首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nitric oxide (NO) is a major regulatory molecule of the cardiovascular system; however, measurement of vascular NO synthesis in vivo represents a major challenge. NO stemming from the lower respiratory tract has been used as a marker of vascular endothelial function. Experimental evidence for this concept is lacking. Therefore, the aim of the present study was to investigate this relationship. Lower respiratory tract exhaled NO concentration, together with systemic and pulmonary artery pressure, was measured in endothelial nitric oxide synthase (NOS) (eNOS) null mice (eNOS-/-). Similar studies were performed in inducible NOS (iNOS) null mice (iNOS-/-). Defective endothelial NO synthesis in eNOS-/- mice (evidenced by systemic and pulmonary hypertension) was associated with augmented exhaled NO levels (12.5 +/- 1.9 versus 9.8 +/- 1.2 parts per billion (ppb), eNOS-/- versus wild type), whereas normal endothelial NO synthesis in iNOS-/- mice was associated with decreased exhaled NO levels (4.3 +/- 1.5 ppb). Augmented exhaled NO levels in eNOS-/- mice were associated with upregulation of iNOS expression in the lung. These results indicate that inducible nitric oxide synthase is a major determinant of gaseous nitric oxide production in the lung, and lower respiratory tract exhaled nitric oxide does not always represent a marker of vascular endothelial nitric oxide synthesis.  相似文献   

2.
BACKGROUND : Hypertension in endothelial nitric oxide synthase knockout (eNOS-/-) mice is believed to be partly due to altered vasodilatation. However, nitric oxide (NO) is also known to play an important part in angiogenesis. OBJECTIVE : To investigate whether capillary and arteriolar density were impaired in eNOS-/- mice, as this could account for increased vascular resistance and hypertension. METHODS : Using immunohistochemistry with mouse monoclonal smooth muscle alpha-actin antibody to detect arterioles and rabbit polyclonal fibronectin antibody to detect capillaries, we quantified arteriolar and capillary density in the left ventricle and in the gracilis muscle from eNOS-/- mice compared with those in C57BL6J littermates (n = 6-8) in 8- and in 12-week-old mice. In a second set of experiments, we treated 8-week-old normotensive eNOS-/- mice with the antihypertensive vasodilator, hydralazine, for 1 month. RESULTS : Eight-week-old eNOS-/- mice were normotensive and presented similar arteriolar and capillary densities in cardiac and skeletal muscles compared with those in eNOS+/+ mice. Twelve-week-old eNOS/- mice were hypertensive (mean arterial pressure 118 +/- 21 mmHg compared with 64 +/- 2 mmHg; P < 0.05). Capillary densities were similar in eNOS-/- mice and eNOS+/+ mice in the heart (4154 +/- 123 and 4051 +/- 247/mm2, respectively) and in skeletal muscle (961 +/- 40 and 1025 +/- 41/mm2, respectively). Arteriolar densities were 15% lower in skeletal muscle and in the heart in eNOS-/- mice than in the eNOS+/+ control group (P < 0.05). Hydralazine prevented hypertension and arteriolar rarefaction in eNOS-/- mice, whereas capillary density was unaffected by treatment with the vasodilator. CONCLUSION : In young non-hypertensive eNOS-/- mice, the lack of eNOS did not affect microvascular densities in either of the muscles studied. In adult hypertensive eNOS-/- mice, we observed a lower arteriolar density, but a similar capillary density compared with controls. Hydralazine prevented hypertension and arteriolar rarefaction in adult mice, suggesting a non-NO-dependent pathway. Capillary density was not affected by hydralazine.  相似文献   

