共查询到20条相似文献,搜索用时 15 毫秒
1.
Min-Jung Kang Ji-Hye Kim Ha-Neul Choi Myoung-Jin Kim Jung-Hee Han Jai-Heon Lee Jung-In Kim 《Nutrition Research And Practice》2010,4(6):486-491
Tight control of blood glucose is the most important strategy for the treatment of diabetes mellitus. Here, we investigated the beneficial effects of Welsh onion on fasting and postprandial hyperglycemia. Inhibitory activities of hot water extracts from the green stalk and white bulb, which are the edible portions of the Welsh onion, and the fibrous root extract against yeast α-glucosidase were measured in vitro. To study the effects of Welsh onion on postprandial hyperglycemia, a starch solution (1 g/kg) with and without Welsh onion fibrous root extract (500 mg/kg) or acarbose (50 mg/kg) was administered to streptozotocin-induced diabetic rats after an overnight fast. Postprandial plasma glucose levels were measured and incremental areas under the response curve were calculated. To study the hypoglycemic effects of chronic feeding of Welsh onion, five-week-old db/db mice were fed an AIN-93G diet or a diet containing either Welsh onion fibrous root extract at 0.5% or acarbose at 0.05% for 7 weeks after 1 week of adaptation. Fasting plasma glucose and blood glycated hemoglobin were measured. Compared to the extract from the edible portions of Welsh onion, the fibrous root extract showed stronger inhibition against yeast α-glucosidase, with an IC50 of 239 µg/mL. Oral administration of Welsh onion fibrous root extract (500 mg/kg) and acarbose (50 mg/kg) significantly decreased incremental plasma glucose levels 30-120 min after oral ingestion of starch as well as the area under the postprandial glucose response curve, compared to the control group (P < 0.01). The plasma glucose and blood glycated hemoglobin levels of the Welsh onion group were significantly lower than those of the control group (P < 0.01), and were not significantly different from those fed acarbose. Thus, we conclude that the fibrous root of Welsh onion is effective in controlling hyperglycemia in animal models of diabetes mellitus. 相似文献
2.
BACKGROUND/OBJECTIVES
The primary objective of the treatment of diabetes mellitus is the attainment of glycemic control. Hyperglycemia increases oxidative stress which contributes to the progression of diabetic complications. Thus, the purpose of this study was to investigate the hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus.MATERIALS/METHODS
Rats with streptozotocin-induced diabetes received an oral administration of a starch solution (1 g/kg) either with or without a 70% ethanol extract of Daraesoon (400 mg/kg) or acarbose (40 mg/kg) after an overnight fast and their postprandial blood glucose levels were measured. Five-week-old C57BL/6J mice were fed either a basal or high-fat/high-sucrose (HFHS) diet with or without Daraesoon extract (0.4%) or acarbose (0.04%) for 12 weeks after 1 week of adaptation to determine the effects of the chronic consumption of Daraesoon on fasting hyperglycemia and antioxidant status.RESULTS
Compared to the control group, rats that received Daraesoon extract (400 mg/kg) or acarbose (40 mg/kg) exhibited a significant reduction in the area under the postprandial glucose response curve after the oral ingestion of starch. Additionally, the long-term consumption of Daraesoon extract or acarbose significantly decreased serum glucose and insulin levels as well as small intestinal maltase activity in HFHS-fed mice. Furthermore, the consumption of Daraesoon extract significantly reduced thiobarbituric acid reactive substances and increased glutathione levels in the livers of HFHS-fed mice compared to HFHS-fed mice that did not ingest Daraesoon.CONCLUSIONS
Daraesoon effectively suppressed postprandial hyperglycemia via the inhibition of α-glucosidase in STZ-induced diabetic rats. Chronic consumption of Daraesoon alleviated fasting hyperglycemia and oxidative stress in mice fed a HFHS diet. 相似文献3.
