首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
OBJECTIVE: Charcot-Marie-Tooth (CMT) neuropathy with visual impairment due to optic atrophy has been designated as hereditary motor and sensory neuropathy type VI (HMSN VI). Reports of affected families have indicated autosomal dominant and recessive forms, but the genetic cause of this disease has remained elusive. METHODS: Here, we describe six HMSN VI families with a subacute onset of optic atrophy and subsequent slow recovery of visual acuity in 60% of the patients. Detailed clinical and genetic studies were performed. RESULTS: In each pedigree, we identified a unique mutation in the gene mitofusin 2 (MFN2). In three families, the MFN2 mutation occurred de novo; in two families the mutation was subsequently transmitted from father to son indicating autosomal dominant inheritance. INTERPRETATION: MFN2 is a mitochondrial membrane protein that was recently reported to cause axonal CMT type 2A. It is intriguing that MFN2 shows functional overlap with optic atrophy 1 (OPA1), the protein underlying the most common form of autosomal dominant optic atrophy, and mitochondrial encoded oxidative phosphorylation components as seen in Leber's hereditary optic atrophy. We conclude that autosomal dominant HMSN VI is caused by mutations in MFN2, emphasizing the important role of mitochondrial function for both optic atrophies and peripheral neuropathies.  相似文献   

2.
We describe a founder mutation in the gene encoding ganglioside-induced differentiation associated-protein 1 (GDAP1), leading to amino acid change p.H123R, as a common cause of autosomal dominant axonal Charcot-Marie-Tooth (CMT2) neuropathy in Finland. The mutation explains up to 14 % of CMT2 in Finland, where most patients with axonal neuropathy have remained without molecular diagnosis. Only three families out of 28 were found to carry putative disease mutations in the MFN2 gene encoding mitofusin 2. In addition, the MFN2 variant p.V705I was commonly found in our patients, but we provide evidence that this previously described mutation is a common polymorphism and not pathogenic. GDAP1-associated polyneuropathy caused predominantly a mild and slowly progressive phenotype. Besides distal leg muscle weakness, most patients showed mild proximal weakness, often with asymmetry and pes cavus. Our findings broaden the understanding of GDAP1 mutations in CMT2 phenotypes and provide support for the use of whole-exome sequencing in CMT gene diagnostics.  相似文献   

3.
Mitofusin‐2 (MFN2) mutations are the most common cause of autosomal dominant axonal Charcot‐Marie‐Tooth disease (CMT, type 2A), sometimes complicated by additional features such as optic atrophy (CMT6) and upper motor neuron involvement (CMT5). Several pathogenic mutations are reported, mainly acting in a dominant fashion, although few sequence variants behaved as recessive or semidominant in rare homozygous or compound heterozygous patients. We describe a 49‐year‐old woman with CMT5 associated with compound heterozygosity for two MFN2 variants, one already reported missense mutation (c.748C>T, p.R250W) and a novel nonsense sequence change (c.1426C>T, p.R476*). Her mother, carrying the p.R250W variant, had very late‐onset minimal axonal neuropathy, whilst the father harboring the nonsense sequence change had neither clinical nor electrophysiological neuropathy. The missense mutation is likely pathogenic according to in silico analyses and a previous report, while the nonsense variant is predicted to behave as a null allele. The p.R250W variant behaves as semidominant by causing only a mild, almost subclinical, neuropathy when heterozygous; the nonsense mutation in the father was phenotypically silent, suggesting that haploinsufficiency for MFN2 is not disease causative, but was deleterious in the daughter who had only one active mutated MFN2 allele.  相似文献   

4.
Mitofusin 2, a large transmembrane GTPase located in the outer mitochondrial membrane, promotes membrane fusion and is involved in the maintenance of the morphology of axonal mitochondria. Mutations of the gene encoding mitofusin 2 (MFN2) have recently been identified as the cause of approximately one‐third of dominantly inherited cases of the axonal degenerative forms of Charcot–Marie–Tooth disease (CMT type 2A) and of rarer variants. The latter include a severe, early‐onset axonal neuropathy, which may occur in autosomal dominant or recessive forms, as well as some instances associated with pyramidal tract involvement (CMT type 5), with optic atrophy (CMT type 6), and, occasionally, with alterations of cerebral white matter. All individuals with a dominantly or recessively inherited or otherwise unexplained, chronic progressive axonal degenerative polyneuropathy should be tested for mutations of MFN2.  相似文献   