3.
Deficiencies in maternal endothelial NO synthase (eNOS) have been associated with pregnancy complications, intrauterine growth retardation, and altered vascular function in offspring. In the present study, we investigated the influence of the maternal eNOS genotype on offspring's blood pressure, heart rate, and locomotor activity. The effect of maternal eNOS genotype was made by comparing telemetered blood pressure and activity between 2 groups of 13- to 16-week-old male heterozygous eNOS knockout mice, 1 produced by a cross of eNOS knockout (eNOS-/-) mothers and wild-type (eNOS+/+) fathers (eNOS(+/-MAT) offspring, N=11), the other by a cross of eNOS+/+ mothers and eNOS-/- fathers (eNOS(+/-PAT) offspring, N=10). Data were also collected for homozygous eNOS-/- and eNOS+/+ mice (N=15 each). Heterozygous eNOS knockout mice exhibited blood pressures that were intermediate to the eNOS+/+ and eNOS-/- groups. Relative to eNOS(+/-PAT) mice, eNOS(+/-MAT) mice exhibited significant increases in nocturnal diastolic arterial pressure and diurnal variations (dark-light difference) in systolic, mean, and diastolic arterial pressure. In addition, indices of spontaneous nocturnal locomotor activity, including both the proportion of time spent active and the intensity of activity when active, were also significantly increased. Heart rate did not differ between the groups. Our results suggest that the maternal eNOS genotype influences both blood pressure and behavior of offspring, possibly as a consequence of developmental programming associated with intrauterine growth retardation.  相似文献   

4.
OBJECTIVES : Mechanisms involved in hypertension in homozygous mice for the defective endothelial nitric oxide synthase gene (eNOS-/-) have not been fully elucidated. As NO is a potent vasodilator agent and possibly promotes angiogenesis, we investigated whether vasoconstriction and/or microvascular rarefaction could explain hypertension in these mice. METHODS : Immunohistochemistry with mouse monoclonal smooth muscle alpha-actin antibody was used to detect arterioles, and quantification of arteriolar density was performed in the left ventricle and in the gracilis muscle of 12-week-old male eNOS+/+ and eNOS-/- mice. Haemodynamic parameters - mean arterial pressure (MAP), cardiac index (CI), total peripheral résistance (TPR), myocardial blood flow, muscular blood flow and corresponding resistances - were measured or calculated using the fluorescent microsphere method in basal conditions and after infusion of sodium nitroprusside (SNP) (5 to 150 microg/kg per min) in eNOS-/- mice, compared with eNOS+/+ mice. RESULTS : We evidenced a significant decrease in arteriolar density in the heart (-16%, P < 0.02) and in the gracilis muscle (-22%, P < 0.05) in eNOS-/- mice. In basal conditions, eNOS-/- mice developed significant hypertension (MAP = 127 +/- 14 versus 77 +/- 14 mmHg, P < 0.001) associated with decreased CI (-29%, P < 0.001) and increased TPR (+ 125%, P < 0.001). Coronary and gracilis muscular resistances were increased (by 75 and 89% respectively, P < 0.001) compared with eNOS+/+ mice, whereas myocardial and skeletal muscle tissue blood flows were not affected. After SNP administration (10 microg/kg per min), a dose that did not significantly modify haemodynamic parameters in eNOS+/+ mice, MAP, TPR and regional resistances were normalized in eNOS-/- mice, showing that vasodilation may correct hypertension in eNOS-/- mice. However, under maximal vasodilating conditions, TPR and regional resistances remained significantly higher in eNOS-/- mice than those of eNOS+/+ mice. CONCLUSION : Anatomical and functional results show that both vasoconstriction and arteriolar rarefaction are involved in hypertension of eNOS-/- mice. Indeed, under maximal vasodilation, arterial pressure and TPR remained significantly higher in eNOS-/- mice than in eNOS+/+ mice, evidencing a major role of microvascular rarefaction in this model of hypertension.  相似文献   

5.
Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N(6)-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) > or = WT with l-NIL or iNOS(-/-) > eNOS(-/-) > or = eNOS(-/-) with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS(-/-) mice but not in eNOS(-/-) mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.  相似文献   

