首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress is a potent risk factor for depression, yet the underlying mechanism is not clearly understood. In the present study, we explored the mechanism of development and maintenance of depression in a stress-induced animal model. Mice restrained for 2 h daily for 14 d showed distinct depressive behavior, and the altered behavior persisted for >3 months in the absence of intervention. Acute restraint induced a surge of oxidative stress in the brain, and stress-induced oxidative stress progressively increased with repetition of stress. In vitro, the stress hormone glucocorticoid generated superoxide via upregulation of NADPH oxidase. Consistently, repeated restraints increased the expression of the key subunits of NADPH oxidase, p47phox and p67phox, in the brain. Moreover, stressed brains markedly upregulated the expression of p47phox to weak restress evoked in the poststress period, and this molecular response was reminiscent of amplified ROS surge to restress. Pharmacological inhibition of NADPH oxidase by the NADPH oxidase inhibitor apocynin during the stress or poststress period completely blocked depressive behavior. Consistently, heterozygous p47phox knock-out mice (p47phox(+/-)) or molecular inhibition of p47phox with Lenti shRNA-p47phox in the hippocampus suppressed depressive behavior. These results suggest that repeated stress promotes depressive behavior through the upregulation of NADPH oxidase and the resultant metabolic oxidative stress, and that the inhibition of NADPH oxidase provides beneficial antidepression effects.  相似文献   

2.
目的 探讨NADPH氧化酶在单纯疱疹病毒1型(HSV-1)诱导的小鼠小胶质细胞(BV2)基质金属蛋白酶-9(MMP-9)表达中的作用. 方法 应用0.5、1.0mmol/LNADPH氧化酶特异性抑制剂Apocynin作用HSV-1诱导的BV2细胞,采用明胶酶谱分析细胞培养上清中MMP-9活性;RT-PCR检测NADPH氧化酶亚基p47phox及MMP-9 mRNA的表达;Dihydroethidium(DHE)测定细胞内活性氧簇(ROS)的产生量. 结果 与正常对照组比较,HSV-1诱导的BV2培养上清中MMP-9活性增加,p47phox、MMP-9 mRNA的表达增高,细胞内ROS水平增高约两倍以上,差异均有统计学意义(P<0.05);0.5 mmol/L Apocynin作用后可使上述变化减轻,但仍高于正常对照组,差异有统计学意义(P<0.05). 结论 NADPH氧化酶在HSV-1激活小胶质细胞MMP-9表达中可能起重要作用.  相似文献   

3.
The role of NADPH oxidase (NOX) and the regulatory subunit p47(phox) for hypoosmotic ROS generation was studied in cultured rat astrocytes and brain slices of wilde type and p47(phox) knock-out mice. Cultured rat astrocytes express mRNAs encoding for the regulatory subunit p47(phox), NOX1, 2, and 4, and the dual oxidases (DUOX)1 and 2, but not NOX3. Hypoosmotic (205 mosmol/L) swelling of cultured astrocytes induced a rapid generation of ROS that was accompanied by serine phosphorylation of p47(phox) and prevented by the NADPH oxidase inhibitor apocynin. Apocynin also impaired the hypoosmotic tyrosine phosphorylation of Src. Both, hypoosmotic ROS generation and p47(phox) serine phosphorylation were sensitive to the acidic sphingomyelinase inhibitors AY9944 and desipramine, the protein kinase C (PKC)zeta-inhibitory pseudosubstrate peptide, the NMDA receptor antagonist MK-801 and the intracellular Ca(2+) chelator BAPTA-AM. Also hypoosmotic exposure of wilde type mouse cortical brain slices increased ROS generation, which was allocated in part to the astrocytes and which was absent in presence of apocynin and in cortical brain slices from p47(phox) knock-out mice. Also ammonia induced a rapid ROS production in cultured astrocytes and brain slices, which was sensitive to apocynin. The data suggest that astrocyte swelling triggers a p47(phox)-dependent NADPH oxidase-catalyzed ROS production. The findings further support a close interrelation between osmotic and oxidative stress in astrocytes, which may be relevant to different brain pathologies including hepatic encephalopathy.  相似文献   

