首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence in the past few years has shown that miRNAs could serve functionally as "oncogenes" or "tumor suppressor genes" and regulate multiple cellular processes relevant to carcinogenesis and cancer progression. Both RhoA and Cdc42, two members of the Rho GTPase family, are found to be upregulated in several types of human tumors including colorectal cancer, and have been implicated in cancer initiation and progression. In the present studies, we found that miR-185 expression greatly inhibited the proliferation potential of Hela cells. An examination of the predicted targets of miR-185 revealed RhoA and Cdc42 among the putative targets that are crucial for cell proliferation. A genomic sequence analysis indicated that nt 1844-1852 of the RhoA 3'UTR and nt 1382-1396 of the cdc42 3'UTR encode for miR-185 target matching sequences and they are highly conserved across different species. Using a luciferase-reporter assay, we show that miR-185 expression significantly suppressed the RhoA and Cdc42 3'UTR activities, and the inhibitory effect was lost when the putative target sites for miR-185 were mutated. Consistent with these results, ectopic expression of miR-185 reduced protein levels of RhoA and Cdc42 in cells, indicating miR-185 functionally regulates RhoA and Cdc42 abundance. Similar to the effects of knocking down RhoA and/or Cdc42 expression, miR-185 effectively inhibited proliferation, induced G1 cell cycle arrest and apoptosis, and blocked invasion of colorectal cancer cells. Thus, miR-185 is a negative regulator of RhoA and Cdc42 and their cellular activities, and could inhibit proliferation and invasion of colorectal cancer cells.  相似文献   

2.
The hedgehog (Hh) signaling pathway is essential for the development of tissues and organs. Hyperactive Hh signaling has been implicated in many gastric cancers, including esophageal cancer. However, the interaction between the Hh pathway and other potential signaling pathways in primary esophageal tumorigenesis has not been well investigated. In our study, we found that esophageal cancer cells expressed Hh signaling molecules and that the hyperexpression of Hh target genes was related to protein kinase B (AKT) activation but not extracellular signal‐regulated kinase activation. We analyzed the relationship between Gli1 or p‐AKT expression and clinicopathological features in esophageal carcinoma samples and found that Gli1 expression was associated with lymph vessel invasion (p = 0.016), blood vessel invasion (p = 0.006) and a poor prognosis (p = 0.003), and p‐AKT expression was associated with blood vessel invasion (p = 0.031) and a poor prognosis (p = 0.031). We also studied the relationship between Hh and phosphinositide‐3 kinase (PI3K)/AKT or mitogen‐activated protein kinase (MAPK) signaling pathways in both TE‐1 and TE‐10 cell lines. We found that the PI3K/AKT pathway played a critical role in Hh signaling after stimulation with epidermal growth factor, Gβγ and N‐Shh. Conversely, PI3K/AKT and MAPK signaling cooperated with the Shh pathway to promote esophageal cancer cell survival and proliferation. The results from esophageal cancer cells shed light on the significance of Hh signaling in esophageal tumor formation and the crosstalk of the Hh pathway with other basic signaling pathways, which is consistent with that observed in human tumor samples.  相似文献   

3.
Phosphatidylinositol 3-kinase (PI3-K) is a growth factor-activated transforming lipid (and protein) kinase, involved in cell motility and invasion, that has multiple effectors. Relatively little is known about its expression and enzymatic activity in human breast cancer. Since growth factor receptors are amplified in breast cancer, and the tumor suppressor PTEN may be mutated in human breast cancer, it was hypothesized that PI3-K and its downstream effectors would be activated in this disease. In 11 resected tumors analyzed for expression of this kinase, a mean 3-fold increase in protein expression was observed over the corresponding adjacent control tissue. Using an in vitro lipid kinase assay of the immunoprecipitated PI3-K protein, a greater than 2-fold increase in activation was observed. These changes were observed in the absence of an activation of either protein kinase B (PKB, akt1) or p70 S6 kinase (p70 S6K). However, p21-activated kinase (Pak), p38 mitogen-activated protein kinase (p38 MAPK) and mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK 2) were all overexpressed and demonstrated increased enzyme activity. It may be concluded that aberrant mitogenic signaling in human breast cancer in vivo involves Pak, p38 MAPK and MAPKAPK2 downstream of PI3-K, but neither of PKB or p70 S6K. It is proposed that this pathway may serve as a useful targeting nexus for investigation of small molecule inhibitors in human breast cancer.  相似文献   