6.
The molecular mechanism for priapism is not well characterized. Although the nitric oxide (NO) pathway is known to mediate penile erection under normal conditions, we hypothesized that the mechanism of priapism rests in aberrant downstream signaling of this pathway based on our previous findings that mice lacking the gene for endothelial nitric oxide synthase (eNOS-/-) and mice lacking both neuronal NOS (nNOS) and eNOS (nNOS-/-, eNOS-/-) have a tendency for priapic activity. We investigated the role of downstream guanylate cyclase and phosphodiesterase type 5 (PDE5A) expression and function in mediating these responses in eNOS-/- and nNOS-/-, eNOS-/- mice. Erectile responses to both cavernous nerve stimulation and intracavernosal injection of the NO donor diethylamine-NONOate were augmented in eNOS-/- and nNOS-/-, eNOS-/- mice but not in WT or nNOS-/- mice. PDE5A protein expression and activity and cGMP levels were significantly lower in eNOS-/- and nNOS-/-, eNOS-/- mice, and this effect was reproduced in WT corpus cavernosum exposed to NOS inhibitors. Moreover, cavernous nerve stimulation was associated with a marked augmentation of cavernosal cGMP levels, suggesting that, although lower at baseline, the production of cGMP is unchecked in eNOS-/- and nNOS-/-, eNOS-/- mice upon neurostimulation. Transfection of eNOS-/- mice with an adenovirus encoding eNOS resulted in a normalization of PDE5A protein and activity as well as a correction of priapic activity. Coupled with the observation that sickle cell disease mice (which show a priapism phenotype) evince dysregulated PDE5A expression/activity, these data suggest that PDE5A dysregulation is a fundamental mechanism for priapism.  相似文献   

7.
We examined effects of pharmacological inhibition of nitric oxide synthase (NOS) and genetic deficiency of the endothelial isoform of NOS (eNOS) on structure and mechanics of cerebral arterioles. We measured pressure, diameter, and cross-sectional area (CSA) of the vessel wall (histologically) in maximally dilated cerebral arterioles in mice that were untreated or treated for 3 months with the NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg per day in drinking water). Treatment with L-NAME increased systemic arterial mean pressure (SAP; 143+/-4 versus 121+/-4 mm Hg, P<0.05) and CSA (437+/-27 versus 310+/-34 microm2, P<0.05). These findings suggest that hypertension induced in mice by NOS inhibition is accompanied by hypertrophy of cerebral arterioles. To determine the role of the eNOS isoform in regulation of cerebral vascular growth, we examined mice with targeted disruption of one (heterozygous) or both (homozygous) genes encoding eNOS. Wild-type littermates served as controls. SAP and CSA were significantly increased in homozygous (SAP, 141+/-5 versus 122+/-3 mm Hg in wild-type mice, P<0.05; CSA, 410+/-18 versus 306+/-15 microm2 in wild-type mice, P<0.05), but not in heterozygous (SAP, 135+/-4 mm Hg; CSA, 316+/-32 microm2) eNOS-deficient mice. Carotid ligation normalized cerebral arteriolar pulse pressure did not prevent increases in CSA in homozygous eNOS-deficient mice. Thus, cerebral arterioles undergo hypertrophy in homozygous eNOS-deficient mice, even in the absence of increases in arteriolar pulse pressure. These findings suggest that eNOS plays a major role in regulation of cerebral vascular growth.  相似文献   

8.
BACKGROUND & AIMS: Considerable debate exists concerning which isoform of nitric oxide synthase (NOS) is responsible for the increased production of NO in PHT. We used the portal vein ligation model of PHT in wild-type and eNOS- or iNOS-knockout mice to definitively determine the contribution of these isoforms in the development of PHT. METHODS: The portal vein of wild-type mice, or those with targeted mutations in the nos2 gene (iNOS) or the nos3 gene (eNOS), was ligated and portal venous pressure (Ppv), abdominal aortic blood flow (Qao), and portosystemic shunt determined 2 weeks later. RESULTS: In wild-type mice, as compared with sham-operated controls, portal vein ligation (PVL) resulted in a time-dependent increase in Ppv (7.72 +/- 0.37 vs 17.57 +/- 0.51 cmH(2)O, at 14 days) concomitant with a significant increase in Qao (0.12 +/- 0.003 vs 0.227 +/- 0.005 mL/min/g) and portosystemic shunt (0.47% +/- 0.01% vs 84.13% +/- 0.09% shunt). Likewise, PVL in iNOS-deficient mice resulted in similar increases in Ppv, Qao, and shunt development. In contrast, after PVL in eNOS-deficient animals, there was no significant change in Ppv (7.52 +/- 0.22 vs 8.07 +/- 0.4 cmH(2)0) or Qao (0.111 +/- 0.01 vs 0.14 +/-.023 mL/min/g). However, eNOS (-/-) mice did develop a substantial portosystemic shunt (0.33% +/- 0.005% vs 84.53% +/- 0.19% shunt), comparable to that seen in wild-type animals after PVL. CONCLUSIONS: These data support a key role for eNOS, rather than iNOS, in the pathogenesis of PHT.  相似文献   

