首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aged individuals experience the highest rate of stroke and have less functional recovery, but do not have larger infarcts. We hypothesized that aged individuals experience greater sublethal damage in peri-infarct cortex. Focal cortical stroke was produced in aged and young adult animals. After 30 min, 1, 3 and 5 days brain sections and Western blot were used to analyze markers of apoptotic cell death, oxidative DNA and protein damage, heat shock protein (HSP) 70 induction, total neuronal number and infarct size. Focal stroke produces significantly more oxidative DNA and protein damage and fewer cells with HSP70 induction in peri-infarct cortex of aged animals. There is no difference in infarct size or the number of cells undergoing apoptosis between aged and young adults. Stroke in the aged brain is associated with a greater degree of DNA and protein damage and a reduced stress response in intact, surviving tissue that surrounds the infarct.  相似文献   

2.
Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n = 6 in each group): group I consisted of sham exposed (control) rats, group II–IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2 h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration.Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p < 0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p < 0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p < 0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p < 0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure.  相似文献   

3.
Aging is a multi-factorial process which involves deprivation in body's metabolism. Brain mitochondria are prone to oxidative damage owing to their high metabolic rate. The decline in antioxidant system during aging augments the neuronal damage to mitochondrial components like antioxidant system, Kreb's cycle enzymes and electron transport chain complexes. Since brain is an organ rich in fatty acids, lipid peroxidation products like hydroxynonenal are predominant. Those lipid peroxidation products conjugate with amino acids to form adducts which alter their structural and functional properties. Epigallo catechin gallate is a potent antioxidant which is rich in green tea extract. This study elucidated the antioxidant potential of epigallo catechin gallate to counteract the mitochondrial oxidative damage in brain. The study comprised of young (3–4 months old; 150 ± 20 g) and aged (above 24 months; 420 ± 20 g) male albino rats of Wistar strain in Groups I and II. Groups III and IV comprised of young and aged rats supplemented with epigallo catechin gallate (2 mg/kg body weight) for 30 days. Antioxidants, Kreb's cycle enzymes and electron transport chain complexes were assayed in the mitochondrial fraction. Hydroxynonenal expression was carried out using immunohistochemical analysis. Epigallo catechin gallate supplementation decreased the expression of hydroxynonenal in aged brain, up-regulated the antioxidant system and augmented the activities of Kreb's cycle enzymes and electron transport chain complexes in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria.  相似文献   

4.
Recent studies provide evidence that phospholipase A2 (PLA2) may play a role in the development of experimental parkinsonism. In this investigation an attempt was made to determine a possible protective effect of quinacrine (QNC), a PLA2 inhibitor on MPTP as well as 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rodents. For MPTP studies, adult male mice (C57 BL) were treated with MPTP (30 mg/kg, i.p.) daily for 5 days. QNC was injected i.p. in the doses of 0, 10, 30 and 60 mg/kg daily 30 min before MPTP in four different groups. Two other groups of mice received either vehicle (control) or a high dose of QNC (60 mg/kg). Two hours after the last injection of MPTP, striata were collected for the analysis of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and glutathione (GSH). For the 6-OHDA study, male Wistar rats were infused with 6-OHDA (60 microg) in the right striatum under chloral hydrate anesthesia. The rats in different groups were treated with 0, 5, 15 and 30 mg/kg QNC (i.p.) for 4 days, while first injection was given 30 min before 6-OHDA. On day 5, rats were sacrificed and striata were stored at -80 degrees C. Administration of MPTP or 6-OHDA significantly reduced striatal DA, which was significantly attenuated by QNC. Concomitant treatment with QNC also protected animals against MPTP or 6-OHDA-induced depletion of striatal GSH. Our findings clearly suggest the role of PLA2 in MPTP and 6-OHDA induced neurotoxicity and oxidative stress. However, further studies are warranted to explore the therapeutic potential of PLA2 inhibitors for the treatment of Parkinson's disease.  相似文献   