5.
Either dominantly inherited mutations in MFN2 encoding mitofusin 2 or GDAP1 encoding ganglioside-induced differentiation associated protein 1 may be associated with mild neuropathy. The proband, a 41-year-old woman, and her daughter present a severe axonal form of Charcot-Marie-Tooth (CMT) disease. Both are heterozygous for the well-described mild variant p.R120W in GDAP1, which was transmitted by the pauci symptomatic proband's mother. Given that they had an early onset in the first decade and delayed walking acquisition, the other genes implicated in axonal forms of CMT disease were analyzed. A second mutation truncating MFN2 (p.Val160fsX26) was found in the proband and her daughter. This mutation was transmitted by the proband's father who has normal neurological examination. The proband underwent two nerve biopsies which showed an axonal degeneration, myelin modifications, and intra-axonal mitochondria with distorted cristae. Such abnormal mitochondria have been reported in cases with autosomal dominant MFN2 mutations and in one patient with an autosomal recessive GDAP1 mutation. Our two cases show that heterozygous truncation of MFN2, which is silent at least until the sixth decade, when combined with the mild p.R120W GDAP1 variant, leads to a severe neuropathy. This supports the emerging hypothesis of cumulative effects of MFN2 and GDAP1 mutation.  相似文献   

6.
Charcot‐Marie‐Tooth disease (CMT) comprises a group of heterogeneous peripheral axonopathies affecting 1 in 2,500 individuals. As mutations in several genes cause axonal degeneration in CMT type 2, mutations in mitofusin 2 (MFN2) account for approximately 90% of the most severe cases, making it the most common cause of inherited peripheral axonal degeneration. MFN2 is an integral mitochondrial outer membrane protein that plays a major role in mitochondrial fusion and motility; yet the mechanism by which dominant mutations in this protein lead to neurodegeneration is still not fully understood. Furthermore, future pre‐clinical drug trials will be in need of validated rodent models. We have generated a Mfn2 knock‐in mouse model expressing Mfn2R94W, which was originally identified in CMT patients. We have performed behavioral, morphological, and biochemical studies to investigate the consequences of this mutation. Homozygous inheritance leads to premature death at P1, as well as mitochondrial dysfunction, including increased mitochondrial fragmentation in mouse embryonic fibroblasts and decreased ATP levels in newborn brains. Mfn2R94W heterozygous mice show histopathology and age‐dependent open‐field test abnormalities, which support a mild peripheral neuropathy. Although behavior does not mimic the severity of the human disease phenotype, this mouse can provide useful tissues for studying molecular pathways associated with MFN2 point mutations.  相似文献   

7.
Mutations in the Mitofusin 2 (MFN2) gene have been identified in patients with autosomal dominant axonal motor and sensory neuropathy or Charcot–Marie‐Tooth 2A (CMT2A). Here we describe clinical and pathological changes in an adult patient with sporadic hereditary sensory and autonomic neuropathy (HSAN) due to an MFN2 mutation. The patient was a 53‐year‐old man who had sensory involvement and anhidrosis in all limbs without motor features. The electrophysiological assessment documented severe axonal sensory neuropathy. The sural nerve biopsy confirmed the electrophysiological findings, revealing severe loss of myelinated and unmyelinated fibers with regeneration clusters. Genetic analysis revealed the previously identified mutation c.776 G > A in MFN2. Our report expands the phenotypic spectrum of MFN2‐related diseases. Sequencing of MFN2 should be considered in all patients presenting with late‐onset HSAN.  相似文献   

8.
Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with duplication of chromosome 17p11.2-p12, whereas hereditary neuropathy with liability to pressure palsies (HNPP), which is an autosomal dominant neuropathy showing characteristics of recurrent pressure palsies, is associated with 17p11.2-p12 deletion. An altered gene dosage of PMP22 is believed to the main cause underlying the CMT1A and HNPP phenotypes. Although CMT1A and HNPP are associated with the same locus, there has been no report of these two mutations within a single family. We report a rare family harboring CMT1A duplication and HNPP deletion.  相似文献   