9.
OBJECTIVE: Increased nitric oxide (NO) production in sepsis precipitates microcirculatory dysfunction. We aimed (i) to determine if NO is the key water-soluble factor in the recently discovered sepsis-induced deficit in arteriolar conducted vasoconstriction, (ii) to identify which nitric oxide synthase (NOS) isoforms account for this deficit, and (iii) to examine the potential role of connexin37 (Cx37, a hypothesized signaling target of NO) in arteriolar conduction. METHODS: Using intravital microscopy and the cecal ligation and perforation 24-h model of sepsis, arterioles in the cremaster muscle of male C57BL/6 wild-type (WT), iNOS-/-, eNOS-/-, nNOS-/- and Cx37-/- mice were locally stimulated with KCl to initiate conducted vasoconstriction. We used the ratio of conducted constriction (500 microm upstream) to local constriction as an index of conduction (CR500). NOS enzymatic activity and protein expression were determined in control and septic cremaster muscles.RESULTS: Sepsis reduced CR500 in WT mice [from 0.77 +/- 0.05 to 0.20 +/- 0.02 (means +/- SE) independent of the site of stimulation along the arteriole], in iNOS-/- and eNOS-/- mice, but not in nNOS-/- mice. The nNOS inhibitor 7-nitroindazole or NO scavenger HbO2 restored CR500 in septic WT mice, but blockade of soluble guanylate cyclase had no effect. Sepsis increased cNOS (eNOS + nNOS) activity in WT mice (from 340 +/- 40 to 490 +/- 30 pmol/mg/h) and in eNOS-/-, but not in nNOS-/- mice (iNOS activity was negligible in all mice). Sepsis did not alter nNOS protein expression in WT mice. CR500 in non-septic Cx37-/- mice (0.15 +/- 0.1) was similar to that observed in septic WT mice. CONCLUSION: Increased nNOS activity and the resultant increased NO production in the septic mouse cremaster muscle are the key factors responsible for the deficit in conducted vasoconstriction along the arteriole. Deletion of Cx37 results in reduced CR500, which is consistent with the hypothesis that Cx37 in the arteriole could be a target of NO signaling.  相似文献   

10.
Ortiz PA  Hong NJ  Wang D  Garvin JL 《Hypertension》2003,42(4):674-679
The thick ascending limb of the loop of Henle (THAL) plays an essential role in the regulation of sodium and water homeostasis by the kidney. l-Arginine, the substrate for nitric oxide synthase (NOS), decreases NaCl absorption by THALs. We hypothesized that eNOS produces the NO that regulates THAL NaCl transport and that selective expression of eNOS in the THAL of eNOS knockout(-/-) mice would restore the effects of l-arginine on NaCl absorption. eNOS-/- mice were anesthetized, the left kidney was exposed, and the renal interstitium was injected with recombinant adenoviral vectors that expressed green fluorescent protein (GFP) or eNOS driven by the promoter of the Na/K/2Cl cotransporter Ad-NKCC2GFP and Ad-NKCC2eNOS, respectively. In Ad-NKCC2eNOS-transduced kidneys, eNOS expression was detected 7 days after injection but was absent in Ad-NKCC2GFP-transduced kidneys. In THALs from eNOS-/- mice transduced with Ad-NKCC2eNOS, adding L-arginine increased DAF-2DA fluorescence, a measure of NO production, by 9.1+/-1.1% (P<0.05; n=5), but not in THALs transduced with Ad-NKCC2GFP. In THALs from eNOS-/- mice transduced with Ad-NKCC2eNOS, Cl absorption averaged 85.9+/-11.8 pmol/min per millimeter. Adding l-arginine (1 mmol/L) to the bath decreased Cl absorption to 59.7+/-11.0 pmol/min per millimeter (P<0.05; n=6). In THALs transduced with Ad-NKCC2GFP, Cl absorption averaged 96.0+/-21.0 pmol/min per millimeter. Adding L-arginine to the bath did not significantly affect Cl absorption (100.6+/-20.6 pmol/min per millimeter; n=4). We concluded that gene transfer of eNOS to the THAL of eNOS-/- mice restores L-arginine-induced inhibition of NaCl transport and NO production. These data indicate that eNOS is essential for the regulation of THAL NaCl transport by NO.  相似文献   

