首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The death ligand TRAIL has been suggested as a suitable biological agent for the selective induction of cell death in cancer cells. Moreover, TRAIL synergizes with DNA-damaging therapies such as chemotherapeutic drugs or ionizing irradiation (IR). Here, we show that synergy of TRAIL and IR, that is, crosssensitization between TRAIL and IR for induction of apoptosis, entirely depends on Bax proficiency in human DU145 and HCT116 carcinoma cells. DU145 prostate carcinoma cells that have lost Bax protein expression due to mutation fail to activate caspase-3 and -9 when exposed to TRAIL and IR. In contrast, TRAIL sensitized for IR-induced apoptosis and vice versa upon reconstitution of Bax expression. Notably, both DU145 and HCT116 still express significant levels of the multidomain proapoptotic Bcl-2 homolog Bak. This indicates that Bak is not sufficient to mediate crosssensitization and synergism between IR and TRAIL. These data clearly establish distinct roles for Bax and Bak in linking the TRAIL death receptor pathway to the mitochondrial apoptosis signaling cascade upon DNA damage by IR.  相似文献   

2.
In contrast to the initial notion that the biological activity of p14(ARF) strictly depends on a functional mdm-2/p53 signaling axis, we recently demonstrated that p14(ARF) mediates apoptosis in a p53/Bax-independent manner. Here, we show that p14(ARF) induces breakdown of the mitochondrial membrane potential and cytochrome c release before triggering caspase-9- and caspase-3/7-like activities in p53/Bax-deficient DU145 prostate cancer cells expressing wild-type Bak. Re-expression of Bax in these cells failed to further enhance p14(ARF)-induced apoptosis, suggesting that p14(ARF)-induced apoptosis primarily depends on Bak but not Bax in these cells. To further define the role of Bak and Bax in p14(ARF)-induced mitochondrial apoptosis, we employed short interference RNA for the knockdown of bak in isogeneic, p53 wild-type HCT116 colon cancer cells either proficient or deficient for Bax. There, combined loss of Bax and Bak attenuated p14(ARF)-induced apoptosis whereas single loss of Bax or Bak was only marginally effective, as in the case of DU145. Notably, HCT116 cells deficient for Bax and Bak failed to release cytochrome c and showed attenuated activation of caspase-9 (LEHDase) and caspase-3/caspase-7 (DEVDase) upon p14(ARF) expression. These data indicate that p14(ARF) triggers apoptosis via a Bax/Bak-dependent pathway in p53-proficient HCT116, whereas Bax is dispensable in p53-deficient DU145 cells. Nevertheless, a substantial proportion of p14(ARF)-induced cell death proceeds in a Bax/Bak-independent manner. This is also the case for inhibition of clonogenic growth that occurs, at least in part, through an entirely Bax/Bak-independent mechanism.  相似文献   

3.
The death ligand TRAIL synergizes with DNA-damaging therapies such as chemotherapeutic drugs or ionizing irradiation. Here, we show that the synergism of TRAIL and 5-fluorouracil (5-FU) and cross-sensitization between TRAIL and 5-FU for induction of apoptosis, entirely depend on Bax proficiency in human DU145 and HCT116 carcinoma cells. DU145 prostate carcinoma cells that have lost Bax protein expression due to mutation fail to release cytochrome c and to activate caspase-3 and -9 when exposed to TRAIL and 5-FU. In contrast, TRAIL sensitized for 5-FU-induced apoptosis and vice versa upon reconstitution of Bax expression. Isobolographic analyses of ED50 doses for 5-FU at increasing TRAIL concentrations showed a clear synergism of TRAIL and 5-FU in Bax-expressing cells. In contrast, the effect was merely additive in DU145 cells lacking Bax. Notably, both DU145 and HCT116 Bax-deficient cells still express Bak. This indicates that Bak is not sufficient to mediate cross-sensitization and synergism between 5-FU and TRAIL. Stable overexpression of Bak in DU145 sensitized for epirubicin-induced apoptosis but failed to confer synergy between TRAIL and 5-FU. Moreover, we show by the use of EGFP-tagged Bax and Bak that TRAIL and 5-FU synergistically trigger oligomerization and clustering of Bax but not Bak. These data clearly establish distinct roles for Bax and Bak in linking the TRAIL death receptor pathway to the mitochondrial apoptosis signaling cascade and delineate a higher degree of specificity in signaling for cell death by multidomain Bcl-2 homologs.  相似文献   