5.
Brain dopamine influences immune functions and the role of immune functions in tumor growth is well established. Therefore, a study has been carried out to evaluate the correlation, if any, between brain dopamine and tumor growth. MPTP selectively destroys dopaminergic neurons in the brain. In the present study, Ehrlich carcinoma growth was evaluated in MPTP-treated mice. Results showed a correlation between depletion of striatal dopamine and enhanced tumor growth. Since in the present study striatal dopamine depletion in mice was associated with significantly decreased immune responses, the suggested correlation between brain dopamine and tumor growth was possibly mediated by the immune system.  相似文献   

6.
The role of oxidative stress in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity is as yet unclear and the evidence for generation of oxygen free radicals as a primary event in the neurotoxicity is yet to be demonstrated. The present study was undertaken to ascertain the potential role of oxidative damage, and the protective role, if any, of the antioxidant, glutathione (GSH), in MPTP-induced neurotoxicity. Exposure of sagittal slices of mouse brain to MPTP resulted in significant increases of reactive oxygen species (ROS) and malondialdehyde (MDA, the product of lipid peroxidation) and decreases in GSH content. Pretreatment of mouse brain slices, in vitro, with GSH or GSH isopropyl ester attenuated MPTP toxicity as assessed by the tissue activity of the mitochondrial enzyme, NADH-dehydrogenase (NADH-DH), and by leakage of the cytosolic enzyme, lactate dehydrogenase (LDH), from the slice into the medium. In vivo administration of MPTP (30 mg/kg body weight, s.c.), to mice resulted in significant lowering of GSH in the striatum and midbrain, 2 h after dosage; ROS levels in the striatum and midbrain increased after 4 and 8 h, respectively. In the striatum significant inhibition of rotenone-sensitive NADH ubiquinone-1 oxido-reductase (Complex 1) was observed transiently 1 h after MPTP administration. The enzyme activity recovered thereafter; significant inhibition of mitochondrial Complex I was observed in the striatum only 18 h after MPTP dose. In the midbrain, mitochondrial Complex I was inhibited only 18 h after MPTP dose; no change was observed at the early time points examined. Thus, the depletion of GSH and increased ROS formation preceded the inhibition of the mitochondrial enzyme in the midbrain. Evidence presented herein from both in vitro and in vivo studies support that MPTP exposure generates ROS resulting in oxidative stress.  相似文献   

7.
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes marked depletion of dopamine (DA) levels and reduction in the activity of tyrosine hydroxylase (TH) in the nigrostriatal DA pathway. In the brain, the enzyme monoamine oxidase B converts MPTP to 1-methyl-4-phenylpyridinium (MPP+) which enters DA terminals via DA uptake sites. Within the DA terminals, MPP+ blocks the mitochondrial complex I and causes ATP depletion. This is thought to be the main cause of MPTP-induced terminal degeneration. In addition, reactive oxygen species (ROS) generated after blockade of the complex I as well as those generated due to DA oxidation may participate in MPTP-induced dopaminotoxicity. The present study sought to determine if a single injection of a large dose of MPTP generates ROS. We also sought to determine if these changes as well as changes in DA levels were correlated and age-dependent. Toward that end, we have used C57/B6N male mice that were 22 days or 12 months old. These animals were injected with a single dose of MPTP (40 mg/kg, ip). Animals were sacrificed at various times after drug administration. MPTP produced no significant increase in ROS nor decreases in DA or HVA concentrations in the striatum of the younger mice. However, DOPAC concentrations were significantly decreased from 15–120 min after drug administration. In the older mice, MPTP caused significant increases in ROS from the beginning to the end of the study period. DA concentrations were decreased from 60 min onward. DOPAC concentrations were decreased significantly after 15–120 min while HVA concentrations were significantly increased after 60 and 120 min. These data demonstrate that in older mice, a single dose of MPTP can cause increases of ROS which were associated with subsequent decreases in DA concentrations. Younger mice were not similarly affected. These results suggest that MPTP induced neurotoxicity is age-dependent and may be mediated by oxidative stress. ©1994 Wiley-Lisa, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    8.
    9.
    The long-term effect of the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central monoaminergic neurons in young (2-3 months) and aging (12 months) C57BL/6 mice has been studied using neurochemical and immunocytochemical techniques. MPTP treatment (4 x 20 mg/kg i.p. given 12 h apart) resulted in significant depletion of dopamine (DA) concentration in the striatum, substantia nigra, nucleus accumbens, and olfactory tubercle 1 week after treatment in both young and aging mice. Although a decreased DA concentration in the ventral tegmental area was not seen in young mice, aging mice did show a significant decrease. The extent of decrease of DA concentration was greater in aging mice than in young mice in all areas investigated except in dorsal striatum. The long-term effect of MPTP on DA neurons in young mice included considerable recovery of DA concentration in both nigrostriatal and mesolimbic DA systems following the initial profound depletion; such recovery was minimal in aging mice, even 3 months after MPTP treatment. In young mice treated with MPTP, no significant change of norepinephrine (NE) or serotonin (5-HT) concentration was observed in any area investigated while a significant decrease of NE and 5-HT concentration was seen in several brain areas investigated in aging mice. Immunocytochemical analysis revealed that the MPTP injection resulted in marked disappearance of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in striatum of both young and aging mice 1 week following treatment. Partial recovery of TH-IR fibers was seen 5 weeks or 3 months after MPTP treatment in young mice, while no such apparent recovery was seen in aging mice. Aging mice also showed significant decrease in the number of TH-positive cell bodies in the substantia nigra and ventral tegmental area through all periods investigated, while such a significant decrease was only seen in the substantia nigra of young mice 1 week after treatment. We conclude that aging mice are more sensitive to MPTP and show more widespread damage to the monoaminergic systems than young mice, suggesting that MPTP-treated aging mice provide a more useful model for studying anatomical and neurochemical characteristics of Parkinson's disease than young mice.  相似文献   