4.
Previously, we showed that retinol inhibited all-trans-retinoic acid (ATRA)-resistant human colon cancer cell invasion via a retinoic acid receptor-independent mechanism. Because phosphatidylinositol 3-kinase (PI3K) regulates cell invasion, the objective of the current study was to determine if retinol affected PI3K activity. Following 24 h of serum starvation, the ATRA resistant human colon cancer cell lines HCT-116 and SW620 were treated with 0, 1, or 10 microM retinol. Thirty minutes of retinol treatment resulted in a significant decrease in PI3K activity in both cell lines. To determine the mechanism by which retinol reduces PI3K activity, the levels and heterodimerization of the regulatory subunit, p85, and the catalytic subunit, p110, of PI3K were examined. Retinol treatment did not alter p85 or p110 protein levels or the heterodimerization of these subunits at any time point examined. To determine if retinol affected the ability of PI3K to phosphorylate the substrate, phosphatidylinositol (PI), PI3K was immunoprecipitated from control cells and incubated with 10 microg PI and increasing concentrations of retinol or 10 microg retinol and increasing concentrations of PI. Retinol decreased PI3K activity in a dose-responsive manner and increased PI suppressed the inhibitory effect of retinol on PI3K activity. Finally, the PI3K inhibitor, LY294002, mimicked the ability of retinol to decrease cell invasion. Computational modeling revealed that retinol may inhibit PI3K activity in a manner similar to that of wortmannin. Thus, a decrease in PI3K activity due to retinol treatment may confer the ability of retinol to inhibit ATRA-resistant colon cancer cell invasion.  相似文献   

5.
Lee H  Li GY  Jeong Y  Jung KH  Lee JH  Ham K  Hong S  Hong SS 《Cancer letters》2012,318(1):68-75
Potentiation of anti-breast cancer activity of an imidazopyridine-based PI3Kα inhibitor, HS-104, was investigated in human breast cancer cells. HS-104 shows strong inhibitory activity against recombinant PI3Kα isoform and the PI3K signaling pathway, resulting in anti-proliferative activity in breast cancer cells. It also induced cell cycle arrest at the G(2)/M phase as well as apoptosis. Furthermore, oral administration of HS-104 significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Therefore, HS-104 could be considered as a potential candidate for the treatment of human breast cancer.  相似文献   

6.
BackgroundLY2584702 tosylate (hereafter referred to as LY2584702) is a potent, highly selective adenosine triphosphate (ATP) competitive inhibitor against p70 S6 kinase, a downstream component of the phosphatidylinositol-3-kinase signalling pathway which regulates cell proliferation and survival. LY2584702 exhibited anti-tumour activity in preclinical analysis.MethodsPatients with advanced solid tumours were treated with LY2584702 orally on a 28-day cycle until the criteria for maximum tolerated dose (MTD) were met. Skin biopsies were collected for pharmacodynamic analysis, and levels of phospho-S6 protein were examined. The primary objective was to determine a phase II dose and schedule with secondary objectives of observing safety and tolerability. Dose escalation was based upon Common Terminology Criteria for Adverse Events Version 3.0.ResultsThirty-four patients were enrolled onto this phase I study and treated with LY2584702 on a QD (once-daily) or BID (twice-daily) dosing schedule. Part A dose escalation (n = 22) began with 300 mg BID (n = 2). Due to toxicity, this was scaled back to doses of 25 mg (n = 3), 50 mg (n = 8), 100 mg (n = 3), and 200 mg (n = 6) QD. Part B dose escalation (n = 12) included 50 mg (n = 3), 75 mg (n = 3), and 100 mg (n = 6) BID. Seven patients experienced dose-limiting toxicity (DLT). All DLTs were Grade 3 and included vomiting, increased lipase, nausea, hypophosphataemia, fatigue and pancreatitis.ConclusionThe MTD was determined to be 75 mg BID or 100 mg QD. No responses were observed at these levels. Pharmacokinetic analysis revealed substantial variability in exposure and determined that LY2584702 treatment was not dose proportional with increasing dose.  相似文献   