4.
The present study investigated whether thrombin can induce the production of reactive oxygen species (ROS) through activation of neuronal NADPH oxidase and whether this contributes to oxidative damage and consequently to neurodegeneration. Immunocytochemical and biochemical evidence demonstrated that, in neuron-enriched hippocampal cultures, thrombin induces neurodegeneration in a dose-dependent manner. In parallel, ROS production was evident as assessed by analyzing DCF and hydroethidine. Real-time PCR analysis, at various time points after thrombin treatment, also demonstrated that expression of NADPH oxidase subunits (p47(phox) and p67(phox)) occurs. In addition, Western blot analysis and double-label immunocytochemistry showed an up-regulation in the expression of cytosolic components (Rac 1 and p67(phox)), the translocation of cytosolic proteins (p47(phox) and p67(phox)) to the membrane, and the localization of gp91(phox) or p47(phox) expression in hippocampal neurons of cultures and CA1 layer. The thrombin-induced ROS production, protein oxidation, and loss of cultured hippocampal neurons were partially attenuated by an NADPH oxidase inhibitor and/or by several antioxidants. Collectively, the present study is the first to demonstrate that, in cultured hippocampal neurons, thrombin-induced neurotoxicity is, at least in part, caused by neuronal NADPH oxidase-mediated oxidative stress. This strongly suggests that thrombin can act as an endogenous neurotoxin, and inhibitors of thrombin and/or antioxidants can be useful agents for treating oxidative stress-mediated hippocampal neurodegenerative diseases, such as Alzheimer's disease.  相似文献   

5.
Superoxide production via NADPH oxidase has been shown to play a role in neurotoxicity, ischemic stroke, and possibly Parkinson's and Alzheimer's diseases. In addition, NADPH oxidase-dependent production of superoxide may be necessary for normal brain functions, including neuronal differentiation and neuronal plasticity. To improve our understanding of NADPH oxidase in the brain, we studied the localization of the various protein components of NADPH oxidase in the central nervous system of the adult mouse using immunohistochemistry. We detected staining for the cytoplasmic NADPH proteins, p40(phox), p47(phox), and p67(phox), as well as the membrane-associated NADPH oxidase proteins, p22(phox) and gp91(phox) in neurons throughout the mouse brain. Staining of each of the NADPH oxidase proteins was observed in neurons in all regions of the neuraxis, with particularly prominent localizations in the hippocampus, cortex, amygdala, striatum, and thalamus. The expression of NADPH oxidase proteins in neurons suggests the possibility that enzymatic production of superoxide by a NADPH oxidase may play a role in both normal neuronal function as well as neurodegeneration in the brain.  相似文献   

6.
Superoxide has been shown to be critical for hippocampal long-term potentiation (LTP) and hippocampus-dependent memory function. A possible source for the generation of superoxide during these processes is NADPH oxidase. The active oxidase consists of two membrane proteins, gp91phox and p22phox, and four cytosolic proteins, p40phox, p47phox, p67phox, and Rac. Upon stimulation, the cytosolic proteins translocate to the membrane to form a complex with the membrane components, which results in production of superoxide. Here, we determined the presence, localization, and functionality of a NADPH oxidase in mouse hippocampus by examining the NADPH oxidase proteins as well as the production of superoxide. All of the NADPH oxidase proteins were present in hippocampal homogenates and enriched in synaptoneurosome preparations. Immunocytochemical analysis of cultured hippocampal neurons indicated that all NADPH oxidase proteins were localized in neuronal cell bodies as well as dendrites. Furthermore, double labeling analysis using antibodies to p67phox and the presynaptic marker synaptophysin suggest a close association of the NADPH oxidase subunits with synaptic sites. Finally, stimulation of hippocampal slices with phorbol esters triggered translocation of the cytoplasmic NADPH oxidase proteins to the membrane and an increase in superoxide production that was blocked by inhibitors of NADPH oxidase. Taken together, our data suggest that NADPH oxidase is present in mouse hippocampus and might be the source of superoxide production required for LTP and memory function.  相似文献   