11.
BACKGROUND: Although impaired nitric oxide production contributes importantly to salt-sensitivity, the role of the endothelial isoform of nitric oxide synthase (eNOS) has received little attention. In the present study we compared the effects of a high-salt diet on the blood pressure response of eNOS knockout (eNOS-/-) and control (eNOS+/+) mice. METHODS: Mean arterial pressure (MAP), heart rate, pulse pressure, and activity levels were recorded by telemetry in mice fed a regular-salt diet (0.7% NaCl) followed by 6 weeks on either a high-salt (8% NaCl) or regular-salt diet. RESULTS: The eNOS-/- mice exhibited a 15% increase in MAP and a 2- to 2.5-fold increase in salt-sensitivity relative to the control strain. Salt-induced increases in MAP were well sustained in eNOS-/-, whereas in eNOS+/+ the initial increase was biphasic. The effects of salt on MAP were particularly pronounced during locomotor activity, during the dark phase, and at the peak levels of MAP recorded over the course of the day. The high-salt diet also led to a transient increase in the proportion of time spent active. Levels of heart rate and pulse pressure were relatively unaffected by the high-salt diet. CONCLUSION: The eNOS-/- mice exhibit an increased blood pressure response to a high-salt diet. This finding suggests that eNOS normally provides an important contribution to the body's adaptation to a salt load and that reduced production of NO by eNOS may promote salt-sensitivity and salt-induced hypertension.  相似文献   

12.
The present studies determined the sensitivity of mean arterial pressure (MAP) to sodium intake in endothelial nitric oxide synthase (eNOS) knockout mice, wild-type mice (C56BL/6J), and wild-type mice intravenously administered the nonspecific NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME, 8.6 mg/kg/d). Arterial blood pressure was measured from chronically implanted femoral arterial catheters in conscious, freely moving mice. The MAP was unaltered from the low sodium ( approximately 200 microEq/d) intake level of 106 +/- 3 mm Hg in wild-type mice when sodium intake was increased to approximately 1000 microEq/d (n = 12). Chronic administration of L-NAME to wild-type mice led to a sodium-dependent increase in MAP from 111 +/- 7 mm Hg to 124 +/- 5 mm Hg when the mice were placed on an elevated sodium intake (n = 7). In contrast to the L-NAME-treated mice, MAP was unaltered in eNOS knockout mice (n = 8) when sodium intake was increased (128 +/- 3 mm Hg v 129 +/- 5 mm Hg). These experiments demonstrate that eNOS knockout and L-NAME-treated wild-type mice are hypertensive relative to wild-type controls when sodium intake is elevated, but only L-NAME-treated mice exhibited a sodium-sensitive increase in MAP. Therefore, nitric oxide produced by eNOS does not appear to be important in the physiologic adaptation to elevated sodium chloride intake.  相似文献   