    10.
    The oxidative stress theory of aging postulates that age-associated reductions in physiologic functions are caused by a slow steady accumulation of oxidative damage to macromolecules, which increases with age and which is associated with life expectancy of organisms. A corollary is that the rate of aging should be retarded by attenuation of oxidative damage. A large body of evidence has accumulated in support of this hypothesis. Increases in oxidative damage to DNA, proteins, and lipids have all been found with normal aging. Genetic manipulation of oxidative damage can increase life expectancy in animals. Overexpression of Cu/Zn superoxide dismutase or manganese superoxide dismutase appears to extend life span. Overexpression of methionine sulfoxide reductase in Drosophila resulted in a 70% increase in survival, and a 50% reduction in methionine sulfoxide reductase in mice resulted in a 30% reduction in life span. Caloric restriction, which extends life span, also reduces oxidative stress. Manipulation of gene expression in Drosophila with phenylbutyrate significantly increases lifespan, and is associated with a 50-fold increase in expression of manganese superoxide dismutase. We recently further examined the mitochondrial DNA theory of aging, which proposes that mitochondrial DNA accumulates mutations with age and that these contribute to the physiological decline in aging. Using a PCR-cloning-sequencing strategy, we found a significant increase in aggregate burden of mitochondrial DNA point mutations in brain in elderly subjects compared to younger subjects. The average aggregate mutational burden in elderly subjects was 2×10−4 mutations per base. The bulk of these mutations were individually rare point mutations, and 60% changed an amino acid. Cytochrome oxidase activity correlated negatively with increased mutational burden. These findings bolster the possibility that oxidative damage to mitochondrial DNA may play a significant role in normal aging.  相似文献   

    11.
    An extensive literature suggests that melatonin may protect from the degenerative effects of central neurotoxins by acting as a free radical scavenger. The purpose of this study was to determine if melatonin would protect male C57BL6 mice from the toxicity of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to nigral dopamine (DA) neurons. Melatonin was initially dissolved in dimethyl sulfoxide (DMSO), diluted to 16 microg/ml and then provided in the drinking water for 4 weeks. Control mice drank the same final concentration of the DMSO diluent. One week before the termination of the experiment, randomly selected mice from the melatonin-treated and the DMSO-treated groups received two, three or four doses of 2.5 mg/kg MPTP free base administered subcutaneously at 2-h intervals. Additional DMSO-treated and melatonin-treated mice did not receive MPTP. Following tissue collection, melatonin concentration was measured in blood plasma collected from each animal and found to be 20-fold higher in melatonin-treated compared to DMSO-treated mice. Tyrosine hydroxylase (TH) activity and the levels of DA and dihydroxyphenylacetic acid (DOPAC) were not different in striata collected from melatonin-treated versus DMSO-treated mice which did not receive MPTP. Treatment with MPTP significantly reduced striatal TH activity, DA and DOPAC, but there were no significant differences in the reductions in any of these parameters observed in the melatonin-treated versus the DMSO-treated control mice that received the same total dosage of MPTP. These results show that the long-term administration of a high pharmacological dose of melatonin was ineffective in protecting nigral dopaminergic neurons from the neurotoxic effects of MPTP.  相似文献   