9.
Hereditary disorders of the peripheral nerves constitute a group of frequently encountered neurological diseases. Charcot-Marie-Tooth neuropathy type 1 (CMT1) is genetically heterogeneous and characterized by demyelination with moderately to severely reduced nerve conduction velocities, absent muscle stretch reflexes and onion bulb formation. Genetic loci for CMT1 map to chromosome 17 (CMT1A), chromosome 1 (CMT1B), and another unknown autosome (CMT1C). CMT1A is most often associated with a tandem 1.5-megabase (Mb) duplication in chromosome 17p11.2-12, or in rare patients may result from a point mutation in the peripheral myelin protein-22 (PMP22) gene. CMT1 B result from point mutations in the myelin protein zero (Po or MPZ) gene. The molecular defect in CMT1 C is unknown. Mutations in the early growth response 2 gene (EGR2) are also associated with demyelinating neuropathy. Other rare forms of demyelinating peripheral neuropathies map to chromosome 8q, 10q, and 11q. X-linked Charcot-Marie-Tooth neuropathy (CMTX), which has clinical features similar to CMT1, is associated with mutations in the connexin32 gene. Charcot-Marie-Tooth neuropathy type 2 (CMT2) is characterized by normal or mildly reduced nerve conduction velocity with decreased amplitude and axonal loss without hypertrophic features. One form of CMT2 maps to chromosome 1 p36 (CMT2A), another to chromosome 3p (CMT2B) and another to 7p (CMT2D). Dejerine-Sottas disease (DSD), also called hereditary motor and sensory neuropathy type III (HMSNIII), is a severe, infantile-onset demyelinating polyneuropathy that may be associated with point mutations in either the PMP22 gene or the Po gene and shares considerable clinical and pathological features with CMT1. Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder that results in a recurrent, episodic demyelinating neuropathy. HNPP is associated with a 1.5-Mb deletion in chromosome 17p11.2-12 and results from reduced expression of the PMP22 gene. CMT1A and HNPP are reciprocal duplication/deletion syndromes originating from unequal crossover during germ cell meiosis.  相似文献   

10.
11.
Charcot‐Marie‐Tooth disease (CMT) constitutes a heterogeneous group affecting motor and sensory neurons in the peripheral nervous system. MFN2 mutations are the most common cause of axonal CMT. We describe the clinical and mutational spectra of CMT patients harboring MFN2 mutations in Japan. We analyzed 1,334 unrelated patients with clinically suspected CMT referred by neurological and neuropediatric departments throughout Japan. We conducted mutation screening using a DNA microarray, targeted resequencing, and whole‐exome sequencing. We identified pathogenic or likely pathogenic MFN2 variants from 79 CMT patients, comprising 44 heterozygous and 1 compound heterozygous variants. A total of 15 novel variants were detected. An autosomal dominant family history was determined in 43 cases, and the remaining 36 cases were reported as sporadic with no family history. The mean onset age of CMT in these patients was 12 ± 14 (range 0–59) years. We observed neuropathic symptoms in all patients. Some had optic atrophy, vocal cord paralysis, or spasticity. We detected a compound heterozygous MFN2 mutation in a patient with a severe phenotype and the co‐occurrence of MFN2 and PMP22 mutations in a patient with an uncommon phenotype. MFN2 is the most frequent causative gene of CMT2 in Japan. We present 15 novel variants and broad clinical and mutational spectra of Japanese MFN2‐related CMT patients. Regardless of the onset age and inheritance pattern, MFN2 gene analysis should be performed. Combinations of causative genes should be considered to explain the phenotypic diversity.  相似文献   