7.
Oxidative stress is widely recognized as a key mediator of degenerative processes in Parkinson's disease (PD). Recently, we demonstrated that the dopaminergic toxin MPP+ initiates oxidative stress to cause caspase-3-dependent apoptotic cell death in mesencephalic dopaminergic neuronal (N27) cells. In this study, we determined the source of reactive oxygen species (ROS) produced during MPP+-induced apoptotic cell death. In addition to mitochondria, plasma membrane NADPH oxidase is considered a major producer of ROS inside the cell. Here, we show that N27 neuronal cells express key NADPH oxidase subunits gp91phox and p67phox. We used structurally diverse NADPH oxidase inhibitors, aminoethyl-benzenesulfonylfluoride (AEBSF, 100-1000microM), apocynin (100-1000microM), and diphenylene iodonium (DPI, 3-30microM), to inhibit intrinsic NADPH oxidase activity in N27 cells. Flow cytometric analysis using the ROS-sensitive dye hydroethidine revealed that AEBSF blocked 300microM MPP+-induced ROS production for over 45min in N27 cells, in a dose-dependent manner. Further treatment with DPI, apocynin, and SOD also blocked MPP+-induced ROS production. In Sytox cell death assays, co-treatment with AEBSF, apocynin, or DPI for 24h significantly suppressed MPP+-induced cytotoxic cell death. Similarly, co-treatment with these inhibitors also significantly attenuated MPP+-induced increases in caspase-3 enzymatic activity. Furthermore, quantitative DNA fragmentation ELISA assays revealed that AEBSF, DPI, and apocynin rescue N27 cells from MPP+-induced apoptotic cell death. Together, these results indicate for the first time that intracellular ROS generated by NAPDH oxidase are present within the mesencephalic neuronal cells, and are a key determinant of MPP+-mediated dopaminergic degeneration in in vitro models of dopaminergic degeneration. This study supports a critical role of NADPH oxidase in the oxidative damage in PD; targeting this enzyme may lead to novel therapies for PD.  相似文献   

8.
NADPH oxidase has recently been identified as a promising new therapeutic target in ALS. Genetic deletion of NADPH oxidase (Nox2) in the transgenic SOD1G93A mutant mouse model of ALS was reported to increase survival remarkably by 97 days. Furthermore, apocynin, a widely used inhibitor of NADPH oxidase, was observed to dramatically extend the survival of the SOD1G93A ALS mice even longer to 113 days (Harraz et al. J Clin Invest 118: 474, 2008). Diapocynin, the covalent dimer of apocynin, has been reported to be a more potent inhibitor of NADPH oxidase. We compared the protection of diapocynin to apocynin in primary cultures of SOD1G93A-expressing motor neurons against nitric oxide-mediated death. Diapocynin, 10 μM, provided significantly greater protection compared to apocynin, 200 μM, at the lowest statistically significant concentrations. However, administration of diapocynin starting at 21 days of age in the SOD1G93A-ALS mouse model did not extend lifespan. Repeated parallel experiments with apocynin failed to yield protection greater than a 5-day life extension in multiple trials conducted at two separate institutions. The maximum protection observed was an 8-day extension in survival when diapocynin was administered at 100 days of age at disease onset. HPLC with selective ion monitoring by mass spectrometry revealed that both apocynin and diapocynin accumulated in the brain and spinal cord tissue to low micromolar concentrations. Diapocynin was also detected in the CNS of apocynin-treated mice. The failure to achieve significant protection with either apocynin or diapocynin raises questions about the utility for treating ALS patients.  相似文献   