7.
Colorectal cancer (CRC) remains one of the most common malignancies worldwide, and liver metastasis represents a considerable challenge during CRC treatment. Aberrant expression of angiopoietin-like protein 3 (ANGPTL3) has been reported in several human cancer types. However, the function and mechanism of ANGPTL3 in CRC remain unclear. In this study, we first explored ANGPTL3 expression profiles in CRC datasets from ONCOMINE and in local samples from patients with CRC. We then elucidated the function of ANGPTL3 via knockdown and overexpression experiments. Bioinformatic analyses were performed to investigate the biological function and associated molecular mechanisms of ANGPTL3 in CRC oncogenesis and development. Finally, a xenograft model of liver metastasis was used to determine the role of ANGPTL3 in CRC metastasis. Our findings indicated that ANGPTL3 expression was upregulated in human CRC tissues, with high ANGPTL3 expression significantly correlated with poor survival of patients with CRC. ANGPTL3 overexpression promoted the proliferation and migration of CRC cells partially through mitogen-activated protein kinase 14 (MAPK14), while ANGPTL3 silencing had the opposite effect. Moreover, ANGPTL3 downregulation suppressed tumor growth and liver metastasis in xenograft mice. Collectively, the results presented here indicate that ANGPTL3 promotes cell proliferation and liver metastasis partly via MAPK14, suggesting that ANGPTL3 plays a tumor-promoting role in CRC progression and thus may represent a therapeutic target for CRC treatment.  相似文献   

8.
结直肠癌是常见的恶性肿瘤之一,近十年来,结直肠癌在我国的发病率呈逐年上升的趋势。已有研究表明,PI3K/Akt信号传导通路是与细胞增殖和细胞凋亡关系最密切的信号传导通路之一。随着PI3K/AKt信号通路在结直肠癌发生、发展中的研究不断深入,该通路对结直肠癌发生、发展及治疗药物的研发具有十分重要的价值。本文就PI3K/Akt信号传导通路在结直肠癌发生、发展和治疗中的作用以及机制的研究进展作一综述。  相似文献   

9.
《国际肿瘤学杂志》2012,39(8):693-696
The PIK3CA gene codes p100α, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K) and is involved in the initiating the PI3K/AKT pathway. PIK3CA plays its biological roles through.downstream PI3K pathway. PIK3CA gene mutants can be detected in many kinds of tumors. The mutant PIK3CA gene can abnormally activate PI3K pathway, leading to the abnormal cell cycle, decreased cell adhesion, down regulated apoptosis and neovascularization, and then promotes tumor genesis and development. Recent researches have found that mutant PIK3CA gene is closely correlated with the genesis, development, differentiation, metastasis and drug resistance of colorectal cancer. Research of PIK3CA in colorectal cancer may provide significant evidence for the early diagnosis, gene screen, therapeutic regimen making, recurrence and follow up.  相似文献   

10.
Inhibition of the phosphatidylinositol‐3‐kinase (PI3K) signaling pathway is a cancer treatment strategy that has entered into clinical trials. We performed a meta‐analysis on the frequency of prominent genetic (PIK3CA mutation, PIK3CA amplification and PTEN deletion) and protein expression (high PI3K, PTEN loss and high pAkt) aberrations in the PI3K pathway in gastric cancer (GC) and colorectal cancer (CRC). We also performed laboratory analysis to investigate the co‐occurrence of these aberrations. The meta‐analysis indicated that East Asian and Caucasian GC patients differ significantly for the frequencies of PIK3CA Exon 9 and 20 mutations (7% vs. 15%, respectively), PTEN deletion (21% vs. 4%) and PTEN loss (47% vs. 78%), while CRC patients differed for PTEN loss (57% vs. 26%). High study heterogeneity (I2 > 80) was observed for all aberrations except PIK3CA mutations. Laboratory analysis of tumors from East Asian patients revealed significant differences between GC (n = 79) and CRC (n = 116) for the frequencies of PIK3CA amplification (46% vs. 4%) and PTEN loss (54% vs. 78%). The incidence of GC cases with 0, 1, 2 and 3 concurrent aberrations was 14%, 52%, 27% and 8%, respectively, while for CRC it was 10%, 60%, 25% and 4%, respectively. Our study consolidates knowledge on the frequency, co‐occurrence and clinical relevance of PI3K pathway aberrations in GC and CRC. Up to 86% of GC and 90% of CRC have at least one aberration in the PI3K pathway, and there are significant differences in the frequencies of these aberrations according to cancer type and ethnicity.  相似文献   

11.
背景与目的:TGF-α/EGFR自分泌环在许多恶性肿瘤中异常激活,与肿瘤发生、发展密切相关。本研究观察TGF-α诱导的卵巢腺癌细胞Caov-3生物学行为及相关信号分子的改变,探讨TGF-α/EGFR自分泌环在卵巢癌发生、发展中的作用机制。方法:采用M1Tr和BOYDEN小室体外侵袭实验检测Caov-3细胞增殖和侵袭能力;采用Western blot方法检测EGFR、ERK1/2、P13K、AKT、P70S6K蛋白表达情况。结果:TGF-α促进Caov-3细胞增殖和转移,0.5-25ng/ml浓度范围内,细胞增殖率与TGF-α浓度成剂量效应关系;TGF-α在短时间内可使Caov-3细胞EGFR表达量骤增,并伴随P13K、AKT、P70S6K等信号传导分子表达量的上调;但ERK1/2表达量无明显变化。结论:TGF-α/EGFR自分泌环可能通过激活P13K/AKT信号传导通路,上调P70s6k来增强卵巢癌细胞的增殖和转移能力。  相似文献   

