首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The collection of peripheral blood stem and progenitor cells (PBPCs) for transplantation can be time-consuming and expensive. Thus, the utility of counting CD34+ cells and white cells (WBCs) in the peripheral blood was evaluated as a predictor of CD34+ cell yield in the apheresis component. STUDY DESIGN AND METHODS: The WBC and CD34+ cell counts in the peripheral blood and the apheresis components from 216 collections were assessed. Sixty-three patients underwent mobilization with chemotherapy plus filgrastim, and 17 patients and 14 allogeneic PBPC donors did so with filgrastim alone. The relationship between the number of WBC and CD34+ cells in the peripheral blood and in the apheresis component was analyzed by using rank correlation and linear regression analysis. RESULTS: The correlation coefficient for CD34+ cells per liter of peripheral blood with CD34+ cell yield (x 10(6)/kg) was 0.87 (n = 216 collections). This correlation existed for many patient and collection variables. However, patients with acute myeloid leukemia had fewer CD34+ cells in the apheresis component at any level of peripheral blood CD34+ cell count. Components collected from patients with CD34+ cell counts below 10 x 10(6) per L in the peripheral blood contained a median of 0.75 x 10(6) CD34+ cells per kg. When the WBC count in the blood was below 5.0 x 10(9) per L, the median number of CD34+ cells in the peripheral blood was 5.6 x 10(6) per L (range, 1.0-15.5 x 10(6)/L). A very poor correlation was found between the WBC count in the blood and the CD34+ cell yield (p = 0.12, n = 158 collections). CONCLUSION: The number of CD34+ cells, but not WBCs, in the peripheral blood can be used as a predictor for timing of apheresis and estimating PBPC yield. This is a robust relationship not affected by a variety of patient and collection factors except the diagnosis of acute myeloid leukemia. Patients who undergo mobilization with chemotherapy and filgrastim also should undergo monitoring of peripheral blood CD34+ cell counts, beginning when the WBC count in the blood exceeds 1.0 to 5.0 x 10(9) per L.  相似文献   

2.
BACKGROUND: Information on the safety and efficacy of allogeneic peripheral blood progenitor cell (PBPC) collection in filgrastim-mobilized normal donors is still limited. STUDY DESIGN AND METHODS: The PBPC donor database from a 42-month period (12/94-5/98) was reviewed for apheresis and clinical data related to PBPC donation. Normal PBPC donors received filgrastim (6 microg/kg subcutaneously every 12 hours) for 3 to 4 days and subsequently underwent daily leukapheresis. The target collection was > or =4 x 10(6)CD34+ cells per kg of recipient's body weight. RESULTS: A total of 350 donors were found to be evaluable. Their median age was 41 years (range, 4-79). Their median preapheresis white cell count was 42.8 x 10(9) per L (range, 18.3-91.6). Of these donors, 17 (5%) had inadequate peripheral venous access. Leukapheresis could not be completed because of apheresis-related adverse events in 2 donors (0.5%). Of the 324 donors evaluable for apheresis yield data, 221 (68%) reached the collection target with one leukapheresis. The median CD34+ cell dose collected (first leukapheresis) was 462 x 10(6) (range, 29-1463).The main adverse events related to filgrastim administration in donors evaluable for toxicity (n = 341) were bone pain (84%), headache (54%), fatigue (31%), and nausea (13%). These events were rated as moderate to severe (grade 2-3) by 171 (50%) of the donors. In 2 donors (0.5%), they prompted the discontinuation of filgrastim administration. CONCLUSION: PBPC apheresis for allogeneic transplantation is safe and well tolerated. It allows the collection of an "acceptable" PBPC dose in most normal donors with one leukapheresis, with minimal need for invasive procedures.  相似文献   