4.
Bax is a crucial mediator of the mitochondrial pathway for apoptosis, and loss of this proapoptotic Bcl-2 family protein contributes to drug resistance in human cancers. We report here that the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin (THG) induces apoptosis of human colon cancer HCT116 cells through a Bax-dependent signaling pathway controlling the cytosolic release of mitochondrial apoptogenic molecules. Treating HCT116 cells with THG results in caspase-8 activation; Bid cleavage; Bax conformational change and mitochondrial translocation; the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 into the cytosol; caspase-3 activation; and apoptosis. In contrast, knockout of Bax completely abrogates the full processing/activation of caspase-3 but has no effect on the processing of caspase-8 and the initial cleavage of caspase-3 to p24 fragment after THG treatment. The caspase-8-specific inhibitor z-IETD-fmk, as well as pan-caspase inhibitor z-VAD-fmk, but not the calpain inhibitor E-64d, prevents Bid cleavage, Bax conformational change, and subsequent caspase-3 processing and apoptosis. Caspase-8 processing is dependent on de novo protein synthesis; DR5 expression is strongly up-regulated by THG treatment. Moreover, the absence of Bax blocks THG-induced Omi and Smac release from mitochondria, and expression of cytosolic Omi (GFP-IETD-Omi) or Smac (GFP-IETD-Smac) restores the sensitivity of Bax-knockout HCT116 cells to apoptosis in response to THG treatment. Taken together, our results indicate that Bax-dependent Smac and Omi release plays an essential role in caspase-3 activation and apoptosis induced by THG in human colon cancer HCT116 cells.  相似文献   

5.
Kim HJ  Oh JE  Kim SW  Chun YJ  Kim MY 《Cancer letters》2008,260(1-2):88-95
Ceramide induces apoptosis through caspase activation, cytochrome c release, and Bax translocation in HL-60 cells. However, the upstream signal transduction pathways that induce Bax translocation during ceramide-mediated apoptosis have not been well defined yet. In this study, the activation of p38 mitogen-activated protein kinase (MAPK) was found to be critical for the induction of apoptosis and subcellular redistribution of Bax. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a dominant-negative p38 MAPK attenuated DNA fragmentation, caspase-3 activation, and Bax translocation in response to ceramide. Overexpression of Akt also led to suppression of Bax translocation to mitochondria during ceramide-induced apoptosis in HL-60 cells. We also provide evidence for cross-talk between p38 MAPK and Akt pathways. Expression of myr-Akt or inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 had no effect on p38 MAPK activation by ceramide as assessed by phosphorylation, while inhibition of p38 MAPK by a pharmacological inhibitor or a dominant-negative p38 inhibited Akt dephosphorylation in response to ceramide, suggesting that ceramide-induced p38 MAPK activation negatively regulates the Akt pathway.  相似文献   

6.
The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-x(L). Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-x(L) during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-x(L)-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-x(L) that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment.  相似文献   