12.
BACKGROUND: Three loci for autosomal dominant hereditary motor and sensory neuropathy type I (HMSN I) or Charcot-Marie-Tooth disease type 1 (CMT1) have been identified on chromosomes 17p11.2 (CMT1A), 1q21-q23 (CMT1B), and 10q21.1-q22.1 (designated here as CMT1D). The genes involved are peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ), and the early growth response element 2 (EGR2), respectively. Probably a fourth locus (CMT1C) exists since some autosomal dominant HMSN I families have been excluded for linkage with the CMT1A and CMT1B loci. Four loci for autosomal dominant hereditary motor and sensory neuropathy type II (HMSN II) or Charcot-Marie-Tooth disease type 2 (CMT2) have been localized on chromosomes 1p35-p36 (CMT2A), 3q13-q22 (CMT2B), 7p14 (CMT2D), and 3p (HMSN-P). OBJECTIVE: To describe the clinical, electrophysiologic, and neuropathological features of a novel type of Charcot-Marie-Tooth disease. PATIENTS AND METHODS: We performed linkage studies with anonymous DNA markers flanking the known CMT1 and CMT2 loci. Patients and their relatives underwent clinical neurologic examination and electrophysiologic testing. In the proband, a sural nerve biopsy specimen was examined. RESULTS: Linkage studies excluded all known CMT1 and CMT2 loci. The clinical phenotype is mild and almost all affected individuals remain asymptomatic. Electrophysiologic and histopathological studies showed signs of a demyelinating neuropathy, but the phenotype is unusual for either autosomal dominant HMSN I or HMSN II. CONCLUSION: Our findings indicate that the HMSN in this family represents a novel clinical and genetic entity.  相似文献   

13.
Mutations in the ganglioside-induced-differentiation-associated protein 1 gene (GDAP1) can cause Charcot-Marie-Tooth (CMT) disease with demyelinating (CMT4A) or axonal forms (CMT2K and ARCMT2K). Most of these mutations present a recessive inheritance, but few autosomal dominant GDAP1 mutations have also been reported. We performed a GDAP1 gene screening in a clinically well-characterized series of 81 index cases with axonal CMT neuropathy, identifying 17 patients belonging to 4 unrelated families in whom the heterozygous p.R120W was found to be the only disease-causing mutation. The main objective was to fully characterize the neuropathy caused by this mutation. The clinical picture included a mild-moderate phenotype with onset around adolescence, but great variability. Consistently, ankle dorsiflexion and plantar flexion were impaired to a similar degree. Nerve conduction studies revealed an axonal neuropathy. Muscle magnetic resonance imaging studies demonstrated selective involvement of intrinsic foot muscles in all patients and a uniform pattern of fatty infiltration in the calf, with distal and superficial posterior predominance. Pathological abnormalities included depletion of myelinated fibers, regenerative clusters and features of axonal degeneration with mitochondrial aggregates. Our findings highlight the relevance of dominantly transmitted p.R120W GDAP1 gene mutations which can cause an axonal CMT with a wide clinical profile.  相似文献   

14.
Charcot-Marie-Tooth (CMT) disease is among the most common inherited neurological disorders. Mutations in the gene mitofusin 2 (MFN2) cause the axonal subtype CMT2A, which has also been shown to be associated with optic atrophy, clinical signs of first motor neuron involvement, and early onset stroke. Mutations in MFN2 account for up to 20–30% of all axonal CMT type 2 cases. To further investigate the prevalence of MFN2 mutations and to add to the genotypic spectrum, we sequenced all exons of MFN2 in a cohort of 39 CMT2 patients. We identified seven variants, four of which are novel. One previously described change was co-inherited with a PMP22 duplication, which itself causes the demyelinating form CMT1A. Another mutation was a novel in frame deletion, which is a rare occurrence in the genotypic spectrum of MFN2 characterized mainly by missense mutations. Our results confirm a MFN2 mutation rate of ~15–20% in CMT2.  相似文献   