9.
GM-1 ganglioside (GM-1) has been proposed as a new therapeutic agent against Alzheimer’s disease (AD). Therefore, in this study we aimed to investigate the effects of GM1 on memory deficits and oxidative stress in the hippocampus of rat model of AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with vehicle, Aβ1-40, and Aβ1-40 together with GM-1, respectively. Morris water maze test was performed to evaluate spatial learning and memory of the rats. Brain malondialdehyde (MDA) content was detected by biochemical assay, and 4-hydroxynonenal (4-HNE) level in the hippocampus was examined by immunohistochemistry. The results showed that learning and memory deficits were improved in treatment group compared to model group. Brain MDA content and 4-HNE level in hippocampus CA1 were much lower in treatment group than in model group. In summary, we demonstrate that GM-1 could improve spatial learning and memory deficits in rat model of AD, and this may be mediated by the inhibition of oxidative stress and lipid peroxidation in the neurons. These data suggest that GM-1 is a potential agent for AD treatment.  相似文献   

10.
Activation of vascular smooth muscle cells (VMSC) by thrombin induces the expression of the chemokine, monocyte chemoattractant protein-1 (MCP-1). We investigated in cultured human and rat VSMC whether reactive oxygen species (ROS) derived from the vascular NADPH oxidase contribute to this effect. Exposure of cultured VSMC to thrombin rapidly increased ROS formation, phosphorylation of p38 MAP kinase as well as the expression of MCP-1. Specific inhibition of the p22phox subunit of the vascular NADPH oxidase using either p22phox neutralizing antibody or p22phox antisense oligonucleotides attenuated thrombin-induced ROS generation. Furthermore, thrombin-induced p38 MAP kinase activation as well as MCP-1 expression were impaired by antioxidants as well as by p22phox antisense oligonucleotides. Inhibition of p38 MAP kinase diminished the thrombin-induced expression of MCP-1. CONCLUSION: Thrombin, by activating a p22phox-containing NADPH oxidase, elicits ROS generation and activation of p38 MAP kinase in VSMC. The subsequent induction of MCP-1 expression highligts the crucial role of the p22phox-containing NADPH oxidase in thrombin-induced signal transduction in VSMC.  相似文献   

11.
12.
Clinical and experimental findings support the view that activation of hippocampus microglia through NADPH oxidase contributes to cognitive impairment in Parkinson's disease (PD). Taurine, an antioxidant, displays an exclusive physical property on brain function, such as learning and memory. To date, the role of taurine in improving cognitive impairment in PD is not fully uncovered. Hence, we evaluated the protective effect of taurine on cognitive ability and explored the related mechanism in the model built by paraquat and maneb (P + M)-induced PD mice. Then the ability of learning and memory was observed by Morris water maze, neuron loss was evaluated by immunohistochemistry in hippocampus, the level of postsynaptic density 95 (PSD95) and microglia activation was assessed by immunostaining, the molecules (gp91phox, p47phox, mac1, p-Src/Src and p-Erk/Erk) were examined by western blot. The results showed that taurine could alleviate the impairments in learning and memory induced by P + M injection in mice (decreased escape latency on day 4, P < 0.01; decreased swimming distance on day 4, P < 0.05; increased percent time in target quadrant, P < 0.05), corresponding with activation of microglia (decreased IBa-1 density, P < 0.001; decreased the protein expression of p47phox, P < 0.05; decreased protein expression of gp91phox, P < 0.01; decreased p-Src/Src, P < 0.01; decreased p-Erk/Erk, P < 0.01; decreased mac 1, P < 0.01), decreased neuron loss (increased number of NeurN+ neuron, P < 0.001; increased protein expression of NeruN, P < 0.01; decreased protein expression of caspase 3, P < 0.01) and increased PSD95 level in hippocampus (P < 0.01). The results indicated that mac1 and Src-Erk signaling was involved in increased NADPH oxidase expression in hippocampus microglia of P + M mice, and taurine could improve injuries in learning and memory through mac1 reduction. The new findings in mac1 triggering hippocampal microglia NADPH oxidase through Src/Erk pathway of the present study might provide a therapy target for PD.  相似文献   