Ji-Yeon Hwang Soo-Kyung Lee Ja-Rim Jo Mi-Eun Kim Hyun-Ah So Chang-Woo Cho Young-Wan Seo Jung-In Kim 《Nutrition Research And Practice》2007,1(4):371-375
To control blood glucose level as close to normal is a major goal of treatment of diabetes mellitus. Hyperglycemia and hyperlipidemia are the major risk factors for cardiovascular complications, the major cause of immature death among the patients with type 2 diabetes. The purpose of this study is to determine the hypoglycemic and hypolipidemic effects of Salicornia herbacea in animal model of type 2 diabetes and to investigate the possible mechanisms for the beneficial effects of S. herbacea. S. herbacea was extracted with 70% ethanol and desalted with 100% ethanol. Three week-old db/db mice (C57BL/KsJ, n=16) were fed AIN-93G semipurified diet or diet containing 1% desalted ethanol extract of S. herbacea for 6 weeks after 1 week of adaptation. Fasting plasma glucose, triglyceride, and total cholesterol were measured by enzymatic methods and blood glycated hemoglobin (HbA1C) by the chromatographic method. Body weight and food intake of S. herbacea group were not significantly different from those of the control group. Fasting plasma glucose and blood glycated hemoglobin levels tended to be lowered by S. herbacea treatment. Consumption of S. herbacea extract significantly decreased plasma triglyceride and cholesterol levels (p<0.05). The inhibition of S. herbacea extract against yeast α-glucosidase was 31.9% of that of acarbose at the concentration of 0.5 mg/mL in vitro. The inhibitory activity of ethanol extract of S. herbacea against porcine pancreatic lipase was 59.0% of that of orlistat at the concentration of 0.25 mg/mL in vitro. Thus, these results suggest that S. herbacea could be effective in controlling hyperlipidemia by inhibition of pancreatic lipase in animal model of type 2 diabetes. 相似文献
4.
Inhibiting α-glucosidase activity is important in controlling postprandial hyperglycemia and, thus, helping to manage type-2 diabetes mellitus (T2DM). In the present study, free polyphenols (FPE) and bound polyphenols (BPE) were extracted from red quinoa and their inhibitory effects on α-glucosidase and postprandial glucose, as well as related mechanisms, were investigated. HPLC-MS analysis showed that the components of FPE and BPE were different. FPE was mainly composed of hydroxybenzoic acid and its derivatives, while BPE was mainly composed of ferulic acid and its derivatives. BPE exhibited stronger DPPH and ABTS antioxidant activities, and had a lower IC50 (10.295 mg/mL) value in inhibiting α-glucosidase activity. The inhibition kinetic mode analysis revealed that FPE and BPE inhibited α-glucosidase in a non-competitive mode and an uncompetitive mode, respectively. Furthermore, compared to FPE, BPE delayed starch digestion more effectively. BPE at 50 mg/kg reduced postprandial glucose increases comparably to acarbose at 20 mg/kg in ICR mice. These results could provide perspectives on the potential of BPE from red quinoa, as a functional food, to inhibit α-glucosidase activity, delay postprandial glucose increases and manage T2DM. 相似文献
5.
Giuditta C. Heinzl Marco Tretola Stefano De Benedetti Paolo Silacci Alessio Scarafoni 《Nutrients》2022,14(17)
γ-Conglutin (γ-C) is the glycoprotein from the edible seed L. albus, studied for long time for its postprandial glycaemic regulating action. It still lacks clear information on what could happen at the meeting point between the protein and the organism: the intestinal barrier. We compared an in vitro system involving Caco-2 and IPEC-J2 cells with an ex vivo system using pig ileum and jejunum segments to study γ-C transport from the apical to the basolateral compartment, and its effects on the D-glucose uptake and glucose transporters protein expression. Finally, we studied its potential in modulating glucose metabolism by assessing the possible inhibition of α-amylase and α-glucosidase. RP-HPLC analyses showed that γ-C may be transported to the basolateral side in the in vitro system but not in the pig intestines. γ-C was also able to promote a decrease in glucose uptake in both cells and jejunum independently from the expression of the SGLT1 and GLUT2 transporters. 相似文献
6.
7.
