinogenic response in the mouse uterus was observed. It is proposed that the mechanism of tumor induction is a high dose phenomenon and more likely related to the GSH conjugation than to the oxidative metabolism or to possible genotoxic effects of ECL or its metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号