7.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF), which are frequently inactivated in human cancer. Whereas p16(INK4a) acts through engagement of the Rb-cdk4/6-cyclin D pathway, both the pro-apoptotic and cell cycle-regulatory functions of p14(ARF) were shown to be primarily dependent on the presence of functional p53. Recent reports have also implicated p14(ARF) in p53-independent mechanisms of cell cycle regulation and apoptosis induction, respectively. To further explore the pro-apoptotic function of p14(ARF) in relation to functional cellular p53, we constructed a replication-deficient adenoviral vector for overexpression of p14(ARF) (Ad-p14(ARF)). As expected, Ad-p14(ARF) efficiently induced apoptosis in p53/Rb wild-type U-2OS osteosarcoma cells at low multiplicities of infection. Interestingly, Ad-p14(ARF) also induced apoptosis in both p53-deleted SAOS-2 osteosarcoma cells and HCT116 colon cancer cells with a bi-allelic knock-out of p53 (HCT116-p53(-/-)). Similarly, adenovirus-mediated overexpression of p14(ARF) induced apoptosis in p53/Bax-mutated DU145 prostate cancer cells as well as in HCT116 cells devoid of functional Bax (HCT116-Bax(-/-)). Restoration of Bax expression by retroviral gene transfer in DU145 cells did not further enhance p14(ARF)-triggered cell death. Infection with Ad-p14(ARF) induced activation of mitochondrial permeability shift transition, caspase activation and apoptotic DNA fragmentation irrespective of the presence or absence of either Bax or functional cellular p53. Nevertheless, overexpression of the anti-apoptotic Bcl-2 homolog Bcl-x(L) markedly inhibited p14(ARF)-induced apoptosis. This may indicate that p14(ARF) triggers a so far unknown activator of mitochondrial apoptosis which can be inhibited by Bcl-2 but which acts either independently or downstream of Bax. Taken together, this report demonstrates the participation of signaling pathways apart from the p53/Mdm-2 rheostat and Bax in p14(ARF)-mediated apoptosis.  相似文献   

8.
9.
Using adenoviral technology, we overexpressed the proapoptotic molecules pro-caspase-3, pro-caspase-7, and Bax to induce therapeutic apoptosis of prostate cancer cell lines growing in vitro and in vivo. Because overexpressed pro-caspase-3 did not undergo autocatalytic activation in any of the five prostate cancer cell lines evaluated, this strategy was unable to engage any component of the apoptotic pathway. Overexpressed pro-caspase-7 was proteolytically cleaved in LNCaP and LnCaP-Bcl-2 cells but not in PC-3, DU-145, or TsuPr(1) cells. Cleavage was associated with engagement of many components of the apoptotic pathway, including DEVDase activity, cleavage of intracellular caspase targets such as the DNA fragmentation factor and the proapoptotic Bid, release of cytochrome c from the mitochondria to the cytoplasm, and terminal deoxynucleotidyl transferase-mediated nick end labeling. No apoptosis was observed in the cells where caspase-7 did not undergo autocatalytic activation. Searching for an approach that would more reliably induce therapeutic apoptosis of prostate cancer cell lines, we used a binary adenoviral system to overexpress the proapoptotic molecule Bax. Bax was dramatically overexpressed and caused apoptosis of every cell line infected by engaging the mitochondrial pathway, including proteolytic cleavage and catalytic activation of the caspases, cleavage of caspase substrates, release of cytochrome c from the mitochondria, and DNA fragmentation. Furthermore, three injections of the Bax overexpression system into PC-3 cell tumors in nude mice in vivo caused a 25% regression in tumor size corresponding to a 90% reduction relative to continued tumor growth in animals that received injections with the control binary system expressing Lac-Z. These experiments show that adenovirus-mediated Bax overexpression is capable of inducing therapeutic programmed cell death in vitro and in vivo by activating the mitochondrial pathway of apoptosis. On the basis of these studies, we conclude that manipulation of Bax expression is an attractive new gene therapy approach for the treatment of prostate cancer.  相似文献   