13.
Interaction between polymorphonuclear leukocyte (PMN) and platelets is important in the pathogenesis of thrombosis and inflammation. This study investigates how strenuous, acute exercise affects PMN oxidative burst activity under adherence to surface-adherent platelets. Thirty sedentary healthy men exercised strenuously (up to maximal oxygen consumption) on a bicycle ergometer. Before and immediately after exercise, the kinetics of oxidant production, phosphorylation of various protein kinase C (PKC) isoforms, and translocation of p47(phox) in PMNs under adherence to surface-adherent platelets were measured using fluorescence microscopy combined with computerized image analysis. Analytical results can be summarized as follows: (i) either treating the platelet with P-selectin (CD62P) and glycoprotein IIb/IIIa (CD41) antibodies or treating the PMN with beta 2-integrin (CD18) and Mac-1 (CD11b) anti-bodies and PKC zeta pseudosubstrate effectively inhibits platelet-promoted oxidant production of PMN; (ii) PMNs adhesion to surface-adherent platelets is associated with a higher amount of phospho-PKC zeta and a larger ratio of membrane to cytosolic p47(phox) than suspended PMNs; (iii) strenuous, acute exercise decreases platelet-promoted oxidant production of PMN and is accompanied by suppressed phosphorylation of PKC zeta, translocation of p47(phox), and inhibition of PKC zeta pseudosubstrate to oxidant production; (iv) no significant changes occur in PKC alpha/beta II and delta phosphorylation of adherent PMNs following this exercise. Therefore, we conclude that strenuous, acute exercise suppresses platelet-promoted oxidative burst of PMN, possibly by reducing phosphorylation of PKC zeta and translocation of the cytosolic p47(phox) to the plasma membrane, thus inhibiting the assembly and activation of NADPH oxidase in PMN.  相似文献   

14.
Mucopolysaccharidosis IIIB (MPS IIIB; Sanfilippo syndrome type B) is characterized by profound neurological deterioration. Because a murine model of MPS IIIB disease is available, we focused on analysis of gene expression in the brain and cerebellum of 7-month-old MPS IIIB mice by pathway-specific filter microarrays designed to probe apoptotic-related, neurotrophic signalling molecules and inflammatory cytokines and receptors. Moreover, we extended the analysis with real-time PCR performed at 1, 3, 7 months after birth. Bdnf was down-regulated in the brain but up-regulated in the cerebellum at 7 months of age, both at RNA and at protein levels. Cbln1 presented a threefold increase in the oldest brains while remaining unaltered in the cerebellum. Ccl3, Casp11, gp91(phox), p67(phox), and p47(phox) showed an increased expression in both brain and cerebellum at each examined time point. Ccl3, in particular, exhibited in both organs and at all times tested approximately a tenfold increase in its expression. Insofar as p47(phox), p67(phox), and gp91(phox) are all components of the phagocyte NADPH oxidase, our results suggest the possible involvement of the reactive oxygen species in the genesis of neurodegeneration in MPS IIIB disease.  相似文献   

15.
Abstract

Objectives: Recent evidences have shown the beneficial effects of natural products for treating of Alzheimer's disease (AD). Arbutin is derived from Pyrus biossieriana and exerts a wide range of pharmacological activities including anti-inflammatory and anti-oxidant effects. The present study was designed to examine the protective effects of arbutin on streptozotocin (STZ)-induced neurotoxicity in rats.

Materials and methods: The spatial memory impairment was induced by intracerebroventricular (i.c.v) microinjection of STZ (3?mg/kg, 10?μL). Animals received the pretreatment of arbutin (50?mg/kg) for 21?days before STZ injection. The Morris Water maze (MWM) task was used to study the spatial learning and memory. The levels of oxidative stress markers including malondialdehyde (MDA), nitrite and carbonyl were measured in serum and hippocampus samples. In addition, antioxidant level was assessed by ferric reducing antioxidant power (FRAP) test.