    12.
    We investigated the chronological changes of dopamine D1 and D2 receptors and dopamine uptake sites in the striatum and substantia nigra of mouse brain treated with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) by quantitative autoradiography using [3H]SCH23390, [3H]raclopride and [3H]mazindol, respectively. The mice received i.p. injections of MPTP (10 mg/kg) four times at intervals of 60 min, the brains were analyzed at 6 h and 1, 3, 7 and 21 days after the last the injection. Dopamine D2 receptor binding activity was significantly decreased in the substantia nigra from 7 to 21 days after MPTP administration, whereas such binding activity was significantly increased in the medial part of the striatum at 21 days. There was no alteration of dopamine D1 receptor binding activity in either the striatum or the substantia nigra for the 21 days. The number of dopamine uptake sites gradually decreased in the striatum and the substantia nigra, starting at 6 h after MPTP administration, and the lowest levels of binding activity were observed at 3 and 7 days in the striatum (18% of the control values in the medial part and 30% in the lateral part) and at 1 day in the substantia nigra (20% of the control values). These results indicate that severe functional damage to the dopamine uptake sites occurs in the striatum and the substantia nigra, starting at an early stage after MPTP treatment. Our findings also demonstrate the compensatory up-regulation in dopamine D2 receptors, but not dopamine D1 receptors, in the striatum after MPTP treatment. Furthermore, our results support the existence of dopamine D2 receptors, but not dopamine D1 receptors, on the nigral neurons. The present findings suggest that there are differential vulnerabilities to MPTP toxicity in the nigrostriatal dopaminergic receptor systems of mouse brain.  相似文献   

    13.
    The differences in dopamine turnover rate between the putamen and the caudate nucleus in the striatum lesioned by a neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were studied in the common marmoset, a small New World monkey. Systemic administration of MPTP damaged equally and dose-dependently nigrostriatal dopaminergic neurons projecting both to the caudate nucleus and the putamen. The compensatory increase of dopamine turnover, however, occurred more prominently in the putamen than in the caudate. The neural connection and function of the caudate nucleus and the putamen have been differentiated anatomically or physiologically. The compensatory increase of dopamine turnover rate is another different aspect of functions between the caudate nucleus and the putamen. Dopaminergic neurons projecting to the putamen showed more prominent cell loss than those projecting to the caudate in Parkinson's disease or related disorders. The selective augmented turnover rate of lesioned dopaminergic neurons might be, at least partly, involved with selective degeneration of nigrostriatal neurons projecting to the putamen.  相似文献   

    14.

    Objective

    The purpose of this study was to verify the presence of DNA brain lesion after acute stress in rats.

    Method

    Adult male Wistar rats were divided into 3 groups according to the stressor (control, forced swimming or restraint), and sampled at 2 time points: immediately or 1 week after stress. Trunk blood and the brain areas (prefrontal cortex, amygdala and hippocampus) were extracted for DNA analysis by the comet assay. The cells were classified according to the damage index and damage frequency based on the comet tail size.

    Results

    Immediately after the stress, DNA damage was detected in the amygdala area and in the hippocampus after restraint and forced swimming. In the prefrontal cortex, DNA was damaged after forced swimming. However, no alteration was seen in blood. Seven days after the stress, DNA damage was still identified in the hippocampus after forced swimming and restraint, whereas no alteration was detected in the other brain areas or in blood.