3.
Moncada V  Bolan C  Yau YY  Leitman SF 《Transfusion》2003,43(4):495-501
BACKGROUND: The circulating CD34 count is a reliable predictor of peripheral blood progenitor cell (PBPC) yields in subjects with a vigorous mobilization response to G-CSF, however, the value of this parameter in poor mobilizers is uncharacterized. STUDY DESIGN AND METHODS: Consecutive PBPC procedures (n = 81) with preapheresis CD34 counts less than 20 per microL (poor mobilizers) were compared with an equal number of good mobilizers (preapheresis CD34 counts > or =20/microL). G-CSF was administered at standard doses (10 microg/kg/day). RESULTS: CD34 yields correlated strongly with preapheresis CD34 counts in both good and poor mobilizers and were higher in allogeneic than autologous donors. For a standard 75-kg recipient, a CD34 cell dose of greater than 2 x 10(6) per kg was never achieved in less than two 15-L procedures if the preapheresis CD34 count was less than 8 per microL. Preapheresis WBC and MNC counts were lower in poor than in good mobilizers (28.4 vs. 43.0 and 3.25 vs. 5.01 x 10(3)/microL, respectively, p < 0.0001). Total WBC counts correlated more strongly with preapheresis CD34 counts, total CD34 yields, and CD34 yields per L processed in good mobilizers (R = 0.50, R = 0.44, and R = 0.42, respectively) than in poor mobilizers (R = 0.22, R = 0.02, and R = 0.01, respectively), whereas total MNC counts correlated more strongly with these parameters in poor (R = 0.38, R = 0.23, and R = 0.27, respectively) than in good mobilizers (R = 0.04, R = 0.13, and R = 0.16, respectively). CONCLUSION: CD34 cell yields correlate strongly with preapheresis CD34 counts. Based on this analysis, a CD34 count greater than or equal to 8 per microL is the threshold for performing PBPC collections in our institution.  相似文献   

4.
BACKGROUND: The hematopoietic progenitor cell (HPC) count measured by the Sysmex hematology analyzer can determine the timing for leukapheresis in autologous peripheral blood stem cell (PBSC) harvest. We evaluated whether a HPC count could predict CD34+ cell yield in healthy, unrelated donors after granulocyte–colony‐stimulating factor mobilization. STUDY DESIGN AND METHODS: A total of 117 healthy donors underwent 161 PBSC leukapheresis procedures in our institution. The HPCs and CD34+ cells were identified by an automated hematology analyzer and flow cytometry, respectively. Using Spearman's rank test, we evaluated the relationships between preharvest HPCs, CD34+ cell counts, and CD34+ cell yields in the apheresis product. A receiver operating characteristic (ROC) curve analysis was used to identify the cutoff value of HPC for adequate mobilization and harvest yield. RESULTS: The HPC count had a moderate correlation with the preharvest CD34+ cell count (r = 0.502, p < 0.001), and an HPC count of more than 21.3 × 106/L could exclude poor mobilization (<20 × 106 CD34+ cells/L) with sensitivity and specificity of 89.2 and 83.3%. However, the relationship between HPC count and CD34+ cell yield was not marked (r = 0.321, p < 0.001). The area under the curve for HPCs was significantly smaller than the preharvest CD34+ cell count on the ROC curve for predicting adequate harvest yield (>10 × 106 CD34+ cells/L of processed blood volume, 0.678 vs. 0.850, p = 0.001). CONCLUSION: Although the preapheresis HPC count could predict mobilization in healthy donors before leukapheresis, it may not be a superior index for predicting CD34+ cell yield compared with the preharvest CD34+ cell count.  相似文献   

5.
BACKGROUND: Failure to mobilize PBPCs for auto-logous transplantation has mostly been attributed to previous therapy and poses therapeutic problems. STUDY DESIGN AND METHODS: The role of underlying disease was analyzed in 17 of 73 (23%) patients with PBPC mobilization failure, and secondary mobilization with high-dose filgrastim was attempted. RESULTS: Of 16 patients with acute leukemia, 13 (81%) mobilized poorly. In contrast, of 57 patients with non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, and solid tumor, 53 (93%, p < 0.001) showed good PBPC mobilization. Relapsed disease did not predispose to poor mobilization. As secondary mobilization attempt, 7 patients received 25 micro g per kg per day filgrastim without chemotherapy leading to a 3.7 +/- 2.8-fold (SD) increase in the maximum number of circulating CD34+ cells (p = 0.104). PBPC apheresis yielded 3.3 (+/-0.5) x 10(6) CD34+ cells per kg of body weight in 5 patients. Four poor mobilizers received 50 micro g per kg per day filgrastim as second or third mobilization attempt. Circulating CD34+ cells in these patients increased by 1.5 (+/-0.7) compared with the primary G-CSF application. CONCLUSION: Selective PBPC mobilization failure was seen in patients with acute leukemia whereas remarkably good mobilization was seen in other malignancies. Increasing the filgrastim dose to 25 micro g per kg per day may allow PBPC collection in patients failing PBPC mobilization.  相似文献   