Ticiane Carvalho Farias Thaiza Serrano Pinheiro de Souza Ana Elizabeth Cavalcante Fai Maria Gabriela Bello Koblitz 《Nutrients》2022,14(20)
The current bibliometric review evaluated recent papers that researched dietary protein sources to generate antidiabetic bioactive peptides/hydrolysates for the management of diabetes. Scopus and PubMed databases were searched to extract bibliometric data and, after a systematic four-step process was performed to select the articles, 75 papers were included in this review. The countries of origin of the authors who published the most were China (67%); Ireland (59%); and Spain (37%). The journals that published most articles on the subject were Food Chemistry (n = 12); Food & Function (n = 8); and Food Research International (n = 6). The most used keywords were ‘bioactive peptides’ (occurrence 28) and ‘antidiabetic’ (occurrence 10). The most used enzymes were Alcalase® (17%), Trypsin (17%), Pepsin, and Flavourzyme® (15% each). It was found that different sources of protein have been used to generate dipeptidyl peptidase IV (DPP-IV), α-amylase, and α-glucosidase inhibitory peptides. In addition to antidiabetic properties, some articles (n = 30) carried out studies on multifunctional bioactive peptides, and the most cited were reported to have antioxidant and antihypertensive activities (n = 19 and 17, respectively). The present review intended to offer bibliometric data on the most recent research on the production of antidiabetic peptides from dietary proteins to those interested in their obtention to act as hypoglycemic functional ingredients. The studies available in this period, compiled, are not yet enough to point out the best strategies for the production of antidiabetic peptides from food proteins and a more systematic effort in this direction is necessary to allow a future scale-up for the production of these possible functional ingredients. 相似文献
8.
Ji-Hye Kim Min-Jung Kang Ha-Neul Choi Soo-Mi Jeong Young-Min Lee Jung-In Kim 《Nutrition Research And Practice》2011,5(2):107-111
The objective of this study was to investigate the hypoglycemic effects of quercetin (QE) in animal models of diabetes mellitus (DM). A starch solution (1 g/kg) with and without QE (100 mg/kg) or acarbose (40 mg/kg) was orally administered to streptozotocin (STZ)-induced diabetic rats after an overnight fast. Postprandial plasma glucose levels were measured and incremental areas under the response curve were calculated. To study the effects of chronic feeding of QE, five-week-old db/db mice were fed an AIN-93G diet, a diet containing QE at 0.08%, or a diet containing acarbose at 0.03% for 7 weeks after 1 week of adaptation. Plasma glucose and insulin, blood glycated hemoglobin, and maltase activity of the small intestine were measured. Oral administration of QE (100 mg/kg) or acarbose (40 mg/kg) to STZ-treated rats significantly decreased incremental plasma glucose levels 30-180 min after a single oral dose of starch and the area under the postprandial glucose response, compared with the control group. QE (0.08% of diet) or acarbose (0.03% of diet) offered to db/db mice significantly reduced both plasma glucose and blood glycated hemoglobin compared to controls without significant influence on plasma insulin. Small intestine maltase activities were significantly reduced by consumption of QE or acarbose. Thus, QE could be effective in controlling fasting and postprandial blood glucose levels in animal models of DM. 相似文献
9.
Elbieta Studziska-Sroka Agnieszka Galanty Anna Gociniak Mateusz Wieczorek Magdalena Kaput Marlena Dudek-Makuch Judyta Cielecka-Piontek 《Nutrients》2021,13(11)
Herbal infusions are an underestimated and easy to intake a source of biologically active natural compounds (polyphenols), which, in the dissolved form, are more easily absorbed. Therefore, this study aimed to assess the potential of herbal infusions as a functional food to reduce postprandial hyperglycemia (inhibition of α-amylase and α-glucosidase) and to reduce the effects of increased blood glucose level (antioxidant effect-DPPH, CUPRAC, and Fe2+ chelating assays, as well as anti-inflammatory activity-inhibition of collagenase). We showed that polyphenols are present in the examined aqueous herbal infusions (including chlorogenic and gallic acids). Subsequently, our research has shown that herbal infusions containing cinnamon bark, mulberry leaves, and blackberry fruits most strongly inhibit glucose release from complex carbohydrates, and that all herbal infusions can, to different degrees, reduce the effects of elevated blood sugar. In conclusion, infusions prepared from herbal blends could be recommended to prevent type II diabetes. 相似文献
10.