15.
Tang B  Liu X  Zhao G  Luo W  Xia K  Pan Q  Cai F  Hu Z  Zhang C  Chen B  Zhang F  Shen L  Zhang R  Jiang H 《Archives of neurology》2005,62(8):1201-1207
BACKGROUND: Charcot-Marie-Tooth (CMT) disease, the most common hereditary peripheral neuropathy, is highly clinically and genetically heterogeneous, and mutations in at least 18 genes have been identified. Recently, mutations in small heat shock protein 27 (Hsp27) were reported to cause CMT disease type 2F and distal hereditary motor neuropathy. OBJECTIVE: To investigate the frequency and phenotypic features of an Hsp27 mutation in Chinese patients with CMT disease. DESIGN: DNA samples from 114 unrelated patients with CMT disease were screened for mutations in Hsp27 by polymerase chain reaction and direct sequencing. A cosegregated study was performed using the MbiI restriction endonuclease, and 50 healthy control subjects were analyzed. Haplotype analysis was performed using 5 short tandem repeat markers to analyze whether the families with the same mutation probably had a common ancestor. RESULTS: One missense mutation, C379T, was detected in 4 autosomal dominant families with CMT disease type 2, and haplotype analysis indicated that the 4 families probably had a common founder. The frequency of the Hsp27 mutation is 0.9% (1/111) in Chinese patients with CMT disease in our study, and the phenotypes were characterized by later onset (age, 35-60 years) and mild sensory impairments. Electrophysiological findings showed moderately to severely slowed nerve conduction velocities in lower limb nerves but normal or mildly reduced velocities in upper limb nerves. CONCLUSIONS: To our knowledge, this is the first report of an Hsp27 mutation in the People's Republic of China. The C379T mutation in Hsp27 also causes CMT disease type 2, except for distal hereditary motor neuropathy, and the phenotypes are distinct from the family with CMT disease type 2F described previously. A mutation of Hsp27 may be uncommon in Chinese patients with CMT disease.  相似文献   

16.
Charcot‐Marie‐Tooth type 2A disease (CMT2A) is an inherited peripheral neuropathy mainly caused by mutations in the MFN2 gene coding for the mitochondrial fusion protein mitofusin 2. Although the disease is mainly inherited in a dominant fashion, few cases of early‐onset autosomal recessive CMT2A (AR‐CMT2A) have been reported in recent years. In this study, we characterized the structure of the mitochondrial network in cultured primary fibroblasts obtained from AR‐CMT2A family members. The patient‐derived cells showed an increase of the mitochondrial fusion with large connected networks and an increase of the mitochondrial volume. Interestingly, fibroblasts derived from the two asymptomatic parents showed similar changes to a lesser extent. These results support the hypothesis that AR‐CMT2A‐related MFN2 mutations acts through a semi‐dominant negative mechanism and suggest that other biological parameters might show mild alterations in asymptomatic heterozygote AR‐CMT2A patients. Such alterations could be useful biomarkers helping to distinguish MFN2 mutations from variants, a growing challenge with the advent of next generation sequencing into routine clinical practice.  相似文献   

17.
Hereditary neuropathies are classified into several subtypes according to clinical, electrophysiologic and pathologic findings. Recent genetic studies have revealed their phenotypic and genetic diversities. In the primary peripheral demyelinating neuropathies (CMT1), at least 15 genes have been associated with the disorders; altered dosage or point mutation of PMP22, GJB1, MPZ, EGR2, MTMR2, NDRG1, PRX, SOX10, GDAP1 and MTMR13/SBF2. In the primary peripheral axonal neuropathies (CMT2), at least 10 genes have been associated with these disorders; NEFL, KIF1B, MFN2, GAN1, LMNA, RAB7, GARS, TDP1, APTX, and SETX. In addition, some mutations in GJB1, MPZ, GDAP1 and NEFL also present with clinical and electrophysiologic findings of CMT2. Patients with TDP1, APTX or SETX mutations share common clinical findings; autosomal recessive inheritance, cerebellar ataxia, and axonal neuropathy. These genes are suspected to be related to DNA/RNA repair and induce cell death especially in neuronal cells. In addition to the above diseases, we have reported a new type of NMSNP (MIM# * 604484) characterized by proximal dominant neurogenic atrophy, obvious sensory nerve involvement and the gene locus on 3q12.3. Here, we summarize the genetic bases of hereditary neuropathies and attempt to highlight significant genotype-phenotype correlations with a special interest in nonsense-mediated mRNA decay pathway.  相似文献   