13.
AIMS: beta-adrenoceptor (beta-AR)-mediated relaxation was characterized in pulmonary arteries from normoxic and hypoxic (as model of pulmonary hypertension) mice. The endothelial NO synthase (eNOS) pathway was especially investigated because of its potential vasculoprotective effects. METHODS: Pulmonary arteries from control or hypoxic (0.5 atm for 21 days) wild-type or eNOS-/- mice were used for pharmacological characterization of beta-AR-mediated relaxation in myograph, and for immunohistochemistry using anti-beta-AR antibodies. RESULTS: In pulmonary arteries from normoxic mice, isoproterenol (beta-AR agonist) and procaterol (selective beta2-AR agonist) elicited relaxation, while cyanopindolol and CL316243 (beta3-AR agonists) were ineffective. The effect of isoproterenol was antagonized by CGP20712A and ICI118551 (beta1- or beta2-AR antagonists, respectively) and also partially inhibited by N omega-nitro-L-arginine methylester (L-NAME, a NOS inhibitor), endothelium denudation, or eNOS gene deletion. Relaxation to procaterol was abolished by L-NAME or endothelium removal. In eNOS-/- mice, procaterol-induced relaxation was decreased but was insensitive to L-NAME, this residual effect involving other endothelium-dependent relaxant factors as compensatory mechanisms. Immunostaining for beta2-AR was observed in the endothelial layer, but not the medial layer of pulmonary arteries. Pulmonary arteries from hypoxic mice exhibited decreased endothelial NO-dependent relaxation to acetylcholine. However, in these arteries, relaxation to procaterol was either unaffected (extralobar segments) or even increased (intralobar segments) and was still abolished by L-NAME or endothelium removal. CONCLUSION: beta1- and beta2-AR, but not beta3-AR, mediate relaxation of mice pulmonary arteries. The beta2-AR component is dependent on eNOS activity and is preserved following chronic hypoxia. These data highlight the role of the beta2-AR as a pharmacological target to induce/restore endothelial NO-dependent protective effects in pulmonary circulation.  相似文献   

14.
It has been shown that mice deficient in the gene coding for endothelial nitric-oxide synthase (eNOS) have increased pulmonary arterial pressure and pulmonary vascular resistance. In the present study, the effect of transfer to the lung of an adenoviral vector encoding the eNOS gene (AdCMVeNOS) on pulmonary arterial pressure and pulmonary vascular resistance was investigated in eNOS-deficient mice. One day after intratracheal administration of AdCMVeNOS to eNOS(-/-) mice, there was an increase in eNOS protein, cGMP levels, and calcium-dependent conversion of l-arginine to l-citrulline in the lung. The increase in eNOS protein and activity in eNOS(-/-) mice was associated with a reduction in mean pulmonary arterial pressure and pulmonary vascular resistance when compared with values in eNOS-deficient mice treated with vehicle or a control adenoviral vector coding for beta-galactosidase, AdCMVbetagal. These data suggest that in vivo gene transfer of eNOS to the lung in eNOS(-/-) mice can increase eNOS staining, eNOS protein, calcium-dependent NOS activity, and cGMP levels and partially restore pulmonary arterial pressure and pulmonary vascular resistance to near levels measured in eNOS(+/+) mice. Thus, the major finding in this study is that in vivo gene transfer of eNOS to the lung in large part corrects a genetic deficiency resulting from eNOS deletion and may be a useful therapeutic intervention for the treatment of pulmonary hypertensive disorders in which eNOS activity is reduced.  相似文献   

15.
The role of endothelium-derived nitric oxide (NO) in acute inflammation is not known. Here, we examine acute inflammation in congenic endothelial NO synthase-deficient (eNOS-/-) mice. Intraplantar injection of carrageenan induces a biphasic inflammatory response. The early phase (0-6 h) is largely eliminated, and the secondary phase (24-96 h) is markedly reduced in eNOS-/- but not WT mice. Inhibition of phosphatidylinositol 3-kinase or hsp90, pathways upstream of eNOS activation, also reduces carrageenan-stimulated edema formation. To separate the ability of eNOS to regulate leukocyte trafficking vs. vascular permeability, zymosan-stimulated leukocyte infiltration and protein extravasation were assessed in WT and eNOS-/- mice. Zymosan increases inflammatory cell extravasation to the same extent in WT and eNOS-/- mice, whereas the extravasation of plasma protein is lower in eNOS-/- mice. Inhibition of phosphatidylinositol 3-kinase and hsp90 also blocks protein leakage, but not leukocyte influx. These data collectively support the critical role for eNOS in regulating the magnitude of the acute inflammatory response and show that eNOS is critical for regulating microcirculatory endothelial barrier function in vivo.  相似文献   