Results: The obtained result indicated that administration of STZ is led to memory impairment and increases the levels of oxidative stress markers in the hippocampus tissues. Conversely, arbutin improves spatial memory and reduces oxidative and nitrosative stress, as evidenced by a significant decrease in the amount of MDA and nitrite in the serum and hippocampus. In addition, an increase in FRAP levels of hippocampus was observed in arbutin receiving animals. The protein carbonyl content was not reduced in arbutin receiving animals.

Conclusion: It could be concluded that arbutin protects the brain against STZ-induced memory impairment and oxidative damage in the hippocampus. The neuroprotective effect of arbutin might be mediated through its antioxidant and free radical scavenging effects.  相似文献   

16.
目的探讨香港远志提取物对拟阿尔茨海默病(AD)模型大鼠学习记忆能力的影响及机制。方法SD大鼠随机分4组:假手术组、模型组及治疗A、B组。双侧海马CA1区注射Aβ25~35建立拟AD大鼠模型,治疗组按设定方式给药,假手术组、模型组给1%吐温溶液。给药28d,Morris水迷宫方法测定大鼠学习记忆能力,定量分析海马区乙酰胆碱酯酶(AChE)、超氧化物歧化酶(SOD)活力及丙二醛(MDA)含量。结果与假手术组比较,模型组大鼠的学习记忆能力、SOD活力显著降低,AchE活力、MDA含量显著增高(P<0.01)。与模型组比较,治疗组大鼠的学习记忆能力、SOD活力显著增高,AchE活力、MDA含量显著降低(P<0.05,或P<0.01)。结论香港远志乙酸乙酯提取物,可有效改善拟AD大鼠学习和记忆功能障碍,作用机制可能与降低AchE活力、调节胆碱能系统平衡;降低MDA含量、增强SOD活力,减少氧自由基产生,缓解氧化应激损伤有关。  相似文献   

17.
Oxidative stress after subarachnoid hemorrhage in gp91phox knockout mice   总被引:1,自引:0,他引:1  
BACKGROUND: Oxidative stress largely contributes to early brain injury after subarachnoid hemorrhage (SAH). One of the major sources of reactive oxygen species is NADPH oxidase, upregulated after SAH. We hypothesized that NADPH oxidase-induced oxidative stress plays a major causative role in early brain injury after SAH. METHODS: Using gp91phox knockout (ko) and wild-type (wt) mice, we studied early brain injury in the endovascular perforation model of SAH. Mortality rate, cerebral edema, oxidative stress, and superoxide production were measured at 24 h after SAH. Neurological evaluation was done at 23 h after SAH surgery. RESULTS: Genotyping confirmed the existence of a nonfunctional gp91phox gene in the ko mice. CBF measurements did not show differences in SAH-induced acute ischemia between ko and wt mice. SAH caused a significant increase of water content in the ipsilateral hemisphere as well as an increase of Malondialdehyde (MDA) levels and superoxide production. There were no significant differences in post-SAH mortality rate, brain water content and the intensity of the oxidative stress between knockout and wild type groups of mice. CONCLUSIONS: Our results suggest that gp91phox is not critically important to the early brain injury after SAH. An adaptive compensatory mechanism for free radical production in knockout mice is discussed.  相似文献   

