首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theophylline pellets were coated with cellulosic (Aquacoat ECD 30, Surelease clear) or acrylic (Eudragit NE30D, RS30D) polymer aqueous dispersions, containing 10% (related to the insoluble polymer content) of pectin HM or calcium pectinate, using a Uni-Glatt fluidized-bed coating apparatus. When commercial pectinolytic enzymes were added to the dissolution media (0.05 M acetate - phosphate buffer, pH 6.0), the release of theophylline from the coated pellets was generally slower than that observed in the media without enzymes. The enzymatic slowing down of the drug release, depending on the type of the aqueous polymer dispersion used, is more important with mixed Eudragit NE/calcium pectinate coated pellets. The results obtained have been examined with regard to the validity of the approach based on the combination of pectins and the insoluble polymer aqueous dispersions intended for specific-delivery of drugs to the colon. The mechanism of the hydrophilic drug release from pellets coated with insoluble polymer aqueous dispersions containing an aqueous gel-forming polymer has been also discussed.  相似文献   

2.
In order to investigate the relationship between drug dissolution and leaching of plasticizer, theophylline pellets coated with 30% (w/w) Eudragit S100:L100 (1:1) plasticized with different levels of triethyl citrate (TEC) were prepared. The influence of storage conditions on the dissolution profile of theophylline and leaching of TEC was determined. Theophylline was found to dissolve completely from pellets coated with Eudragit S100:L100 (1:1) plasticized with 50% TEC at pH 6.0 after 2h. The shape of the pellets was maintained during dissolution testing. Cracks due to the leaching of TEC were observed in the scanning electron micrographs (SEMs) following dissolution testing at pH 6.0. Both the dissolution of theophylline and the leaching of TEC decreased during storage due to further coalescence of the acrylic polymers. The dissolution profiles of theophylline showed a biphasic pattern and the lag times were estimated as the time points at which a second, rapid release of theophylline was initiated. Subsequently, the percent of TEC leached at the lag time was calculated. While the lag time was increased by storage time and humidity, the percent of TEC leached at the lag time was unchanged as a function of storage condition and was dependent on the initial TEC levels in the films. In conclusion, the plasticizer content in the film coating influenced the dissolution profile of theophylline from pellets coated with Eudragit S100:L100 (1:1). A large amount of the TEC was leached from the enteric films before drug release was initiated and a TEC level of approximately 30% in the films, based on the polymer weight, was the critical amount of TEC for initiating drug release during dissolution testing at pH 6.0. While enteric films are more soluble and dissolve faster at higher pH values, the kinetics of plasticizer release was one of the important factors controlling the dissolution of drugs at pH 6.0, at which pH the enteric polymers were insoluble.  相似文献   

3.
The objective of this study was to investigate the influence of talc and triethyl citrate (TEC) on stabilizing the drug release rates following curing and storage at elevated temperature of pellets coated with an aqueous acrylic polymeric dispersion. Core pellets containing anhydrous theophylline (20%), microcrystalline cellulose, and polyvinylpyrrolidone were prepared by extrusion-spheronization. The aqueous dispersions were prepared by adding up to 30% TEC as a plasticizer and talc up to 200% as an antiadherent to a mixture of Eudragit RS 30D/RL 30D (95:5). The theophylline pellets were coated in a fluidized-bed coating unit and then cured at elevated temperatures. Theophylline pellets were successfully coated with the Eudragit dispersions that contained up to 200% talc, based on the dry polymer weight, and the coating efficiency was greater than 93%. Our results demonstrated that the polymer, which was plasticized by TEC, was able to function as a film-forming agent for dispersions containing high levels of talc. No sticking of the coated pellets was observed during the coating process or during the curing or equilibrating phase, even with high levels of TEC in the film. The dissolution rate of theophylline from the coated pellets was delayed when the film coating dispersion contained high levels of talc. Additionally, the stability of the drug release profiles from the coated pellets after storage was significantly improved. Furthermore, a modified dissolution testing used to simulate mechanical stresses that may be encountered in vivo showed the film coated pellets would have sufficient strength. The results of this study demonstrated that high levels of film additives in the acrylic dispersion contributed to the stabilization of the drug release rates as well as the reproducibility of the coating process.  相似文献   