16.
Our objective was to determine the precise role of endothelial nitric oxide synthase (eNOS) as a modulator of cardiac O2 consumption and to further examine the role of nitric oxide (NO) in the control of mitochondrial respiration. Left ventricle O2 consumption in mice with defects in the expression of eNOS [eNOS (-/-)] and inducible NOS [iNOS (-/-)] was measured with a Clark-type O2 electrode. The rate of decreases in O2 concentration was expressed as a percentage of the baseline. Baseline O2 consumption was not significantly different between groups of mice. Bradykinin (10(-4) mol/L) induced significant decreases in O2 consumption in tissues taken from iNOS (-/-) (-28+/-4%), wild-type eNOS (+/+) (-22+/-4%), and heterozygous eNOS(+/-) (-22+/-5%) but not homozygous eNOS (-/-) (-3+/-4%) mice. Responses to bradykinin in iNOS (-/-) and both wild-type and heterozygous eNOS mice were attenuated after NOS blockade with N-nitro-L-arginine methyl ester (L-NAME) (-2+/-5%, -3+/-2%, and -6+/-5%, respectively, P<0.05). In contrast, S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4) mol/L), which releases NO spontaneously, induced decreases in myocardial O2 consumption in all groups of mice, and such responses were not affected by L-NAME. In addition, pretreatment with bacterial endotoxin elicited a reduction in basal O2 consumption in tissues taken from normal but not iNOS (-/-)-deficient mice. Our results indicate that the pivotal role of eNOS in the control of myocardial O2 consumption and modulation of mitochondrial respiration by NO may have an important role in pathological conditions such as endotoxemia in which the production of NO is altered.  相似文献   

17.
OBJECTIVE: To investigate the effect of a chronic treatment with melatonin on arterial pressure and a possible improvement of the vascular muscarinic and NO synthase (NOS) pathways in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. DESIGN AND METHODS: Mean arterial pressure (MAP), systolic (SBP), diastolic blood pressure (DBP), and heart rate (HR) were evaluated in conscious rats treated with 30 mg/kg per day of melatonin during 4 weeks. Changes in MAP were evaluated following an intravenous injection of the NOS inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME). Relaxant effects of acetylcholine (Ach), sodium nitroprusside (SNP), and the calcium ionophore A23187 were examined on mesenteric beds and aortic rings with or without treatment with melatonin. RESULTS: Melatonin produced a significant reduction of MAP, SBP, DBP and HR in SHR (P < 0.05). L-NAME increased the MAP of melatonin-treated SHR by the same magnitude as that of WKY rats which was significantly higher than that of non-treated SHR (P< 0.05). Melatonin treatment improved the maximal relaxation of mesenteric arteries to A23187 in SHR (P < 0.001) to the WKY level and caused a slight increment in Ach- and A23187-induced vasodilations in aorta from SHR and WKY rats (P < 0.05). CONCLUSION: The present study showed that melatonin exerted a bradycardic and an antihypertensive action in SHR. The enhancement by melatonin of the endothelium-dependent vasodilation (Ach and/or A23187) in mesenteric artery and aorta from SHR and WKY rats and the higher increase in MAP following L-NAME treatment in melatonin-treated SHR suggest the contribution of an improved vascular NOS pathway activity in the hypotensive effect of melatonin.  相似文献   