Wei-Chung Chiou Cheng Huang Zi-Jun Lin Lian-Sheng Hong Yu-Heng Lai Jui-Chieh Chen Hsiu-Chen Huang 《Nutrients》2022,14(11)
Resveratrol has well-known anticancer properties; however, its oligomers, including α-viniferin, ε-viniferin, and kobophenol A, have not yet been well investigated. This is the first study examining the anti-epithelial-mesenchymal transition (EMT) effects of α-viniferin and ε-viniferin on A549, NCI-H460, NCI-H520, MCF-7, HOS, and U2OS cells. The results showed that α-viniferin and ε-viniferin significantly inhibited EMT, invasion and migration in TGF-β1- or IL-1β-induced non-small cell lung cancer. α-Viniferin and ε-viniferin also reversed TGF-β1-induced reactive oxygen species (ROS), MMP2, vimentin, Zeb1, Snail, p-SMAD2, p-SMAD3, and ABCG2 expression in A549 cells. Furthermore, ε-viniferin was found to significantly inhibit lung metastasis in A549 cell xenograft metastatic mouse models. In view of these findings, α-viniferin and ε-viniferin may play an important role in the prevention of EMT and cancer metastasis in lung cancer. 相似文献
11.
Tarapong Srisongkram Sasisom Waithong Thaweesak Thitimetharoch Natthida Weerapreeyakul 《Nutrients》2022,14(2)
Diabetes mellitus is a major predisposing factor for cardiovascular disease and mortality. α-Amylase and α-glucosidase enzymes are the rate-limiting steps for carbohydrate digestion. The inhibition of these two enzymes is clinically used for the treatment of diabetes mellitus. Here, in vitro study and machine learning models were employed for the chemical screening of inhibiting the activity of 31 plant samples on α-amylase and α-glucosidase enzymes. The results showed that the ethanolic twig extract of Pinus kesiya had the highest inhibitory activity against the α-amylase enzyme. The respective ethanolic extract of Croton oblongifolius stem, Parinari anamense twig, and Polyalthia evecta leaf showed high inhibitory activity against the α-glucosidase enzyme. The classification analysis revealed that the α-glucosidase inhibitory activity of Thai indigenous plants was more predictive based on phytochemical constituents, compared with the α-amylase inhibitory activity (1.00 versus 0.97 accuracy score). The correlation loading plot revealed that flavonoids and alkaloids contributed to the α-amylase inhibitory activity, while flavonoids, tannins, and reducing sugars contributed to the α-glucosidase inhibitory activity. In conclusion, the ethanolic extracts of P. kesiya, C. oblongifolius, P. anamense, and P. evecta have the potential for further chemical characterization and the development of anti-diabetic recipes. 相似文献
12.
Adriana Maite Fernndez-Fernndez Eduardo Dellacassa Tiziana Nardin Roberto Larcher Cecilia Ibaez Dahiana Tern Adriana Gmbaro Alejandra Medrano-Fernandez María Dolores del Castillo 《Nutrients》2022,14(3)
In the present work the feasibility of Tannat grape skin (TGS) as a functional ingredient in the formulation of two snacks (yogurt and biscuits) was studied. The research provided novel information on the effects of the food matrix and digestion process, under simulated human oral gastrointestinal conditions, in the bioaccessibility of TGS bioactive compounds composing of the snacks with health promoting properties (antioxidant, anti-inflammatory, and antidiabetic). TGS polyphenolic profile was analyzed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) finding mainly flavonoids, phenolic acids, and anthocyanins, which may exert antioxidant, anti-inflammatory, and carbohydrase inhibition capacities. TGS digest showed antioxidant and antidiabetic potential compared to the undigested sample (p < 0.05). Yogurt and biscuits with TGS were developed with the nutrition claims “no-added sugars” and “source of fiber” and were digested in vitro to evaluate the bioaccessibility of compounds with health promoting properties after food processing and digestion. After in vitro simulation of digestion, bioactive properties were enhanced for control and TGS snacks which may be attributed to the formation/release of compounds with health-promoting properties. Biscuits showed significant increase in ABTS antioxidant capacity and yogurt showed increased α-glucosidase inhibition capacity by the addition of TGS (p < 0.05). Polyphenols from TGS and bioactive peptides from snacks which may be released during digestion might be responsible for the observed bioactivities. Consumer’s acceptance of TGS yogurt and biscuits showed scores of 6.3 and 5.1 (scale 1–9), respectively, showing TGS yogurt had higher overall acceptance. Sensory profile assessed by check-all-that-apply + just-about-right (CATA+JAR) showed most of the attributes were evaluated as “just about right”, supporting good food quality. The developed yogurt presented adequate shelf-life parameters for 28 days. TGS yogurt with higher acceptability showed reduced ROS formation (p < 0.05) induced by tert-butyl hydroperoxide (1 mM) in CCD-18Co colon cells and RAW264.7 macrophages when pre-treated with concentrations 500–1000 and 100–500 µg/mL of the digests, respectively. Moreover, TGS yogurt digest pre-treatment reduced nitric oxide (NO) production (p < 0.05) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages, showing anti-inflammatory potential. Bioactive peptides generated during lactic fermentation and digestion process may be contributors to intracellular effects. In conclusion, yogurt and biscuits with Tannat grape skin addition were obtained with nutrition claims “no-added sugars” and “source of fiber” with the potential to modulate key biochemical events associated with diabetes pathogenesis. 相似文献
13.