10.
The effects of reactive oxygen species (ROS) on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in solid cancers have yet to be clearly defined. In this study, we found that the classic uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), induced a reduction in DeltaPsim and generation of ROS. This uncoupling effect enhanced TRAIL-induced apoptosis in TRAIL-resistant human colon carcinoma cell lines (RKO, HT29, and HCT8). Sensitization was inhibited by benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone, indicating the requirement for caspase activation. CCCP per se did not induce apoptosis or release of proapoptotic factors from mitochondria. Generation of ROS by CCCP was responsible for TRAIL-induced Bax and caspase activation because scavenging ROS completely abrogated apical caspase-8 activation and further downstream events leading to cell death. Overexpression of Bcl-2 did not prevent the initial loss of DeltaPsim and ROS generation following CCCP treatment, but did prevent cell death following TRAIL and CCCP exposure. Uncoupling of mitochondria also facilitated TRAIL-induced release of proapoptotic factors. X-linked inhibitor of apoptosis overexpression abrogated TRAIL-induced apoptosis in the presence of CCCP and decreased initiator procaspase-8 processing, indicating that additional processing of caspase-8 required initiation of a mitochondrial amplification loop via effector caspases. Of interest, depletion of caspase-9 in RKO cells did not protect cells from TRAIL/CCCP-induced apoptosis, indicating that apoptosis occurred via a caspase-9-independent pathway. Data suggest that in the presence of mitochondrial-derived ROS, TRAIL induced mitochondrial release of Smac/DIABLO and inactivation of X-linked inhibitor of apoptosis through caspase-9-independent activation of caspase 3.  相似文献   

11.
Cytotoxic endoribonucleases (RNases) possess a potential for use in cancer therapy. However, the molecular determinants of RNase-induced cell death are not well understood. In this work, we identify such determinants of the cytotoxicity induced by onconase, an amphibian cytotoxic RNase. Onconase displayed a remarkable specificity for tRNA in vivo, leaving rRNA and mRNA apparently undamaged. Onconase-treated cells displayed apoptosis-associated cell blebbing, nuclear pyknosis and fragmentation (karyorrhexis), DNA fragmentation, and activation of caspase-3-like activity. The cytotoxic action of onconase correlated with inhibition of protein synthesis; however, we present evidence for the existence of a mechanism of onconase-induced apoptosis that is independent of inhibition of protein synthesis. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone (zVADfmk), at concentrations that completely prevent apoptosis and caspase activation induced by ligation of the death receptor Fas, had only a partial protective effect on onconase-induced cell death. The proapoptotic activity of the p53 tumor suppressor protein and the Fas ligand/Fas/Fas-associating protein with death domain (FADD)/caspase-8 proapoptotic cascade were not required for onconase-induced apoptosis. Procaspases-9, -3, and -7 were processed in onconase-treated cells, suggesting the involvement of the mitochondrial apoptotic machinery in onconase-induced apoptosis. However, the onconase-induced activation of the caspase-9/caspase-3 cascade correlated with atypically little release of cytochrome c from mitochondria. In turn, the low levels of cytochrome c released from mitochondria correlated with a lack of detectable translocation of proapoptotic Bax from the cytosol onto mitochondria in response to onconase. This suggests the possibility of involvement of a different, potentially Bax- and cytochrome c-independent mechanism of caspase-9 activation in onconase-treated cells. As one possible mechanism, we demonstrate that procaspase-9 is released from mitochondria in onconase-treated cells. A detailed understanding of the molecular determinants of the cytotoxic action of onconase could provide means of positive or negative therapeutic modulation of the activity of this potent anticancer agent.  相似文献   

12.
Exogenous overexpression of hRFI, originally isolated in our laboratory, inhibits not only death receptor-mediated apoptosis but also the mitochondrial apoptosis induced by several chemotherapeutic agents including 5-fluorouracil (5-FU). Recently, it has become clear that hRFI targets and degradates caspase-8 and -10 in death receptor-mediated apoptosis by E3 ubiquitin activity in a ring finger domain homologous to that of X-chromosome-linked inhibitor of apoptosis protein (XIAP). However, the cellular mechanism of the inhibition of mitochondrial apoptosis by hRFI has not been fully elucidated. We prepared HCT116 overexpressing hRFI (HCT116/hRFI) cells and comprehensively analyzed the expression changes of 51 apoptosis-related genes with or without 5-FU treatment between HCT116/hRFI and mock cells using microfluidic low-density arrays. As a result, we identified four genes (Bcl-2, Bcl-XL, cIAP2, and CFLAR) whose expression was four or more times higher in HCT116/ hRFI cells than in HCT116/LacZ cells, and found that Bcl-2 and the ratio of Bcl-2/Bax or Bcl-2/Bak were upregulated when HCT116/hRFI cells were treated with 5-FU. Furthermore, we also validated the up-regulation of Bcl-2 and Bcl-XL in HCT116/hRFI cells treated with 5-FU by Western blot analysis. Such evidence suggests that the modulation of Bcl-2 family proteins seen in 5-FU treatment plays an important role in the anti-apoptotic function of HCT116/hRFI cells.  相似文献   