4.
磷酸川芎嗪丙烯酸树脂水分散体包衣小丸的体外释放研究   总被引:6,自引:0,他引:6  
目的:研究磷酸川芎嗪丙烯酸树脂水分散体包衣缓释小丸的体外释药。方法:采用丙烯酸树脂RS30D和丙烯酸树脂RL30D混合液包衣制备磷酸川芎嗪缓释小丸,并考察包衣混合液中两种丙烯酸树脂水分散体比例、包衣增重、溶出介质pH对磷酸川芎嗪包衣制剂体外释药的影响。结果:随着包衣液中丙烯酸树脂RL30D/丙烯酸树脂RS30D比例增大、包衣增重降低、溶出介质pH增大,释药速率加快。结论:包衣液中丙烯酸树脂RL30D/丙烯酸树脂RS30D比例、包衣增重、溶出介质pH均显著影响制剂药物释放。  相似文献   

5.
The objective of this study was to investigate the influence of methylparaben, ibuprofen, chlorpheniramine maleate and theophylline on the thermal and mechanical properties of polymeric films of Eudragit RS 30 D. The effects of methylparaben and ibuprofen in the film coating on the rate of drug release from Eudragit RS 30 D coated beads were also studied. The physical and mechanical properties of the cast films and coated beads were investigated using thermal analysis, tensile testing, X-ray diffraction analysis and dissolution testing. The results demonstrated that the glass transition temperature of the Eudragit RS 30 D decreased with increasing levels of methylparaben, ibuprofen and chlorpheniramine maleate in the film. Theophylline exerted no influence on the thermal properties of the polymer. The higher levels of the ibuprofen and methylparaben incorporated into the film resulted in a decrease in the tensile strength of the film. The decrease in Young's modulus of Eudragit RS 30 D coated beads was attributed to an increase in the flexibility of the polymeric films when the level of methylparaben or ibuprofen in the polymeric dispersion was increased. The dissolution data demonstrated that the rate of release of the ibuprofen from coated beads was decreased by increasing the amount of ibuprofen and methylparaben in the polymeric film coating.  相似文献   

6.
Theophylline pellets were coated with Eudragit NE30D aqueous dispersions, containing various pectin HM/Eudragit RL30D ionic complexes, using an Uni-Glatt fluidized-bed apparatus. Dissolution studies were then carried out on the coated pellets at pH 6.0, in absence and in presence of commercial pectinolytic enzymes. The theophylline release from the coated pellets, after an initial latency phase, occurred linearly as a function of time. The theophylline release rate was dependent on the pectin HM content of the complexes incorporated in the coatings. The lowest theophylline release from the coated pellets was obtained when the pectin HM content of the complexes was 20.0% w/w (related to Eudragit RL), i.e. when the complexation between pectin HM and Eudragit RL is optimal. The theophylline release from the coated pellets was slower in presence of the pectinolytic enzymes when the pectin content of complexes is higher than 20% w/w. On the other hand, the effect of the enzymes induced an increase of the theophylline release when the pectin HM content of the coatings ranged between 10.0 and 15.0% w/w (related to Eudragit RL).  相似文献   

7.
The objective of this study was to investigate the influence of a hydrophilic polymer, hydroxyethylcellulose (HEC), on the release properties of theophylline from pellets coated with Eudragit RS 30 D, and the physicochemical properties of Eudragit RS 30 D cast films. The release rate of theophylline from Eudragit RS 30 D coated pellets decreased during storage at 25 degrees C/60% RH due to the further coalescence of colloidal acrylic particles. In addition, water-vapor permeability and tensile strength of Eudragit RS 30 D cast film decreased after 1-month storage at 25 degrees C/60% RH. The presence of 10% hydroxyethylcellulose in the coating formulation was shown to stabilize the drug release rate from coated pellets, the water-vapor permeability and the tensile strength of free films. Atomic force microscopy and scanning electronic microscopy were used to demonstrate that the HEC was immiscible with Eudragit RS 30 D in the cast films. The stabilization effect of HEC was investigated and determined to be due to the formation of an incompatible phase between the latex particles which impaired further coalescence of the colloidal acrylic particles.  相似文献   