BACKGROUND/OBJECTIVES
We investigated total 26 ingredients of Saengshik which will be commercially produced as an anti-diabetic dietary supplement.SUBJECTS/METHODS
Thirteen vegetables, nine cereals, three legumes and one seed were extracted with aqueous ethanol for 2 h at 60℃, and evaluated for their inhibitory effects against α-amylase and α-glucosidase and for total phenolic and flavonoid contents.RESULTS
All ingredients inhibited α-amylase activity except cabbage. Strong inhibitory activity of α-amylase was observed in leek, black rice, angelica and barley compared with acarbose as a positive control. Stronger inhibition of α-glucosidase activity was found in small water dropwort, radish leaves, sorghum and cabbage than acarbose. All Saengshik ingredients suppressed α-glucosidase activity in the range of 0.3-60.5%. Most ingredients contained total phenols which were in the range of 1.2-229.4 mg gallic acid equivalent/g dried extract. But, total phenolic contents were not observed in carrot, pumpkin and radish. All ingredients contained flavonoid in the range of 11.6-380.7 mg catechin equivalent/g dried extract.CONCLUSIONS
Our results demonstrate that Saengshik containing these ingredients would be an effective dietary supplement for diabetes. 相似文献14.
Chang Hwa Jung Da-Hye Lee Jiyun Ahn Hyunjung Lee Won Hee Choi Young Jin Jang Tae-Youl Ha 《Nutrients》2015,7(6):4851-4861
Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1. 相似文献
15.
Wenqian Gu Camilla Christine Bundgaard Anker Christine Bodelund Christiansen Tilo Moede Per-Olof Berggren Kjeld Hermansen Sren Gregersen Per Bendix Jeppesen 《Nutrients》2021,13(7)
Interactions between endocrine α and β cells are critical to their secretory function in vivo. The interactions are highly regulated, although yet to be fully understood. In this study, we aim to assess the impact of α and β cell co-culture on hormone secretion. Mouse clonal cell lines α-TC6-1 (α cell line) and MIN-6 (β cell line) were cultured independently or in combination in a medium containing 5.5, 11.1, or 25 mM glucose, respectively. After 72 h, hormone release was measured using insulin and glucagon secretion assays, the cell distribution was visualized by inverted microscopy and an immunocytochemistry assay, and changes in gene expressions were assessed using the RT-PCR technique. The co-culture of the two cell lines caused a decrease in glucagon secretion from α-TC1-6 cells, while no effect on insulin secretion from MIN-6 cells was revealed. Both types of cells were randomly scattered throughout the culture flask, unlike in mice islets in vivo where β cells cluster in the core and α cells are localized at the periphery. During the α–β cell co-culture, the gene expression of glucagon (Gcg) decreased significantly. We conclude that islet β cells suppress glucagon secretion from α cells, apparently via direct cell-to-cell contact, of which the molecular mechanism needs further verification. 相似文献
16.
BACKGROUND/OBJECTIVES
In Asia, various medicinal plants have been used as the primary sources in the health care regimen for thousands of years. In recent decades, various studies have investigated the biological activity and potential medicinal value of the medicinal plants. In this study, 100 methanol extracts from 98 plant species were evaluated for their biological activities.MATERIALS/METHODS
The research properties, including 1,1-diphenyl-2-pic-rylhydrazyl (DPPH) radical scavenging activity, α-glucosidase and α-tyrosinase inhibitory effects, anti-inflammatory activity, and anticancer activity were evaluated for the selected extracts.RESULTS
Fifteen of the extracts scavenged more than 90% of the DPPH radical. Among the extracts, approximately 20 extracts showed a strong inhibitory effect on α-glucosidase, while most had no effect on α-tyrosinase. In addition, 52% of the extracts showed low toxicity to normal cells, and parts of the extracts exhibited high anti-inflammatory and anticancer activities on the murine macrophage cell (RAW 264.7) and human colon cancer cell (HT-29) lines, respectively.CONCLUSIONS
Our findings may contribute to further nutrition and pharmacological studies. Detailed investigations of the outstanding samples are currently underway. 相似文献17.