13.
Ren G  Zhao YP  Yang L  Fu CX 《Cancer letters》2008,262(2):190-200
Clitocine, a natural biologically active substance isolated from the mushroom Leucopaxillus giganteus, possesses several bioactivities including antitumor. Here, for the first time, we studied the molecular mechanism of clitocine-induced apoptosis in human cervical cancer cells (HeLa). Clitocine-induced cell death was characterized with the changes in cell morphology, DNA fragmentation, activation of caspase-3, -8, and -9 (like) activities, poly(ADP-ribose) polymerase (PARP) cleavage, release of cytochrome c (cyt c) into cytosol, and increase of Bax:Bcl-2 ratio. These results indicated that the induction of apoptosis by clitocine involved the multiple pathway including death receptor and mitochondrial pathways, and strongly suggested that the mitochondrial pathways were mediated by down-regulation of Bcl-2 and up-regulation of Bax, release of cytochrome c and subsequent activation of caspase-3 followed by down stream events leading to apoptotic mode of cell death.  相似文献   

14.
Objective: To investigate the antiproliferative effects of zinc‐citrate compound on hormone refractory prostate cancer (HRPC). Methods: HRPC cell line (DU145) and normal prostate cell line (RWPE-1) were treated with zinc, citrate and zinc-citrate compound at different time intervals and concentrations to investigate the effect of zinc-citrate compound. Mitochondrial (m)-aconitase activity was determined using aconitase assay. DNA laddering analysis was performed to investigate apoptosis of DU145 cells. Molecular mechanism of apoptosis was investigated by Western blot analysis of P53, P21 waf1 , Bcl-2, Bcl-xL and Bax, and also caspase-3 activity analysis. Results: Treatment with zinc-citrate compound resulted in a time-and dose-dependent decrease in cell number of DU145 cells in comparison with RWPE-1. M-aconitase activity was significantly decreased. DNA laddering analysis indicated apoptosis of DU145 cells. Zinc-citrate compound increased the expression of P21 waf1 and P53, and reduced the expression of Bcl-2 and Bcl-xL proteins but induced the expression of Bax protein. Zinc-citrate compound induced apoptosis of DU145 cells by activation of the caspase-3 pathway. Conclusion: Zinc-citrate compound can induce apoptotic cell death in DU145, by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.  相似文献   

15.
The human INK4a locus encodes two structurally unrelated tumor suppressor proteins, p16 INK4a and p14 ARF (p19 ARF in the mouse), which are frequently inactivated in human cancer. Both the proapoptotic and cell cycle-regulatory functions of p14 ARF were initially proposed to be strictly dependent on a functional p53/mdm-2 tumor suppressor pathway. However, a number of recent reports have implicated p53-independent mechanisms in the regulation of cell cycle arrest and apoptosis induction by p14 ARF. Here, we show that the G1 cell cycle arrest induced by p14 ARF entirely depends on both p53 and p21 in human HCT116 and DU145 carcinoma cells. In contrast, neither loss of p53 nor p21 impaired apoptosis induction by p14 ARF as evidenced by nuclear DNA fragmentation, phosphatidyl serine exposure, and caspase activation, which included caspase-3/7- and caspase-9-like activities. However, lack of functional p21 resulted in the accumulation of cells in G2/M phase of the cell cycle and markedly enhanced p14 ARF-induced apoptosis that was, nevertheless, efficiently inhibited by the cell permeable broad-spectrum caspase inhibitor zVAD-fmk (valyl-alanyl-aspartyl-(O)-methyl)-fluoromethylketone). Thus, loss of cell cycle restriction point control in the absence of p21 may interfere with p14 ARF-induced apoptosis. Finally, these data indicate that the signaling events required for G1 cell cycle arrest and apoptosis induction by p14 ARF dissociate upstream of p53.  相似文献   