18.
NADPH oxidase is an important source of superoxide in the central nervous system. Although NADPH oxidase is localized near the postsynaptic site in neurons, little is known about the pathophysiological role of NADPH oxidase in synapses after cerebral ischemia and reperfusion. In the present study, we sought to determine the role of NADPH oxidase in oxidative damage to postsynaptic density (PSD) proteins, which were isolated from rats subjected to transient focal cerebral ischemia and reperfusion. The amounts of carbonylated PSD proteins were increased after transient focal cerebral ischemia and reperfusion. This change was accompanied by an increase in the level of NADPH oxidase subunits in the PSD. The administration of apocynin, an NADPH oxidase inhibitor, attenuated both the protein carbonylation in the PSD and cerebral infarct volume. We further demonstrated that the decreases seen in the amounts of PSD-associated proteins, such as neuroligin, N-cadherin, and SAP102, in the PSD were prevented by treatment with apocynin. These results suggest that pronounced activation of NADPH oxidase in the PSD after cerebral ischemia and reperfusion may be related to the focal oxidative damage to synaptic functions and subsequent development of ischemia and reperfusion-induced cerebral injury.  相似文献   

19.
NADPH oxidase-generated superoxide can modulate crucial intracellular signaling cascades in neurons of the nucleus tractus solitarius (NTS), a brain region that plays an important role in cardiovascular processes. Modulation of NTS signaling by superoxide may be linked to the subcellular location of the mobile NADPH oxidase p47(phox) subunit, which is known to be present in dendrites of NTS neurons. It is not known, however, if hypertension can produce changes in the trafficking of p47(phox) in defined NTS subregions, particularly the preferentially barosensitive dorsomedial NTS (dmNTS), or preferentially gastrointestinal medial NTS (mNTS). We used immunogold electron microscopy to determine if p47(phox) localization was differentially affected in dendritic profiles of neurons from these NTS subregions of the rat in response to distinct models of hypertension, namely chronic 7-day subcutaneous administration of angiotensin II (AngII), or phenylephrine. In small (<1 microm) dendritic processes, both AngII and phenylephrine produced a decrease in intracellular p47(phox) labeling selectively in dmNTS neurons. In intermediate-size (1-2 microm) dendritic profiles in the dmNTS region only, there was an increase in p47(phox) labeling in response to each hypertensive agent, although these changes occurred in different subcellular compartments. There was an increase in non-vesicular labeling in response to AngII, but an increase in surface labeling with phenylephrine. Moreover, each of the changes in p47(phox) targeting mentioned above occurred in dendritic profiles with, or without immunoperoxidase labeling for the AngII AT-1A receptor subtype (AT-1A). These results indicate that chronic administration of agents that induce hypertension can also produce changes in the subcellular localization in p47(phox) in dmNTS neurons. Thus, systemic hypertension may produce alterations in the trafficking of proteins associated with superoxide production in central autonomic neurons, thus revealing a potentially important neurogenic component of free radical production and systemic blood pressure elevation.  相似文献   

20.
The regulatory interplay between laminar shear stress and proinflammatory cytokines during homeostatic maintenance of the brain microvascular endothelium is largely undefined. We hypothesized that laminar shear could counteract the injurious actions of proinflammatory cytokines on human brain microvascular endothelial cell (HBMvEC) barrier properties, in-part through suppression of cellular redox signaling. For these investigations, HBMvECs were exposed to either shear stress (8 dynes/cm2, 24 hours) or cytokines (tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6), 0 to 100 ng/mL, 6 or 18 hours). Human brain microvascular endothelial cell ‘preshearing''±cytokine exposure was also performed. Either cytokine dose–dependently decreased expression and increased phosphorylation (pTyr/pThr) of interendothelial occludin, claudin-5, and vascular endothelial-cadherin; observations directly correlating to endothelial barrier reduction, and in precise contrast to effects seen with shear. We further observed that, relative to unsheared cells, HBMvECs presheared for 24 hours exhibited significantly reduced reactive oxygen species production and barrier permeabilization in response to either TNF-α or IL-6 treatment. Shear also downregulated NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) activation in HBMvECs, as manifested in the reduced expression and coassociation of gp91phox and p47phox. These findings lead us to conclude that physiologic shear can protect the brain microvascular endothelium from injurious cytokine effects on interendothelial junctions and barrier function by regulating the cellular redox state in-part through NADPH oxidase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号