6.
BACKGROUND: It is often a clinical dilemma to determine when to collect autologous peripheral blood progenitor cells (PBPCs) in patients who received prior chemotherapy. It is also challenging to predict if the collected cells will be enough for one or two transplants. STUDY DESIGN AND METHODS: A total of 103 PBPC donors were followed to evaluate factors that predict poor autologous PBPC collection. The donors were categorized into three groups: plasma cell disorders (PCDs), lymphomas, and normal allogeneic donors. RESULTS: Our evaluation showed that platelet (PLT) count before growth factor administration significantly correlated with total CD34+ cell yield (Spearman r = 0.38, p < 0.001). Further analysis showed this correlation was only significant in plasma cell disease patients who received prior chemotherapy (Spearman r = 0.5, p = 0.008). Baseline PLT counts did not correlate with PBPC collection yield in untreated PCD, lymphoma, and normal allogeneic donors. In addition, daily PLT count during PBPC harvest correlated with CD34+ cell yield for that day (Spearman r = 0.41, p < 0.001). With a multiple linear regression model (adjusted R(2) = 0.31, AIC = 63.1), it has been determined that the baseline PLT count significantly correlates with total CD34+ cell yield in treated PCD patients. CONCLUSION: Baseline PLT count is a sensitive indicator of autologous PBPC mobilization in PCD patients who received prior chemotherapy. This finding may be considered before growth factor administration to determine the optimal period to mobilize treated PCD patients and to predict if enough cells can be collected for one or two transplants.  相似文献   

7.
Elderly patients with hematological malignancies are often reliant on allogeneic transplantations. Older family relatives are increasingly involved in utilization as PBSC donors. We analyzed the mobilization results from 103 donors of age ≥55 years in comparison with 121 younger donors of age <55 years. The median CD34+ count in peripheral blood on day +5 of the mobilization was higher in younger than in older donor group (72.0 vs. 37.0 cells/μL, P < 0.0001). Linear regression showed a negative correlation between the age and CD34+ count in peripheral blood (P < 0.0001) and apheresis product (P < 0.0001). Based on multivariate analysis, the amount of circulating CD34+ cells appeared to be negatively influenced by age (P < 0.001) and positively by the preapheresis WBC count (P < 0.001). The precollection CD34+ (P < 0.0001), PLT (P = 0.0144) counts, and age (P = 0.0392) were confirmed as independent factors determining the collection yield. The side effects of G-CSF administration were similar in both the groups. Apheresis complications were more frequently recorded in elderly donors (29 vs. 15%, P = 0.0096). Higher age represents a risk factor for poorer mobilization results. A requirement for more than one apheresis in older donors occurs more frequently to obtain the adequate amount of CD34+ cells. Mobilization and collection procedures are associated with acceptable risks and complication rates in elderly donors.  相似文献   

8.
To investigate potential predictive parameters for successful collection of autologous peripheral blood stem cells (PBSC), 60 consecutive first mobilization attempts and 145 leukapheresis procedures for patients with hematologic malignancies (multiple myeloma: n = 20; acute leukemia: n = 27; lymphoma: n = 13) were analyzed. All patients underwent chemotherapy and granulocyte-colony stimulating factor combined mobilization protocols. PBSC collection began when white blood cell (WBC) count rebounded to >1.0 × 10(9)/L. Poor mobilization (PM) was defined as <2.0 × 10(6)/kg of ideal body weight CD34+ cells were collected from at least three leukapheresis procedures. PM incidence was 15% (9/60). On the first apheresis day, CD34+ cell yield was closely associated with the final yield. Failure to reach the first-day target of 0.7 × 10(6) CD34+ cells/kg was perfectly matched with PM. Circulating WBC and monocyte (MO) counts preleukapheresis had a positive correlation with final CD34+ cell yield. For the first-day apheresis target, receiver operator characteristic (ROC) curve analysis showed that MO count had an area under the curve (AUC) of 0.806 (P = 0.004). An optimal predictive cutoff value for MO count was 1.455 × 10(9)/L with both high sensitivity and specificity of 0.739 and 0.899, respectively. Patients who began leukapheresis with an MO count of ≥1.455 × 10(9)/L accomplished more successful first-day collections than those of their counterparts (P = 0.021). ROC analysis also showed preapheresis WBC count had a high AUC of 0.768 (P = 0.012). However, we could not find a WBC indicator to initiate leukapheresis. In conclusion, circulating MO count after mobilization is a helpful parameter to determine the optimal time point for starting a PBSC collection.  相似文献   