18.
Mutations in the HSPB1 gene are associated with Charcot‐Marie‐Tooth (CMT) disease type 2F (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN2). More than 18 pathogenic mutations spanning across the whole HSPB1 gene have been reported. Three family members with a novel p.P57S (c.169C>T) HSPB1 mutation resulting in a late onset axonal neuropathy with heterogeneous clinical and electrophysiological features are detailed. We systematically reviewed published case reports and case series on HSPB1 mutations. While a genotype‐phenotype correlation was not obvious, we identified a common phenotype, which included adult onset, male predominance, motor more frequently than sensory involvement, distal and symmetric distribution with preferential involvement of plantar flexors, and a motor and axonal electrophysiological picture.  相似文献   

19.
Mutations of the mitofusin 2 (MFN2) gene have been reported to be the most common cause of the axonal form of Charcot-Marie-Tooth disease (CMT). The aim of this study was to describe a de novo MFN2 p.R104W mutation and characterize the associated phenotype. We screened the entire coding region of MFN2 gene and characterized its clinical phenotype, nerve conduction studies and sural nerve biopsy. Neuropsychological tests and brain MRI were also performed. A de novo mutation was found in exon 4 (c.310C > T; p.R104W). In addition to a severe and early onset axonal neuropathy, the patient presented learning problems, obesity, glucose intolerance, leukoencephalopathy, brain atrophy and evidence of myelin involvement and mitochondrial structural changes on sural nerve biopsy. These results suggest that MFN2 p.R104W mutation is as a hot-spot for MFN2 gene associated to a large and complex range of phenotypes.  相似文献   

20.
Hereditary peripheral neuropathies are clinically and genetically heterogeneous and include the most common motor and sensory forms (HMSN) as well as the rarer pure motor and pure sensory phenotypes. As a group, Charcot-Marie-Tooth (CMT) disease and related neuropathies (Déjérine-Sottas disease [DSD], congenital hypomyelinating neuropathy [CHN] and hereditary neuropathy with liability to pressure palsies [HNPP]) represent the most common inherited peripheral nerve diseases as well as one of the most common human inherited disorders with a prevalence of ∼20–40:100,000. During the last decade, advances in molecular genetics have greatly increased our understanding of these disorders and significantly changed the clinical approach to them by providing powerful molecular tools for diagnosis. The most common form is demyelinating CMT (CMT1). Based on genetic location and the gene involved, CMT1 is further subcategorized into autosomal dominant (AD) CMT1A (PMP22, 17p11.2) and CMT1B (MPZ, 1q21.2), and X-linked dominant CMTX (Cx32, Xq13.1). Approx. 3/4 of CMT1 patients belong to the CMT1A subgroup and carry a 1.5-Mb duplication on chr. 17p11.2 encompassing the myelin protein PMP22 gene. Given the high duplication rate in sporadic cases, the diagnosis of CMT1A should be considered even in the absence of a family history. Furthermore, the reciprocal deletion of the CMT1A 1.5-Mb tract is commonly (∼80%) observed in HNPP patients. Altogether, detection of these relatively common molecular abnormalities allows diagnosis in the vast majority of CMT1 or HNPP patients. Patients who do not have the CMT1A duplication should be screened initially for Cx32 mutations which are the next most frequent cause of CMT1 accounting for ∼10% of patients. Approx. 4% of cases belong to the CMT1B subgroup, harboring mutations in the myelin protein P0 gene (MPZ). Mutations in the PMP22 gene can be found in a minority of CMT1 patients. Of the remaining cases, some have been demonstrated to carry mutations in the EGR2 gene. Interestingly, mutations in the PMP22, MPZ and EGR2 genes can also cause the more severe early-onset variants DSD and CHN. A number of loci have been linked to the rare autosomal recessive forms of CMT1. Very recently, mutations in the MTMR2 and NDRG1 genes have been associated with two distinct phenotypes, AR-CMT1 with myelin outfoldings (CMT4B) and HMSN-Lom, respectively. Approx. 20–30% of CMT patients exhibit the axonal type CMT2. For the majority of these patients, no molecular test is currently available. Although several loci have been associated with this form, only one disease gene, NF-L on chr. 8p21, has been thus far identified. However, Cx32 mutations should always be excluded in female patients diagnosed with CMT2. Finally, recent evidences have indicated that mutations in the MPZ gene can be found in ∼5% of AD-CMT2 families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号