8.
The purpose of this study was to investigate the influence of relative humidity (RH) on the mechanical and dissolution properties of theophylline pellets coated with Eudragit((R)) RS 30 D/RL 30 D containing methylparaben (MP) as a non-traditional plasticizer. The coated beads were stored at 23 degrees C and at different relative humidities (0, 29, 51, 75 and 84% RH). The effect of storage conditions on the rate of drug release from coated beads was determined in pH 7.4 phosphate buffer solution. The mechanical properties, including tensile strength and Young's modulus, of individual beads were determined by a diametral compression method with a Chatillon((R)) tension/compression apparatus. The morphology of the intact and fractured beads was investigated using scanning electron microscopy (SEM). The moisture content of the polymeric films was determined using a Karl Fischer coulometric moisture analyzer. The results from the mechanical studies demonstrated that an increase in the relative humidity resulted in a decrease in the tensile strength and Young's modulus of the coated beads. SEM photographs showed that coated beads stored at 0% RH exhibited brittle fracture failure. The coated beads stored at 84% RH showed ductile behavior, which was attributed to the hydroplasticization effect on the acrylic polymer due to the uptake of moisture. The moisture content in the films was also shown to influence the rate of drug release from Eudragit((R)) RS 30 D/RL 30 D coated beads containing MP as the plasticizer. The change in release profiles could be minimized when the relative humidity was reduced to zero. The dissolution rate of theophylline from the coated beads decreased when stored at high relative humidities. This trend was reversed when the coated beads that were stored at 84% RH for 5 weeks, were then equilibrated at 0% RH.  相似文献   

9.
The aim of this study was to develop a dry powder coating process for chlorpheniramine maleate (CPM) tablets using Eudragit L 100-55 as the delayed release polymer. Powder coating, a water and organic solvent-free process, was investigated as a method to prevent the migration of an ionizable, highly water soluble model drug into the polymeric film during the coating process. Eudragit L 100-55 was pre-plasticized with triethyl citrate (TEC) using hot-melt extrusion at levels of 20%, 30%, and 40%, based on the polymer weight. The extrudate was subsequently cut into pellets and cryogenically ground into a fine powder. Talc was incorporated into the coating powder as an anti-tack agent. PEG 3350 was used as a primer for the powder coating of tablets with pre-plasticized Eudragit L 100-55. The addition of polyethylene glycol 3350 (PEG 3350) to the pre-plasticized Eudragit L 100-55 was necessary to enhance the adhesion of the coating powder to the tablet cores. PEG 3350 also improved film formation and coalescence of the polymeric particles due to its plasticization effects on the acrylic polymer. For comparison, theophylline tablets were also coated with pre-plasticized Eudragit L 100-55. Theophylline was selected as a less water soluble model drug. The powder coating process was performed in a modified laboratory scale spheronizer. The drug release rate was dependent both on TEC content and the coating level. The stability of the powder-coated CPM tablets was confirmed at 25 degrees C/60% RH over a storage time of 12 weeks.  相似文献   

10.
The objective of this study was to investigate the influence of various grades of fumed silicon dioxide on the drug release rate and physical aging of theophylline pellets coated with Eudragit RS 30 D and RL 30 D. Free films were assessed for both physicomechanical properties and water vapor permeability with respect to time and storage conditions. The release rate of theophylline was influenced by the physical properties of the silicon dioxide employed. As the particle size of the silica dioxide decreased, there was an increase in dispersion viscosity, as well as a decrease in the theophylline release rate from the coated pellets. Films prepared from formulas containing Aeroperl 300 had twice the water vapor transmission rate of films prepared from formulas containing Aerosil 200 VV and Cab-O-Sil M-5P and showed consistent moisture permeability values during storage for up to 1 month at 25 degrees C/0% relative humidity (RH). Scanning electron microscopy (SEM) imaging of pellets coated with a formulation containing Aerosil 200 VV or Cab-O-Sil M-5P demonstrated film structures that were homogenous, while those coated with a formulation containing Aeroperl 300 produced heterogeneous films with large particles of the excipient present within the polymeric matrix of the film. Stability in the drug release rate exhibited by pellets coated with a formulation containing Eudragit RS 30 D, 15% triethyl citrate (TEC), and 30% Aeroperl 300 was attributed to the stabilization of the moisture vapor transmission rate of the acrylic films. Increasing the concentration of Aeroperl 300 in the coating formulation increased the theophylline release rate from coated pellets.  相似文献   