9.
BACKGROUND: The mechanism of HPC mobilization in humans is unclear. In this study, the relationship between PBPC mobilization and blood levels of G-CSF, endogenous cytokines (IL-8, SCF, thrombopoietin [TPO]), and the vascular cell adhesion molecule-1 (VCAM-1) was analyzed in patients with malignancy who were undergoing a PBPC mobilization regimen. STUDY DESIGN AND METHODS: Fifty-four patients with multiple myeloma (MM) and 29 with breast cancer (BC) underwent a mobilization regimen combining conventional chemotherapy and G-CSF up to the last day of PBPC collection. The CD34+ cell count was determined on each day when leukapheresis was scheduled. Venous blood samples (n = 117) were drawn before apheresis for CD34+ cell count (flow cytometry) and cytokine (G-CSF, IL-8, SCF, TPO) and VCAM-1 measurements (ELISA). RESULTS: In multiple regression analysis, SCF was a significant determinant of CD34+ cell levels in BC patients (R = 0.50, p = 0.03) and of VCAM-1 levels in MM patients (R = 0.32, p = 0.02). SCF was negatively correlated with CD34+ cell count in patients with BC. SCF and VCAM-1 blood levels were correlated in MM and BC patients. CONCLUSION: SCF and VCAM-1 could play a role in PBPC mobilization in patients and could be useful measures by which to study patients undergoing a mobilization regimen.  相似文献   

10.
An allogeneic transplantation programme using immunoselected blood progenitor and bone marrow CD34+ cells has been established. Thirteen healthy HLA-matched, MLC negative sibling donors received two doses of 5 micrograms kg-1 G-CSF (s.c. daily) for 5 days. On days 4 and 5, large-volume mononuclear cell aphereses were performed (COBE Spectra) and on day 5 one unit of autologous blood was obtained. Mononuclear cells were pooled and cryopreserved after CD34+ cell-immunoselection on day 5. Bone marrow (BM) of the same donors was procured under routine conditions 10-45 days later (median: 27 days). The final graft consisted of blood CD34+ cells with either complete BM (n = 5) or immunoselected BM CD34+ cells (n = 8). The present paper describes the progenitor cell mobilization and apheresis protocol and analyzes the cell loss by BM and peripheral blood progenitor cell (PBPC) donation. Considerably larger amounts of mononuclear cells (CD45+), T-lymphocytes (CD3+) and platelets were lost by the apheresis as compared to bone marrow without apparent immediate clinical consequences for the donors. Owing to cross-cellular contamination of the apheresis concentrate, blood platelet count (PC) significantly decreased (mean PC after the second apheresis 116 x 10 microL-1); furthermore on average 3.04 x 10(10) CD3+ cells were removed by two apheresis sessions. This loss did not lead to long-term total lymphocyte count changes (2370 microL-1 versus 1889 microL-1) as observed during the long-term follow-up of 7/13 donors (mean 290 days). Subjectively, the PBPC collections were better accepted than BM donations in all but one family donor.  相似文献   

11.
BACKGROUND: It has been previously reported that the number of circulating immature cells (CIC) in peripheral blood (PB) estimates the number of CD34+ cells collected in G-CSF plus chemotherapy-induced PBPC mobilization. The correlation of CIC counts in PB with CD34+ cell yield and its usefulness was evaluated in G-CSF-induced PBPC mobilization for healthy donors. STUDY DESIGN AND METHODS: CIC counts in PB and CD34+ cell counts in the apheresis product from 122 collections were assessed, and the relationship between these two variables was evaluated with the Pearson rank correlation analysis, the chi-squared test, and the U-test. RESULTS: CIC counts were correlated weakly with the number of CD34+ cells per L of blood processed in the apheresis product (Pearson rank correlation analysis; r=0.357, p<0.0001). When a level of 1.7 x 10(9) CICs per L was selected as a cutoff value, the sensitivity and specificity for collecting more than 20 x 10(6) CD34+ cells per L of blood processed were 63.6 and 77.5 percent, respectively. CONCLUSION: The present study suggests that the number of CICs in PB may estimate the number of CD34+ cells collected. The data indicate that CIC counts above 1.7 x 10(9) per L can be used as a good predictor for PBPC collections containing more than 20 x 10(6) CD34+ cells per L of blood processed in a single apheresis procedure.  相似文献   