    Conclusion

    One week after a single stressful event, a reversible DNA damage was identified in the prefrontal cortex and in the amygdala, whereas DNA damage in the hippocampus still remained.  相似文献   

    15.
    There is much evidence to suggest that ischemic injury occurs during the reperfusion phase of ischemia–reperfusion insults, and that the injury may be due to reactive-oxygen-species (ROS)-mediated oxidative events, including lipid peroxidation and DNA damage. However, oxidative DNA damage has until now not been examined in situ. In the present study, we report for the first time observation of cell type- and region-specific oxidative DNA damages in 5 min transient ischemic model by immunohistochemical methods, using monoclonal antibody against 8-hydroxy-2′-deoxyguanosine (8-OHdG), an oxidative DNA product. The cell types containing 8-OHdG immunoreactivity were neurons, glia and endothelial cells in the hippocampus. The 8-OHdG immunoreactivity was present in the nucleus but not the cytoplasm of these cells. The level of 8-OHdG in CA1 increased significantly (P<0.05) at the end of 30 min after ischemia, but there was no increase within CA2 and CA3 areas. The 8-OHdG levels in the hippocampus increased significantly (about fourfold) after 3 h of reperfusion and remained significantly (P<0.01) elevated for at least 12 h. At 4 days after ischemia, 8-OHdG levels in the CA2 and CA3 areas decreased to levels of the sham without neuronal loss, while disappearance of 8-OHdG immunoreactivity in the CA1 coincided with neuronal death in this area. These findings strongly suggest that ischemia-induced DNA damage evolves temporally and spatially, and that oxidative DNA damage may be involved in delayed neuronal death in the CA1 region.  相似文献   

    16.
    The mechanisms involved in methamphetamine (METH)-induced damage to nigrostriatal dopaminergic neurons in experimental animals are unknown. We have examined the possibility that perturbations in energy metabolism contribute to METH-induced toxicity by investigating the effects of systemic METH treatment in mice which received a unilateral intrastriatal infusion of malonate, a metabolic inhibitor which decreases ATP levels. Malonate (1–4 μmol) produced a dose-dependent decrease in striatal dopamine (DA). The combined treatment of intrastriatal malonate with systemic METH resulted in greater damage to dopaminergic neurons than by METH or malonate treatment alone. In parallel studies, MPTP was administered to mice which received intrastriatal infusions of saline or malonate. Similar to results obtained with METH, decreases in striatal DA content and tyrosine hydroxlase (TH) activity were greatest in MPTP-treated mice infused with malonate. The present results lend credence to the hypothesis that METH-induced increases in energy utilization create a state of metabolic stress for DA neurons which may ultimately contribute to the neurodegenerative effects of METH. Moreover, the fording that combined malonate and MPTP treatment produced greater damage than either substance alone is consistent with the hypothesis that perturbations in energy metabolism contribute to the neuronal death produced by MPP+.  相似文献   

    17.
    目的建立原位检测C57BL/6小鼠脑缺血所致AP位点和3'-PO4型氧化DNA损伤的方法。同时采用TUNEL测定神经细胞凋亡,探讨两者的相关性,并观察nNOS在此过程中的作用。方法制作小鼠前脑缺血/再灌注模型(FbIR):夹闭双侧颈总动脉90min后恢复血流,按实验设计的再灌注不同时间点处死动物后制作脑组织冰冻切片。用大肠杆菌核苷酸外切酶Ⅲ敏感位点法(EXOSS)检测AP位点和3’-PO4末端型两种氧化DNA损伤;采用TUNEL技术观察细胞凋亡,并检测特异性nNOS抑制剂3BR7NI对此氧化DNA损伤及细胞凋亡的影响。结果与假手术对照组相比,EXOSS阳性率在再灌注15min时至少增高20倍(P〈0.01),并在此后的30min内持续增高;EXOSS阳性主要出现在神经元的细胞核内;细胞死亡在再灌注24h组能检测到,并主要发生在神经元细胞内;在一定时间内大脑皮质区神经元细胞内的氧化DNA损伤和细胞凋亡均能被特异性nNOS抑制剂3-bromo-7-nitroindazole(3BR7NI,30mg/kg,腹腔内注射)所抑制。结论EXOSS是一种原位检测AP位点和3’-PO4末端型氧化DNA损伤的有效方法,该损伤在一定时间内可以得到修复,nNOS在这一过程中起着重要作用。  相似文献   