18.
Guthrie SM  Curtis LM  Mames RN  Simon GG  Grant MB  Scott EW 《Blood》2005,105(5):1916-1922
We have previously established a model inducing hematopoietic stem cell (HSC) production of circulating endothelial progenitor cells (EPCs) to revascularize ischemic injury in adult mouse retina. The unique vascular environment of the retina results in new blood vessel formation primarily from HSC-derived EPCs. Using mice deficient (-/-) in inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS), we show that vessel phenotype resulting from hemangioblast activity can be altered by modulation of the NO/NOS pathway. iNOS-/- or eNOS-/- animals were engrafted with wild-type (WT) HSCs expressing green fluorescence protein (gfp+) and subjected to our adult retinal ischemia model. WT hemangioblast activity in adult iNOS-/- recipients resulted in the formation of highly branched blood vessels of donor origin, which were readily perfused indicating functionality. In contrast, eNOS-/- recipients produced relatively unbranched blood vessels with significant donor contribution that were difficult to perfuse, indicating poor functionality. Furthermore, eNOS-/- chimeras had extensive gfp+ HSC contribution throughout their vasculature without additional injury. This neovascularization, via EPCs derived from the transplanted HSCs, reveals that the NO pathway can modulate EPC activity and plays a critical role in both blood vessel formation in response to injury and normal endothelial cell maintenance.  相似文献   

19.
The synthesis of nitric oxide (NO) in the circulation has been attributed exclusively to the vascular endothelium. Red blood cells (RBCs) have been demonstrated to carry a nonfunctional NO synthase (NOS) and, due to their huge hemoglobin content, have been assumed to metabolize large quantities of NO. More recently, however, RBCs have been identified to reversibly bind, transport, and release NO within the cardiovascular system. We now provide evidence that RBCs from humans express an active and functional endothelial-type NOS (eNOS), which is localized in the plasma membrane and the cytoplasm of RBCs. This NOS is regulated by its substrate L-arginine, by calcium, and by phosphorylation via PI3 kinase. RBC-NOS activity regulates deformability of RBC membrane and inhibits activation of platelets. The NOS-dependent conversion of L-arginine in RBCs is comparable to that of cultured human endothelial cells. RBCs in eNOS-/- mice in contrast to wild-type mice lack NOS protein and activity, strengthening the evidence of an eNOS in RBCs. These data show an eNOS-like protein and activity in RBCs serving regulatory functions in RBCs and platelets, which may stimulate new approaches in the treatment of NO deficiency states inherent to several vascular and hematologic diseases.  相似文献   

20.
In this study we determine different signaling pathways involved in beta(3) adrenoceptor (beta(3)-AR) dependent frequency stimulation in isolated rodent atria. Promiscuous coupling between different G-proteins and beta(3)-AR could explain the multiple functional effects of beta(3)-AR stimulation. We examine the mechanisms and functional consequences of dual adenylate cyclase and guanylate cyclase pathways coupling to beta(3)-AR in isolated rodent atria. The beta(3)-AR selective agonists ZD 7114 and ICI 215001 stimulated in a dose-dependent manner the contraction frequency that significantly correlated with cyclic AMP (cAMP) accumulation. Inhibition of adenylate cyclase shifted the chronotropic effect to the right. On the other hand, the ZD 7114 activity on frequency was enhanced by the inhibition of nitric oxide synthase (NOS) and soluble guanylate cyclase. This countervailing negative chronotropic nitric oxide-cyclic GMP (NO-cGMP) significantly correlated with the increase on NOS activity and cGMP accumulation. Current analysis showed a negative cross talk between cAMP chronotropic and NO-cGMP effects by inhibition of phospholipase C (PLC), calcium/calmodulin (CaM), protein kinase C (PKC), NOS isoforms and Gi-protein on the effects of beta(3)-AR stimulation. RT-PCR detected both eNOS and nNOS in isolated rat atria. NOS isoforms performed independently. Only nNOS participated in limiting the effect of beta(3)-AR stimulation. In eNOS-KO (eNOS-/-) mice the chronotropic effect of beta(3)-AR agonists did not differ from wild type (WT) mice atria, but it was increased by the inhibition of nNOS activity. Our results suggest that the increase in frequency by beta(3)-AR activation on isolated rodent atria is associated to a parallel increases in cAMP. The nNOS-cGMP pathway negatively modulates beta(3)-AR activation. Multiple signal transduction pathways between G-protein and beta(3)-AR may protect myocardium from catecholamine-induced cardiotoxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号