12.
Mutated KRAS promotes the activation of the MAPK pathway and the progression of colorectal cancer (CRC) cells. Aberrant activation of the PI3K pathway strongly attenuates the efficacy of MAPK suppression in KRAS-mutated CRC. The development of a novel strategy targeting a dual pathway is therefore highly essential for the therapy of KRAS-mutated CRC. In this study, a quadruple-depleting system for the KRAS, MEK1, PIK3CA, and MTOR genes based on CRISPR/SaCas9 was developed. Adenovirus serotype 5 (ADV5) was integrated with two engineered proteins, an adaptor and a protector, to form ADV-protein complex (APC) for systemic delivery of the CRISPR system. Quadruple-editing could significantly inhibit the MAPK and PI3K pathways in CRC cells with oncogenic mutations of KRAS and PIK3CA or with KRAS mutation and compensated PI3K activation. Compared with MEK and PI3K/MTOR inhibitors, quadruple-editing induced more significant survival inhibition on primary CRC cells with oncogenic mutations of KRAS and PIK3CA. The adaptor specifically targeting EpCAM and the hexon-shielding protector could dramatically enhance ADV5 infection efficiency to CRC cells and significantly reduce off-targeting tropisms to many organs except the colon. Moreover, quadruple-editing intravenously delivered by APC significantly blocked the dual pathway and tumor growth of KRAS-mutated CRC cells, without influencing normal tissues in cell- and patient-derived xenograft models. Therefore, APC-delivered quadruple-editing of the MAPK and PI3K pathways shows a promising therapeutic potential for KRAS-mutated CRC.  相似文献   

13.

Background

Deregulation of signal transduction pathways plays a critical role in oncogenesis of colorectal cancer (CRC) and directly affects sensitivity to targeted therapies. Against this background we developed a comprehensive biomarker profiling program including markers of downstream signaling to study their association with clinical outcomes.

Patients and Methods

A prospectively studied cohort of 160 patients with metastatic CRC was included. Standard diagnostic workup included mutational analyses of Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral oncogene homolog (NRAS), and v-Raf murine sarcoma viral oncogene homolog B (BRAF). In addition, markers of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mammalian target of rapamycin pathway activation (phosphorylation of extracellular signal-regulated kinase [ERK], AKT, and p70 ribosomal protein S6 kinase β-1 [p70S6K]) were studied using standardized immunohistochemistry.

Results

There was a significant correlation between markers of ERK and AKT activation in the full cohort. In addition, phosphorylation of p70S6K correlated strongly with ERK and AKT phosphorylation and primary tumor localization in the right colon. Subgroup analyses specified these correlations to patients with all-RAS wild type tumors. In contrast, tumors harboring RAS mutations predominantly exhibited ERK phosphorylation. Interestingly, patients with CRC showing high p70S6K phosphorylation (highest quartile) had a significantly inferior overall survival (hazard ratio [HR], 2.4; P = .002) irrespective of RAS mutational status. This effect remained significant in multivariate analysis (P = .002). A patient subgroup characterized by high p70S6K phosphorylation and right-sided primary tumors had a particularly poor prognosis with a dramatically inferior overall survival (HR, 5.2; P < .001). Patients with right-sided primary tumor and low p70S6K phosphorylation had responses to anti-epidermal growth factor receptor antibody-based therapies and overall survival similar to patients with left-sided primary tumors.