    18.
    Epidemiological studies have indicated that prenatal exposure to environmental insults can bring an increased risk of schizophrenia. The objective of our study was to determine biochemical parameters in rats exposed to cigarette smoke (CS) in the prenatal period, evaluated in adult offspring submitted to animal model of schizophrenia induced by acute subanaesthetic doses of ketamine (5 mg/kg, 15 mg/kg and 25 mg/kg). Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day, daily for a period of 28 days. We evaluated the oxidative damage in lipid and protein in the rat brain, and DNA damage in the peripheral blood of male adult offspring rats. To determine oxidative damage in the lipids, we measured the formation of thiobarbituric acid reactive species (TBARS) and the oxidative damage to the proteins was assessed by the determination of carbonyl groups content. We also evaluated DNA damage using single-cell gel electrophoresis (comet assay). Our results showed that rats exposed to CS in the prenatal period presented a significant increase of the lipid peroxidation, protein oxidation and DNA damage in adult age. We can observe that the animals submitted at acute doses of ketamine also presented an increase of the lipid peroxidation and protein oxidation at different doses and structures. Finally, we suggest that exposure to CS during the prenatal period affects two essential cerebral processes during development: redox regulation and DNA integrity, evaluated in adult offspring. These effects can leads to several neurochemical changes similar to the pathophysiology of schizophrenia.  相似文献   

    19.
    Oxidative mitochondrial decay is a major contributor to aging and neural degeneration. In old rats (vs. young rats) mitochondrial membrane potential, cardiolipin level, respiratory control ratio, and cellular O2 uptake are lower; oxidants/O2, neuron RNA oxidation, and mutagenic aldehydes from lipid peroxidation are higher. Ambulatory activity and cognition declines with age. Feeding old rats for a few weeks with acetyl- -carnitine (ALCAR), a mitochondrial metabolite, plus R-lipoic acid (LA), a mitochondrial coenzyme and antioxidant, restores mitochondrial function; lowers oxidants, neuronal RNA oxidation, and mutagenic aldehydes; and increases rat ambulatory activity and cognition (Skinner box/Morris water maze). The mechanism appears to be that with age increased oxidative damage to protein causes a deformation of structure of key enzymes, with a consequent lessening of affinity (Km) for the substrate. The loss with age of carnitine acetyl transferase binding affinity can be mimicked by reacting it with malondialdehyde (a lipid peroxidation product which increases with age). Feeding the substrate ALCAR with LA restores the velocity of the reaction, Km for ALCAR and CoA, and mitochondrial function. Heme biosynthesis is predominantly in the mitochondria. Interfering with heme synthesis causes specific loss of complex IV with consequent release of oxidants and neuronal degeneration. Iron deficiency (25% of menstruating women in the US ingest <50% of the RDA) also causes release of oxidants and mitochondrial decay, presumably through lack of heme, accelerating brain aging. Vitamin B6 or zinc inadequacy (10% of Americans ingest <50% of each RDA) should also cause a heme deficiency.  相似文献   

    20.
    Chronic administration of iminodipropionitrile (IDPN) is known to produce a persistent dyskinetic syndrome. Recent neurochemical reports seem to point out the dopaminergic system as having an important role in mediating IDPN syndrome. In order to identify a possible role for the nigrostriatal dopaminergic pathway in determining at least some aspects of the IDPN-induced dyskinetic syndrome, we used the neurotoxin, 1-methyl, 4-phenyl,1,2,3,6-tetrahydropiridine (MPTP), as a tool for investigating which aspects of the IDPN-related syndrome could be due to enhanced dopaminergic activity in the neostriatum. In mice made permanently dyskinetic with IDPN, MPTP administration produced dramatic and biphasic effects on all behavioral patterns characteristics of the dyskinetic syndrome. Six weeks after the syndrome occurred, IDPN failed to produce any change in striatal DA levels with respect to controls. By contrast, IDPN seems to reduce striatal levels of extraneuronal metabolites of DA. These data suggest that the activity of the nigrostriatal dopaminergic pathway does not play a leading role in the maintenance of IDPN-related syndrome. The transient modification of all behavioral parameters immediately after MPTP administration could be explained by acute effects of MPTP on other dopaminergic areas which are not permanently lesioned by this neurotoxin, or by the acute effects of MPTP on the release of other neurotransmitters.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号