12.
Mobilization failure is a major concern in patients undergoing hematopoietic cell transplantation, especially in an autologous setting, as almost all donor harvests can be accomplished with granulocyte-colony stimulating factor (G-CSF) alone. Poor mobilizers, defined as those with a peripheral blood CD34+ cell count ≤20 cells/μl after mobilization preceding apheresis is a significant risk factor for mobilization failure. We recommend preemptive plerixafor plus G-CSF (filgrastim, 10?μg/kg daily) as a first mobilization strategy, which yields sufficient peripheral blood progenitor cells (PBPCs) in almost all patients and avoids otherwise unnecessary remobilization. Preemptive plerixafor is administered in patients with a day-4 peripheral blood CD34+ count <15, depending on the disease and the target PBPC amount. Cyclophosphamide is reserved for patients who fail the first PBPC collection. We recommend second mobilization for patients who could not achieve a sufficient PBPC amount with the first mobilization. In these patients, a second attempt with plerixafor plus G-CSF or mobilization with plerixafor in combination with cyclophosphamide and G-CSF is recommended. Increased dose and/or twice daily administration of G-CSF can be considered.  相似文献   

13.
BACKGROUND: A single injection of pegfilgrastim has been shown to be equivalent to daily filgrastim in enhancing neutrophil recovery after chemotherapy, whereas the experiences with pegfilgrastim in mobilization of peripheral blood progenitor cells (PBPCs) are limited. STUDY DESIGN AND METHODS: Forty unselected patients with lymphoma or multiple myeloma were treated with different chemotherapy regimens followed by 6 mg of pegfilgrastim for mobilization of autologous PBPCs. Patients with an inadequate mobilization (blood CD34+ cells 相似文献   

14.
BACKGROUND: Quantification of peripheral blood (PB) CD34+ cells is commonly used to plan peripheral blood progenitor cell (PBPC) collection but is time-consuming. Sysmex has developed a hematology analyzer that can quickly identify a population of immature hematopoietic cells (HPCs) according to cell size, cell density, and differential lysis resistance, which may indicate the presence of PBPCs in PB. This prospective study has evaluated the potential of such method to predict the PBPC mobilization. STUDY DESIGN AND METHODS: A total of 141 patients underwent PBPC mobilization. PB HPCs and PB CD34+ cells were simultaneously quantified with a hematology analyzer (SE2100, Sysmex) and flow cytometry, respectively. The number of blood volumes processed was then based on PB CD34+ cell concentration. RESULTS: The optimal PB HPC level able to predict a minimal level of 10 x 10(6) PB CD34+ cells per L was 5 x 10(6) per L with positive and negative predictive values of 0.93 and 0.36 percent, respectively. For this cutoff point, sensitivity and specificity were 0.81 and 0.65, respectively. The median number of blood volumes processed according to the PB CD34+ cell count allowed us to perform only one apheresis procedure for a majority of patients. CONCLUSION: PB HPC quantification is very useful to quickly determine the initiation of PBPC apheresis especially for patients with higher concentrations. For patients exhibiting a lower HPC count (<5 x 10(6)/L), other parameters such as a CD34 test may be needed. Such a policy associated with a length of apheresis adapted to the richness in the PB CD34+ cells allows for optimizing the organization of centers with an improvement in patient comfort and economical savings.  相似文献   