Conclusion

High phosphorylation of p70S6K is a novel, independent biomarker for poor prognosis, in particular in patients with right-sided primary tumors.  相似文献   

14.
15.
Lung cancer is one of the most commonly occurring malignancies. It has been reported that mammalian target of rapamycin (mTOR) is phosphorylated in lung cancer and its activation was more frequent in tumors with overexpression of phosphatidylinositol 3-kinase (PI3K)/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human nonsmall cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex such as Rictor, Raptor, GβL and PRAS40. There was an increase in the phosphorylation of AMPKα and a decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer.  相似文献   

16.
In early breast cancer, local relapses represent a determinant and not simply an indicator of risk for distant relapse and death. Notably, 90% of local recurrences occur at or close to the same quadrant of the primary cancer. Relevance of PI3K/mTOR/p70S6K signaling in breast tumorigenesis is very well documented. However, the pathway/s involved in the process of breast cancer local relapse are not well understood. The ribosomal protein p70S6K has been implicated in breast cancer cell response to post‐surgical inflammation, supporting the hypothesis that it may be crucial also for breast cancer recurrence. Here, we show that p70S6K activity is required for the survival of breast cancer cells challenged in “hostile” microenvironments. We found that impairment of p70S6K activity in breast cancer cells strongly decreased their tumor take rate in nude mice. In line with this observation, if cells were challenged to grow in anchorage independence or in clonogenic assay, growth of colonies was strongly dependent on an intact p70S6K signaling. This in vitro finding was particularly evident when breast cancer cells were grown in the presence of wound fluids harvested following surgery from breast cancer patients, suggesting that the stimuli present in the post‐surgical setting at least partially relied on activity of p70S6K to stimulate breast cancer relapse. From a mechanistic point of view, our results indicated that p70S6K signaling was able to activate Gli1 and up‐regulate the anti‐apoptotic protein Bcl2, thereby activating a survival response in breast cancer cells challenged in hostile settings. Our work highlights a previously poorly recognized function of p70S6K in preserving breast cancer cell survival, which could eventually be responsible for local relapse and opens the way to the design of new and more specific therapies aiming to restrain the deleterious effects of wound response.  相似文献   

17.
PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer.  相似文献   

18.
Compensatory activation of the signal transduction pathways is one of the major obstacles for the targeted therapy of non‐small cell lung cancer (NSCLC). Herein, we present the therapeutic strategy of combined targeted therapy against the MEK and phosphoinositide‐3 kinase (PI3K) pathways for acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in NSCLC. We investigated the efficacy of combined trametinib plus taselisib therapy using experimentally established EGFR‐TKI‐resistant NSCLC cell lines. The results showed that the feedback loop between MEK/ERK and PI3K/AKT pathways had developed in several resistant cell lines, which caused the resistance to single‐agent treatment with either inhibitor alone. Meanwhile, the combined therapy successfully regulated the compensatory activation of the key intracellular signals and synergistically inhibited the cell growth of those cells in vitro and in vivo. The resistance mechanisms for which the dual kinase inhibitor therapy proved effective included (MET) mesenchymal‐epithelial transition factor amplification, induction of epithelial‐to‐mesenchymal transition (EMT) and EGFR T790M mutation. In further analysis, the combination therapy induced the phosphorylation of p38 MAPK signaling, leading to the activation of apoptosis cascade. Additionally, long‐term treatment with the combination therapy induced the conversion from EMT to mesenchymal‐to‐epithelial transition in the resistant cell line harboring EMT features, restoring the sensitivity to EGFR‐TKI. In conclusion, our results indicate that the combined therapy using MEK and PI3K inhibitors is a potent therapeutic strategy for NSCLC with the acquired resistance to EGFR‐TKIs.  相似文献   

19.
20.

Background:

The purpose of this work was to determine the efficacy of inhibiting mammalian target of rapamycin (mTOR) in pancreatic cancer preclinical models and translate preclinical observations to the clinic.

Methods:

Temsirolimus (20 mg Kg−1 daily) was administered to freshly generated pancreatic cancer xenografts. Tumour growth inhibition was determined after 28 days. Xenografts were characterised at baseline by gene expression and comparative genomic hybridisation. Patients with advanced, gemcitabine-resistant pancreatic cancer were treated with sirolimus (5 mg daily). The primary end point was 6-month survival rate (6mSR). Correlative studies included immunohistochemistry assessment of pathway expression in baseline tumours, drug pharmacokinetics (PKs), response assessment by FDG-PET and pharmacodynamic effects in peripheral-blood mononuclear cells (PBMCs).

Results:

In all, 4 of 17 xenografts (23%) responded to treatment. Sensitive tumours were characterised by gene copy number variations and overexpression of genes leading to activation of the PI3K/Akt/mTOR pathway. Activation of p70S6K correlated with drug activity in the preclinical studies. Sirolimus was well tolerated in the clinic, showed predictable PKs, exerted pathway inhibition in post-treatment PBMCs and resulted in a 6mSR of 26%. No correlation, however, was found between activated p70S6K in tumour tissues and anti-tumour effects.

Conclusion:

Sirolimus activity in pancreatic cancer was marginal and not predicted by the selected biomarker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号