11.
Properties of enteric coated sodium valproate pellets   总被引:1,自引:0,他引:1  
The influence of subcoat application and micro-environmental pH on the dissolution properties of enteric coated sodium valproate pellets was investigated. The pellets were prepared by solution-layering or wet-mass extrusion-spheronization methods. In order to pass the USP enteric test, the solution-layered and wet-mass extruded pellets required 35 and 25% weight gain of Eudragit L 30D-55, respectively. The application of a subcoat of either Methocel-E5 (HPMC) or Opadry AMB to the pellets resulted in a delay in sodium valproate release in 0.1N HCl. Further delay in drug release was observed when citric acid was present in a HPMC subcoat or when added to the core pellet formulation. The amount of drug released from coated pellets was a function of the level of citric acid in the pellet core or subcoat and subsequent micro-environmental pH of the pellets. Citric acid exerted a plasticizing effect on the enteric polymer film and improved film formation and polymer coalescence. When greater than 10% (w/w) citric acid was present in the pellets, a decrease in drug content was observed due to the conversion of sodium valproate to the volatile compound, valproic acid. Pellets containing less than 10% (w/w) citric acid maintained potency during processing.  相似文献   

12.
pH依赖—缓释型美沙拉秦结肠靶向小丸的制备与体外评价   总被引:11,自引:1,他引:10  
以肠溶型和渗透型丙烯酸树脂为包衣材料制备pH依赖-缓释型美沙拉秦结肠靶向小丸,评价其体外释放特性。结果表明,包衣小丸在0.1mol/LHCl中2h几乎不释放药物,在pH7.5缓冲液中具有较好的缓释作用。在模拟胃肠道各区段最高的和最低的p变化的释放度试验中,均在对应小肠区段时开始缓慢释药。分别有40%和70%的药物进入结肠后释放。优于单独的肠溶或缓释制剂。  相似文献   

13.
Recombinant interleukin-10 producing Lactococcus lactis is an alternative therapy for Crohn's disease. For in vivo interleukin-10 production, thymidine, the essential feed component of these recombinant bacteria should be coadministered. Different coating polymers were evaluated in vitro for enteric properties and targeting suitability to the ileum, the major site of inflammation in Crohn's disease. To guarantee ileal delivery, the polymer must dissolve from pH 6.8 and allow complete release within 40 min. Aqoat AS-HF coated pellets (15%) showed poor enteric properties and thymidine was released below pH 6.8. Eudragit FS30D coated pellets (15%) showed good enteric properties, but no thymidine was released within 40 min at pH 6.8. Eudragit S coated pellets (15%) showed good enteric properties after curing at elevated temperature while no thymidine was released within 40 min at pH 6.8. In another approach to pass the proximal small intestine intact, pellets were coated with 30% Eudragit L30D-55. At pH 6.0, they showed a lag-phase of 20 min. No influence of layer thickness was seen above pH 6.5. Alternatively, pellets were coated with a mixture of Eudragit FS30D/L30D-55 but they showed poor enteric properties and thymidine was released below pH 6.8. In conclusion, none of the tested polymers/mixtures ensured enteric properties and ileal targeting.  相似文献   