16.
Gourdier I  Crabbe L  Andreau K  Pau B  Kroemer G 《Oncogene》2004,23(45):7449-7457
We previously established a model of acquired oxaliplatin resistance derived from the HCT116 oxaliplatin-sensitive cell line (HCT116S) and consisting in two resistant clones (HCT116R1, HCT116R2) and their total or partial revertants (HCT116Rev1 and HCT116Rev2, respectively). Using this cellular model, we explored the contribution of mitochondrial apoptosis and nuclear DNA to oxaliplatin-mediated apoptosis induction and oxaliplatin resistance. We showed that the activity of oxaliplatin is mediated by the induction of Bax/Bak-dependent mitochondrial apoptosis and that oxaliplatin resistance is mediated by a defect in Bax/Bak activation correlating with a reduced loss of the mitochondrial transmembrane potential (DeltaPsim). In addition, we observed that p53 only contributed marginally to oxaliplatin-induced cytotoxicity and was not involved in oxaliplatin resistance. Moreover and surprisingly, depletion of the nucleus in HCT116S cells did not abolish the oxaliplatin-induced DeltaPsim loss indicative of imminent apoptosis. Enucleation abolished the oxaliplatin resistance of HCT116R1 cells, while HCT116R2 cytoplasts conserved their resistant phenotype. Altogether, these data demonstrate that oxaliplatin exerts its cytotoxic effects by inducing mitochondrial apoptosis and that these effects can be initiated by interacting on other cellular structures than nuclear DNA. Resistance to oxaliplatin may imply both nuclear and cytoplasmic compartments.  相似文献   

17.
Bioflavanoids are the major pigments in plants with multitude of biological activities including inhibition of proliferation or induction of apoptosis in tumor cells. Even though the safety records of most flavanoids are exceptional, its therapeutic use is still in its infancy. We have isolated pinocembrin (5,7-dihydroxyflavanone) from Alpinia galanga that showed cytotoxicity against a variety of cancer cells including normal lung fibroblasts with relative nontoxicity to human umbilical cord endothelial cells. The compound induced loss of mitochondrial membrane potential with subsequent release of cytochrome c and processing of caspase-9 and -3 in colon cancer cell line HCT 116. Processing of caspase-8 was minimal. The initial trigger for mitochondrial apoptosis appears to be by the translocation of cytosolic Bax protein to mitochondria. Overexpression of proapoptotic Bax protein sensitized the colon cancer cells to pinocembrin-induced apoptosis and Bax knockout cells were resistant to pinocembrin-induced apoptosis. Antiapoptotic protein Bcl-X(L) only partially prevented apoptosis induced by this compound. The Bax-dependent cell death involving classical cytochrome c release and processing of caspase-9 and -3 suggests that pinocembrin is a classical mitochondrial apoptosis inducer. But the failure of Bcl-X(L) overexpression to completely prevent apoptosis induced by this compound suggests that pinocembrin is capable of triggering mitochondrial-independent cell death that needs to be clarified. The existence of cell death upon Bcl-X(L) overexpression is a promising feature of this compound that can be exploited against drug resistant forms of cancer cells either alone or in combination with other drugs.  相似文献   