15.
Factors affecting PBSC mobilization and collection in healthy donors.   总被引:3,自引:0,他引:3  
Peripheral blood stem cells are widely used as stem cell source for allografting. Progenitor cells can be effectively mobilized into peripheral blood in majority of healthy donors with a brief administration of G-CSF. A mobilization course in 111 donors (median age 40years) was retrospectively studied and the factors influencing the efficacy of mobilization were analyzed. The median number of CD34+ cells per kg recipient weight 5.1x10(6) was obtained after a median of two aphereses. The target cell dose (4.0x10(6)/kg) was reached in 69% of donors. Circulating CD34+ count and CD34+ yield were negatively associated with donor's age. Other independent factors associated with superior yield were precollection platelet and WBC counts. In multivariate analysis only CD34+ precount predicted for CD34+ yield. G-CSF had an acceptable short-term safety profile. Our data confirm that apheresis is a safe procedure in healthy including aged donors and suggest that older donors could be poorer mobilizers than younger.  相似文献   

16.
BACKGROUND: Limited information is available on the mobilization kinetics of autologous PBPCs after induction with various chemotherapy regimens. With PBPC mobilization in patients with breast cancer used as a model for chemotherapy-induced PBPC recruitment, the kinetics of progenitor cells mobilized either with cyclophosphamide (CY) or epirubicin/paclitaxel (EPI-TAX) followed by the administration of G-CSF was compared. STUDY DESIGN AND METHODS: The study included a total of 86 patients with breast cancer (stage II-IV) receiving either CY (n = 39) or EPI-TAX (n = 47), both followed by G-CSF support. The progenitor cell content in peripheral blood and apheresis components was monitored by flow cytometric enumeration of CD34+ cells. PBPC collection was started when the threshold of >20 x 10(6) CD34+ cells per L of peripheral blood was reached. RESULTS: The PBPC collection was begun a median of 9 days after the administration of EPI-TAX followed by G-CSF support, as compared to a median of 13 days after mobilization with CY plus G-CSF. After treatment with CY, the total numbers of PBPCs peaked on Day 1 of apheresis, and they rapidly declined thereafter. In contrast, treatment with EPI-TAX followed by G-CSF administration led to a steady mobilization of CD34+ cells during leukapheresis. The difference in the mobilization patterns with CY and EPI-TAX resulted in a greater yield of CD34+ cells per L of processed blood volume. Compared to EPI-TAX, mobilization with CY required the overall processing of 30 percent less whole-blood volume to reach the target yield of > or = 10 x 10(6) CD34+ cells per kg of body weight. After a median of three apheresis procedures, however, both CY+G-CSF and EPI-TAX+G-CSF were equally effective in obtaining this target yield. CONCLUSION: These results imply that specific PBPC mobilization as part of a given chemotherapy regimen should be taken into consideration before the planning of a PBPC harvest.  相似文献   

17.
No specific characteristics have been identified as predictors of peripheral blood stem cells (PBSC) mobilization in healthy donors. In this study, clinical characteristics and laboratory data for 122 healthy donors who underwent apheresis on day 5 of treatment with recombinant granulocyte colony-stimulating factor (G-CSF) were retrospectively analyzed for correlations with CD34(+) cell mobilization. The variables that were analyzed included age, sex, body weight, basal complete blood count, and maximum white blood count (WBC) before apheresis, G-CSF type, and dosage. Median age and body weight were 42.5 years (range 16-65) and 72.5 kg (range 47-121), respectively. By univariate analysis, male sex (P = 0.007), body weight (< or = 70 vs. >70 kg, P = 0.04), and donor's age (< or = 50 vs. > 50 years; P = 0.015) were correlated with the number of CD34(+) cells mobilized. By multivariate analysis, donor's age and male sex were the only two variables that significantly predicted a high CD34(+) cell level. In conclusion, our data suggest that male sex and younger age are the only factors that significantly affect CD34(+) mobilization in healthy donors.  相似文献   