Patients with type 2 diabetes mellitus(T2DM) frequently exhibit macrovascular complications of atherosclerotic cardiovascular(CV) disease. High density lipoproteins(HDL) are protective against atherosclerosis. Low levels of HDL cholesterol(HDL-C) independently contribute to CV risk. Patients with T2 DM not only exhibit low HDL-C, but also dysfunctional HDL. Furthermore, low concentration of HDL may increase the risk for the development of T2 DM through a decreased β cell survival and secretory function. In this paper, we discuss emerging concepts in the relationship of T2 DM with HDL. 相似文献
18.
Heather J. H. Wassall Graham Devereux Anthony Seaton Robert N. Barker 《Nutrients》2013,5(9):3337-3351
Low maternal dietary vitamin E (but not vitamin C) intake during pregnancy has been associated with increased in vitro cord blood mononuclear cell (CBMC) proliferative responses, childhood wheezing and asthma. We investigated whether these associations reflect direct effects of vitamin E by investigating the effects of supplementing CBMC cultures with physiological concentrations of vitamin E. CBMC from seventy neonates were cultured supplemented with either nothing, α-tocopherol or ascorbic acid. Proliferative, IFN-γ, IL-4, IL-10 and TGF-β responses were measured. In general, vitamin E supplementation was associated with a trend for reduced proliferative responses after stimulation with antigens and house dust mite, and with increased proliferation after stimulation with timothy grass allergen. There was a trend for CBMC cultures to exhibit decreased secretion of IFN-γ, IL-10 and IL-4. Supplementation with vitamin C had no effect on CBMC proliferation, but increased IFN-γ and IL-4 production, and decreased IL-10 production. In conclusion, in vitro vitamin E and C supplementation of CBMC modifies neonatal immune function, but not in a manner predicted by observational epidemiological studies. The observed associations between vitamin E and childhood respiratory disease are complex, and the nature and form of nutritional intervention need to be carefully considered before inclusion in trials. 相似文献
19.
Soo-Kyung Lee Ji-Yeon Hwang Ji-Hyun Song Ja-Rim Jo Myung-Jin Kim Mi-Eun Kim Jung-In Kim 《Nutrition Research And Practice》2007,1(3):184-188
The major goal in the treatment of diabetes mellitus is to achieve near-normal glycemic control. To optimize both fasting blood glucose and postprandial glucose levels is important in keeping blood glucose levels as close to normal as possible. α-Glucosidase is the enzyme that digests dietary carbohydrate, and inhibition of this enzyme could suppress postprandial hyperglycemia. The purpose of this study was to test the inhibitory activity of methanol extract of Euonymus alatus on α-glucosidase in vitro and in vivo to evaluate its possible use as an anti-diabetic agent. Yeast α-glucosidase inhibitory activities of methanol extract of E. alatus were measured at concentrations of 0.50, 0.25, 0.10, and 0.05 mg/ml. The ability of E. alatus to lower postprandial glucose was studied in streptozotocin-induced diabetic rats. A starch solution (1 g/kg) with and without E. alatus extract (500 mg/kg) was administered to diabetic rats by gastric intubation after an overnight fast. Plasma glucose levels were measured at 30, 60, 90, 120, 180, and 240 min. Plasma glucose levels were expressed in increments from baseline, and incremental areas under the response curve were calculated. Extract of E. alatus,which had an IC50 value of 0.272 mg/ml, inhibited yeast α-glucosidase activity in a concentration-dependent manner. A single oral dose of E. alatus extract significantly inhibited increases in blood glucose levels at 60 and 90 min (p<0.05) and significantly decreased incremental response areas under the glycemic response curve (p<0.05). These results suggest that E. alatus has an antihyperglycemic effect by inhibiting α-glucosidase activity in this animal model of diabetes mellitus. 相似文献
20.
Vesna Tesic Jelena Ciric Irena Jovanovic Macura Nevena Zogovic Desanka Milanovic Selma Kanazir Milka Perovic 《Nutrients》2021,13(12)
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging. 相似文献