首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type XI collagen is predominantly found in cartilage. However, expression of the pro-alpha2(XI) collagen gene (COL11A2) has recently been detected in various non-cartilaginous tissues. We identified the differentiation stage at which COL11A2 was expressed in cultured fetal rat calvarial (FRC) cells and in rat femoral fracture calluses in order to investigate the involvement of COL11A2 during bone formation in vitro and in vivo. We also studied the alternative splicing of exons 6-8 in FRC cells and fracture calluses. In FRC cells, mineralized nodules stained with von Kossa stain were observed from day 9 after confluence. COL11A2 was highly expressed on days 0 and 5, but the expression levels were rapidly decreased on day 9 by Northern blot analysis. During rat femoral fracture repair, intramembranous ossification proceeded and newly formed woven bone was observed on the cortex on day 7 after fracture. In situ hybridization showed that COL11A2 signals were detected in osteoblastic cells in the newly formed woven bone. According to the maturation and remodeling of the woven bone into the trabecular bone, the distribution of the signal for COL11A2 mRNA was limited to the superficial osteoblastic cells of the newly formed trabecular bone. These results demonstrated that COL11A2 was expressed in relatively immature osteoblastic cells during bone formation in vitro and in vivo. RT-PCR showed that the shortest band corresponding to mRNA lacking exons 6-8 was clearly detected when using RNA from soft calluses. In contrast, the largest band corresponding to mRNA with exons 6-8 was predominant when using RNA from FRC cells or from hard calluses on days 7 and 14. These results indicate that the splicing pattern of exons 6-8 in osteoblastic cells is different from the pattern in chondrocytes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
BACKGROUND: Accumulation of extracellular matrix contributes to the development of intimal hyperplasia. Transforming growth factor beta (TGF-beta) stimulates the production of several matrix proteins in vascular smooth muscle cells (SMC) including type I collagen, but the underlying mechanisms of TGF-beta's effects are not well understood. MATERIALS AND METHODS: The effect of TGF-beta on type I collagen biosynthesis was determined by a [3H]proline incorporation assay and Northern blotting. The promoter of human alpha2(I) procollagen (COL1A2) gene was analyzed by transient transfection analysis and gel mobility shift assay. RESULTS: Treatment of human vascular SMC with TGF-beta stimulated collagen synthesis and increased the level of alpha2(I) collagen mRNA. A collagen-luciferase reporter gene, constructed by linking the human COL1A2 promoter with the firefly luciferase gene, was transiently expressed in human SMC. Treatment with TGF-beta significantly stimulated the activity of this collagen-luciferase reporter. Using deletion analysis, we identified a 150 bp DNA fragment (-334 to -184) in the human COL1A2 promoter as the site through which TGF-beta mediates collagen gene expression in human SMC. Gel mobility shift assays demonstrated that this 150 bp DNA fragment formed conjugates with multiple nuclear factors derived from SMC, a process that was further enhanced by TGF-beta. CONCLUSIONS: TGF-beta stimulates the human type I collagen gene via a DNA element located in the proximal region of its promoter. Interventions that disrupt interaction between this DNA element and nuclear factors may block the production of collagen in response to TGF-beta and consequently may have a significant effect on the development of intimal hyperplasia.  相似文献   

9.
10.
11.
During monolayer culture, articular chondrocytes dedifferentiate into fibroblast‐like cells. The mechanisms underlying this process are poorly understood. We sought to further characterize dedifferentiation by identifying an extended panel of genes that distinguish articular cartilage from dedifferentiated chondrocytes. Thirty‐nine candidate marker‐genes were identified from previous studies on articular‐cartilage gene‐expression. Real‐time PCR was used to evaluate the mRNA levels for these candidates in calf articular cartilage and dedifferentiated articular chondrocytes. Twenty‐two of the candidate marker genes exhibited at least a two‐fold difference in gene expression in the two cell types. Twelve of these genes had at least a ten‐fold difference in gene expression. Tenascin C (TNC), type I collagen (COL1A1), and hypoxia‐inducible factor 1 alpha (HIF1α) showed the highest relative expression levels in dedifferentiated chonodrocytes. Type II collagen (COL2A1), type XI collagen (COL11A2), and superficial zone protein (SZP) showed the highest relative expression levels in articular cartilage. In contrast to previous findings, fibromodulin mRNA, and protein levels were higher in dedifferentiated chondrocytes. Compared to smaller subsets of markers, this panel of 12 highly differentially expressed genes may more precisely distinguish articular cartilage from dedifferentiated chondrocytes. Since many of the genes up‐regulated in dedifferentiated chondrocytes are also expressed during cartilage development, dedifferentiated chondrocytes may possess features of cartilage precursor cells. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:234–245, 2012  相似文献   