18.
BACKGROUND: Current regimens for peripheral blood progenitor cell (PBPC) mobilization in patients with multiple myeloma are based on daily subcutaneous injections of granulocyte-colony-stimulating factor (G-CSF) starting shortly after cytotoxic therapy. Recently a polyethylene glycol-conjugated G-CSF (pegfilgrastim) was introduced that has a substantially longer t(1/2) than the original formula. STUDY DESIGN AND METHODS: The use of pegfilgrastim was examined at two dose levels for PBPC mobilization in patients with Stage II or III multiple myeloma. Four days after cytotoxic therapy with cyclophosphamide (4 g/m(2)), a single dose of either 6 mg pegfilgrastim (n = 15) or 12 mg pegfilgrastim (n = 15) or daily doses of 8 microg per kg unconjugated G-CSF (n = 15) were administered. The number of circulating CD34+ cells was determined during white blood cell (WBC) recovery, and PBPC harvesting was performed by large-volume apheresis. RESULTS: Pegfilgrastim was equally potent at 6 and 12 mg with regard to mobilization and yield of CD34+ cells. No dose dependence was observed because CD34+ cell concentration peaks were 131 and 85 per microL, respectively, and CD34+ cell yield was 10.2 x 10(6) and 7.4 x 10(6) per kg of body weight, respectively. Pegfilgrastim in either dose was associated with a more rapid WBC recovery (p = 0.03) and an earlier performance of the first apheresis procedure (p < 0.05) in comparison to unconjugated G-CSF. No difference regarding CD34+ cell maximum and yield could be observed. CONCLUSION: A single dose of 6 mg pegfilgrastim is equally potent as 12 mg for mobilization and harvest of PBPCs in patients with multiple myeloma. Because no dose dependency was seen at these dose levels, this might be also true for even smaller doses.  相似文献   

19.
BACKGROUND: Predictive factors of the response to rHuG-CSF in normal donors have not been extensively studied. STUDY DESIGN AND METHODS: We analyzed factors influencing CD34+ cell yield in the 1st day of collection in 261 healthy donors from the Spanish National Donor Registry. The median age was 38 years (range, 2-72). The median dose of rHuG-CSF was 10 microg per kg per day (range, 5-20) over 4 days. In 103 donors (40%), <4 x 10(6) per kg CD34+ cells were collected. The variables that were analyzed included age, sex, weight, basal complete blood cell count, dose, type of rHuGCSF and schedule of administration, and maximum WBC count before apheresis. RESULTS: By univariate analysis, the maximum WBC count (<50 vs. >or=50 x 10(9)/L, p = 0.004), advanced age (p = 0.008), and number of daily rHuG-CSF doses (one vs. two; p = 0.01) correlated with the number of CD34+ cells collected. By multivariate analysis, donors age (<38 vs. >or=38 years; p = 0.014) and a single daily dose of rHuG-CSF (p = 0.005) were the two variables that significantly predicted a low CD34+ cell yield. CONCLUSION: Donors' age, with a threshold of 38 years or more, and the rHuG-CSF schedule are the factors that significantly affected CD34+ cell mobilization and collection in healthy donors.  相似文献   

20.
BACKGROUND: Individual adaptation of processed patient's blood volume (PBV) should reduce number and/or duration of autologous peripheral blood progenitor cell (PBPC) collections. STUDY DESIGN AND METHODS: The durations of leukapheresis procedures were adapted by means of an interim analysis of harvested CD34+ cells to obtain the intended yield of CD34+ within as few and/or short as possible leukapheresis procedures. Absolute efficiency (AE; CD34+/kg body weight) and relative efficiency (RE; total CD34+ yield of single apheresis/total number of preapheresis CD34+) were calculated, assuming an intraapheresis recruitment if RE was greater than 1, and a yield prediction models for adults was generated. RESULTS: A total of 196 adults required a total of 266 PBPC collections. The median AE was 7.99 x 10(6), and the median RE was 1.76. The prediction model for AE showed a satisfactory predictive value for preapheresis CD34+ only. The prediction model for RE also showed a low predictive value (R2 = 0.36). Twenty-eight children underwent 44 PBPC collections. The median AE was 12.13 x 10(6), and the median RE was 1.62. Major complications comprised bleeding episodes related to central venous catheters (n = 4) and severe thrombocytopenia of less than 10 x 10(9) per L (n = 16). CONCLUSION: A CD34+ interim analysis is a suitable tool for individual adaptation of the duration of leukapheresis. During leukapheresis, a substantial recruitment of CD34+ was observed, resulting in a RE of greater than 1 in more than 75 percent of patients. The upper limit of processed PBV showing an intraapheresis CD34+ recruitment is higher than in a standard large-volume leukapheresis. Therefore, a reduction of individually needed PBPC collections by means of a further escalation of the processed PBV seems possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号