18.
It is well known that the response of cancer cells to chemotherapeutic drugs involves the activation of apoptotic pathways. Benzyl isothiocyanate (BITC) is an important compound found in plant food and has been shown to have anti-cancer effects on human cancer cells, but its effect on prostate cancer cells in vitro remains unknown. The aim of the present study was to investigate the effects of BITC on DU 145 human prostate cancer cells in order to clarify whether a time/concentration range for optimal BITC-induced apoptosis exists and to find the associated signaling pathway. Cell morphological changes, percentage of cell viability, DNA damage and apoptosis in DU 145 cells were examined by phase-contrast microscopy, flow cytometric assay, 4',6-diamidine-20-phenylindole dihydrochloride staining, comet assay and Western blotting analysis. The results indicate that BITC induces cell morphological changes, decreases the percentage of viable cells (induction of cell cytotoxicity), and induces DNA damage and apoptosis in DU 145 cells in a time- and dose-dependent manner. Flow cytometric assays indicated that BITC promoted reactive oxygen species and Ca2+ productions and decreased the levels of mitochondrial membrane potential (ΤYm), while the pre-treatment with N-acetylcysteine caused an increase in the percentage of viable cells. BITC also promoted caspase-3, -8 and -9 activities. Furthermore, when cells were pre-treated with the caspase-3 inhibitor and then treated with BITC, this led to an increase in the percentage of viable cells. Confocal laser microscopy examination indicated that BITC promoted the expression of AIF and Endo G, which were released from the mitochondria in DU 145 cells. In conclusion, BITC induces apoptosis in DU 145 cells through the release of AIF and Endo G from the mitochondria and also promotes caspase-3 activation.  相似文献   

19.
Meng J  Zhang HH  Zhou CX  Li C  Zhang F  Mei QB 《Oncology reports》2012,28(1):384-388
Many chemotherapeutic agents induce apoptosis via a p53-dependent pathway. However, up to 50% of human cancers have p53 mutation and loss of p53 function. Histone deacetylase inhibitors (HDACIs) are emerging as a potentially important new class of anticancer agents. Here, we report that, Trichostatin A (TSA), a pan-HDAC inhibitor, could induce G2/M cell cycle arrest and apoptosis in both colorectal cancer cell lines with wild-type p53 (HT116 cells) and mutant p53 (HT29 cells), although HCT116 cells had more apoptotic cells than HT29 cells. TSA induces apoptosis in both cell lines via the mitochondrial pathway as indicated by decrease of the mitochondrial membrane potential (MMP) and activation of caspase-3. Additionally, TSA induces expression of the pro-apoptotic protein Bax and decreases the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL in both cell lines. Bax knockdown by siRNA significantly impaired TSA-induced apoptosis in both cell lines. These data suggest that TSA induces G2/M cell cycle arrest and Bax-dependent apoptosis in colorectal cancer cells (HCT116 cells and HT29 cells) by both p53-dependent and -independent mechanisms. However, cells with normal p53 function are more sensitive to TSA-induced apoptosis.  相似文献   

20.
3,3'-Diindolylmethane (DIM) is a major in vivo derivative of indole-3-carbinol, which is present in cruciferous vegetables and has been reported to possess anti-carcinogenic properties. In the present study, we examined whether DIM inhibits the development of prostate cancer using the transgenic adenocarcinoma mouse prostate (TRAMP) model. DIM feeding inhibited prostate carcinogenesis in TRAMP mice, reduced the number of cells expressing the SV40 large tumor antigen and proliferating cell nuclear antigen, and increased the number of terminal dUTP nick-end labeling-positive cells in the dorsolateral lobes of the prostate. Additionally, DIM feeding reduced the expression of cyclin A, cyclin-dependent kinase (CDK)2, CDK4, and Bcl-xL, and increased p27 and Bax expression. To assess the mechanisms by which DIM induces apoptosis, LNCaP and DU145 human prostate cancer cells were cultured with various concentrations of DIM. DIM induced a substantial reduction in the numbers of viable cells and induced apoptosis in LNCaP and DU145 cells. DIM increased the cleavage of caspase-9, -7, -3, and poly (ADP-ribose) polymerase (PARP). DIM increased mitochondrial membrane permeability and the translocation of cytochrome c and Smac/Diablo from the mitochondria. Additionally, DIM induced increases in the levels of cleaved caspase-8, truncated Bid, Fas, and Fas ligand, and the caspase-8 inhibitor Z-IETD-FMK was shown to mitigate DIM-induced apoptosis and the cleavage of caspase-3, PARP, and Bid. These results indicate that DIM inhibits prostate carcinogenesis via induction of apoptosis and inhibition of cell cycle progression. DIM induces apoptosis in prostate cancer cells via the mitochondria- and death receptor-mediated pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号