12.
13.
14.
To clarify the mechanisms underlying shockwave-induced osteogenesis, we applied shockwave to rat femoral shafts from the ventral side. We assessed bone mineral content (BMC) and bone mineral density (BMD), and analyzed the spatial and temporal gene expression for pro-1 (I) collagen (COL1A1), pro-1 (II) collagen (COL2A1), pro-1 (X) collagen (COL10A1), osteocalcin (OC) and osteopontin (OPN) using in situ hybridization. On the 21st day post-exposure, BMC and BMD in the exposed femur were elevated by 8.46% and 5.80%, respectively, relative to the unexposed femur. Immediately following exposure, there was evidence of scraping of the cortex and periosteal separation with hemorrhage. On day 4, new periosteal bone formation could be seen on the ventral and dorsal side of the femur. In the newly formed bone, COL1A1, OC and OPN were expressed in osteoblastic cells underlying the periosteum. On day 7, there was progression of periosteal bone and trabeculae formation. COL1A1 and OC were expressed in mature osteoblasts lining the trabeculae, whereas OPN was expressed in immature osteoblastic cells, osteocytes and osteoclasts. On day 14, bone remodeling commenced in the periosteal bone. COL1A1, OC and OPN were still expressed at this stage, however, signals were much weaker. Between 4–7 days, chondrocyte clusters were distributed multi-focally near the exposed site, and there was expression of COL2A1 but not of COL10A1. The results demonstrate that gene expression patterns of shockwave-induced osteogenesis are similar to those of periosteal hard callus formation during fracture healing. Shockwaves can yield dramatic activation of cells in normal long bones, and drive the cells to express genes for osteogenesis.  相似文献   

15.
目的 观察硫酸钙(CS)在人骨髓基质干细胞(BMSCs)向成骨细胞转化过程中对成骨基因表达的影响,探讨硫酸钙修复骨缺损可能的生物学机制.方法 制备硫酸钙浸提的成骨诱导液(实验组)与常规的成骨诱导液(对照组),分别加入人BMSCs培养瓶(各3例),使其向成骨细胞的诱导分化,注意观察细胞的分化和生长.培养至第7天时进行RNA的抽提、纯化和质量检测,并合成cDNA,采用成骨功能基因芯片分别检测实验组和对照组中各种成骨基因的变化.结果 实验组和对照组细胞均生长良好,缓慢增殖,但实验组向成骨细胞分化的趋势要明显较对照组好.成骨基因芯片共检测到89种基因,其中有23种基因表达改变显著(Fold change>2,P<0.05).表达上调超过2倍的基因包括:AMELY、BMP2、COL4A3、COMP、EGF、FLT1、IGF1、ITGA2、MMP10、MMP2、TGFB2、TGFBR1、VDR和VEGFA.表达下调超过2倍的有:COL2A1、COL15A1、COL1A1、COL1A2、COL5A1、CSF2、FGF1、ITGA3和MMP8.结论 硫酸钙促进了人BMSCs向成骨细胞转化的过程,这种作用与硫酸钙促进成骨基因表达上调、合成活性因子增加相关,说明硫酸钙具有潜在的骨诱导活性,可以作为良好的骨修复替代材料,促进细胞的骨修复能力.  相似文献   

16.
OBJECTIVE: To determine the influence of osteoarthritic (OA) phenotype of subchondral osteoblasts on the phenotype of human chondrocytes. METHODS: Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 or 10 days in the absence or in the presence of osteoblasts in monolayer. The osteoblasts were either isolated from non-sclerotic (N) or sclerotic (SC) zones of human subchondral bone. Before co-culture, osteoblasts were incubated for 72 h with or without 1.7 ng/ml interleukin (IL)-1beta, 100 ng/ml IL-6 with its soluble receptor (50 ng/ml) or 10 ng/ml oncostatin M. SOX9, type I, II and X collagen (COL1, COL2, COL10), osteoblasts-stimulating factor (OSF)-1, bone alkaline phosphatase (ALP), parathyroid hormone related peptide (PTHrP) and its receptor (PTH-R) messenger RNA (mRNA) levels in chondrocytes were quantified by real-time polymerase chain reaction. RESULTS: In comparison with chondrocytes cultured alone in alginate beads, chondrocytes after 4 days in co-culture with N or SC osteoblasts expressed significantly less SOX9 and COL2 mRNA. The decrease of SOX9 and COL2 gene expression was significantly more pronounced in the presence of SC than in the presence of N osteoblasts (P<0.001). OSF-1 mRNA level in chondrocyte was increased by both N and SC osteoblasts, but to a larger extent by SC osteoblasts (P<0.001). PTHrP expression in chondrocytes was 21-fold increased by N osteoblasts but four-fold inhibited by SC osteoblasts. PTHrP secretion was also increased by N but reduced by SC osteoblasts. SC, but not N osteoblasts, induced a significant decrease of PTH-R gene expression in chondrocyte. In our experimental conditions, chondrocytes did not express COL1, COL10 or ALP, even after 10 days of co-culture with osteoblasts. CONCLUSIONS: In co-culture, SC subchondral osteoblasts decrease SOX9, COL2, PTHrP and PTH-R gene expression by chondrocytes but increase that of OSF-1. These findings suggest that SC osteoblasts could initiate chondrocyte phenotype shift towards hypertrophic differentiation and subsequently further matrix mineralization.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号