14.
The aim was to evaluate possible interaction in solid and liquid state of the drug with formulation excipients consequent to very fast drug release of diclofenac-Eudragit prolonged release microcapsules. The microcapsules were prepared by drug layering on calcium carbonate cores and coated with Eudragit RS 30D and L30D-55 as previously reported. Suspension of the microcapsules was prepared using microcrystalline cellulose/sodium carboxymethyl cellulose (Avicel CL-611) as medium. In vitro dissolution testing of the suspension was done, and, based on the dissolution results, possible interaction between diclofenac and Eudragit and Avicel in the medium was studied. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses were performed using 1:1 binary, 1:1:1 ternary mixtures and a ratio equivalent to that in the formulation. The mixtures were prepared by mixing the dispersions--Eudragit RS 30D or L30D-55 with the drug or other components, followed by drying at 60 degrees C for 48 h. Dry mixing was done using the powder equivalents of the polymers, Eudragit RS PO and L100-55, Avicel and calcium carbonate. In vitro dissolution of the suspended microcapsules showed a very fast release after 48 h (T50 = <1 h) compared to the solid microcapsules (T50 = 6 h). DSC curves of the formulation components or microcapsules did not show the characteristic endothermic peak of diclofenac at 287 degrees C. Powder X-ray diffraction of the binary or ternary mixtures of diclofenac and Eudragit polymers indicated reduction, shift or modification of the crystalline peaks of the drug or excipients at 2theta of 12 degrees and 18 degrees , suggestive of interaction. Some changes in drug peak characteristics at 18 degrees and 23 degrees were observed for Avicel/drug mixture, though not significant. The DSC curves of the binary mixture of diclofenac co-dried with liquid forms of Eudragit (i.e. RS 30D or L30D-55) revealed greater interaction compared to the curves of drug and powdered forms of Eudragit (RS PO or L100-55). This was depicted by greater shift in fusion points of the mixtures relative to the drug. However, comparing the RS and L-type Eudragit, the latter generally showed greater interaction with the drug. Interaction between diclofenac and L-type Eudragit polymers can occur in liquid formulations.  相似文献   

15.
The objective of this study was to develop piroxicam enteric coated pellets using nonpareil seeds by powder layering technique to minimize its gastrointestinal adverse effects. Inert seeds were prepared by incorporating sugar, Avicel PH 101 and lactose. The obtained cores were then treated by PVP 10 w/v % solution using centrifugal granulator (CF-granulator) and then coated with micronized piroxicam using HPMC solution (8 w/v %) as binder. The piroxicam pellets were finally coated with different polymers (Eudragit L30D-55, Eudragit L100, Eudragit NE30D, Acryleze, or mixture of Eudragits L30D-55 and NE30D) and plasticizers (triethyl citrate and polyethylene glycol 6000). Results showed that Eudragit L30D-55 with 3% weight gain accompanied with TEC produced suitable enteric coated pellets.  相似文献   

16.
κ-Carrageenan is a novel pelletisation aid with high formulation robustness and quick disintegration leading to fast drug release unlike the matrix-like release from non-disintegrating microcrystalline cellulose pellets. Compression of pellets into tablets is cost effective. The feasibility of formulating multiparticulate tablets with coated κ-carrageenan pellets was investigated. Pellets containing a highly soluble drug in acid, namely bisacodyl and κ-carrageenan or MCC as pelletisation aid were prepared, enteric coated with a mixture of Kollicoat(?) MAE 30 DP and Eudragit(?) NE 30 D and compressed using silicified microcrystalline cellulose as embedding powder. The effect of coating level, type of pellet core, compression force and punch configurations on drug release were studied. A sufficient coating thickness for κ-carrageenan pellets was necessary to obtain multiparticulate tablets with adequate resistance in the acid stage regardless of the compression pressure used. While κ-carrageenan pellets and their tablets released over 80% of the drug during the neutral stage only about 20-24% was released from MCC pellets and their tablets. The type of punches used (oblong or round) did not significantly influence the drug release from the prepared tablets. Moreover, sufficient prolonged release properties were obtained with κ-carrageenan pellets containing theophylline as a model drug and coated with Kollicoat(?) SR 30 D using Kollicoat(?) IR as pore former. A lower coating level and higher amount of pore former were needed in case of theophylline pellets formulated with MCC as pelletisation aid. The sustained release properties of both coated pellet formulations were maintained after compression at different compression pressures.  相似文献   

17.
本文制备了双氯芬酸钠肠溶微丸型片剂。以丙烯酸树脂EudragitNE30D和EudragitL30D-55不同比例的混合物作为衣膜材料,对不同粒径大小的双氯芬酸钠速释丸芯进行不同增重水平的包衣,并与不同压缩特性和用量比例的缓冲微丸混合,压片。所得的双氯芬酸钠肠溶微丸型片剂在人工胃液中2 h内累积释放百分数<10%,在人工肠液中1 h内累积释放百分数为(83±2.42)%。结果表明EudragitNE30D与EudragitL30D-55以一定比例混合制备得到适合压片的肠溶微丸,硬脂酸制备的缓冲微丸可用于微丸型片剂的制备。  相似文献   

18.

Background and the purpose of the study

Budesonide is the drug of choice for treatment of active inflammatory bowel disease (IBD). The aim of this study was to develop budesonide pellets based on a novel colon drug delivery system (CODES).

Methods

Pellet cores containing lactulose or mannitol were prepared by extrusion/spheronization and coated with an acid soluble polymer (Eudragit E100), hydroxypropylmethyl cellulose (HPMC) and an enteric coat (Eudragit FS 30D) sequentially. In vitro drug release of coated pellets was studied using USP dissolution apparatus type II in buffers of pH 1.2 (2 hrs), pH of 7.4 (4 hrs) and pH of 6.8 containing 8% rat cecal contents (RCC) (18 hrs). The efficacy of the optimized formulation (containing 50% lactulose coated with Eudragit E (30% w/w) and Eudragit FS 30D (12% w/w)) was evaluated against 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats.

Results

The results of the kind of bacteria in vitro dissolution tests indicated absence of drug release in pHs of 1.2 and 7.4 and controlled release in buffer of pH 6.8 containing RCC. It was found that release rate was controlled by the type and amount of polysaccharide and the thickness of the acid soluble layer. The prepared formulation showed promising results in alleviating the conditions of experimental model of colitis.

Conclusion

The results of this study suggest that pellets based on CODES technology could be useful for colonic delivery of budesonide.  相似文献   

19.
Pancreatin pellets, placebo pellets and tablets containing vitamin B2 were coated with various aqueous and organic enteric polymers, HPMCAS, HP, Eudragit L 100-55, Eudragit L 30 D-55, CAP, CAT, CMEC and PVAP, comparatively investigated and tested for storage stability. With the exception of Eudragit L 100-55 and Eudragit L 30 D-55, higher amounts of coating material were needed to achieve gastro-resistance with aqueous coating than with organic coating. Film formation from aqueous dispersions of micronized HP 55 was affected by the degree of micronization and was improved by reducing the particle size of the polymer. Undercoating was another suitable measure to decrease the amount of coating material required. The choice of plasticizer was of special importance in the aqueous dispersions, and type and quantity must be appropriate for the polymer applied. Non-polymeric plasticizers such as triethyl citrate (TEC) evaporated along with water during the spraying or drying process and high temperatures promoted such losses. The moisture-sensitive pancreatic enzymes were damaged both by humidity and heat during aqueous coating. The extent of damage was dependent on the coating equipment used. Upon storage, coatings obtained from aqueous dispersions showed changes in enteric performance or release characteristics as a consequence of three chemical/physical mechanisms: hydrolysis of ester linkages in the polymer or plasticizer, evaporation of the plasticizer, delayed film formation. The active ingredient pancreatin induced hydrolysis of the ester based film-former hydroxypropyl methylcellulose acetate succinate (HPMCAS). However, even without the influence of enzymes, the phthalic ester groups of aqueous hydroxypropyl methylcellulose phthalate (HP) were partly cleaved after 11 months storage. In HPMCAS-coated pancreatin pellets, the plasticizer glyceryl triacetate was almost completely hydrolyzed by the enzymes, whilst triethyl citrate was lost by evaporation through permeable packaging material at elevated temperatures. Open storage at elevated temperatures and humidities caused changes in the surface structure of HPMCAS coatings, consisting of a smoothing of the originally somewhat porous film and sticking. When applied to vitamin B2 tablets, Eudragit L 100-55, Opadry enteric (PVAP) and Aqoat (HPMCAS) proved to be quite stable aqueous enteric coatings, whereas cellulose acetate phthalate CAP or cellulose acetate trimellitate CAT coatings as ammonia-neutralized aqueous solution or as water-based pseudolatex Aquateric were unstable when stored under stress conditions.  相似文献   

20.
豆腐果素缓释微丸包衣工艺的研究   总被引:2,自引:1,他引:2  
分别以Surelease、Eudragit RS30D/RL30D为包衣材料,制备豆腐果素缓释微丸,筛选包衣工艺的优化参数。结果表明,用Surelease、Eudragit两种包衣材料均可得到在12h内缓慢释放的微丸,后者有近1h的时滞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号