首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca2+]i) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by κ-opioids. [Ca2+]i responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca2+]i increases which were abolished in Ca2+-free solution, but unaffected by lanthanum (25 μM) or tetrodotoxin (10−6 M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd3+; 250 μM) and amiloride (100 μM) abolished the [Ca2+]i transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca2+]i transients. The κ-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca2+]i transients but had little effect on capsaicin-induced [Ca2+]i transients. The inhibitory effect of U50,488 was abolished by the κ-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30–100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca2+]i transients in small diameter DRG somas are mediated by influx of Ca2+ through a Gd3+- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca2+ transients are sensitive to κ-opioid agonists.  相似文献   

2.
Isolated and cultured glomus cells, obtained from mouse carotid bodies, were superfused with Ham's F-12 equilibrated with air (mean PO2, 119 Torr; altitude 1350 m). [Ca2+]o was 3.0 mM. In one experimental series, dual cell penetrations with microelectrodes measured intracellular calcium ([Ca2+]i) and the resting potential (Em). In another series, [Ca2+]i was measured with Indo-1/AM, dissolved in DMSO. Normoxic cells had a mean Em of −42.4 mV and [Ca2+]i was about 80 nM (measured with both methods). The calculated calcium equilibrium potential (ECa) was 137±0.74 mV. Hypoxia, induced by Na2S2O4 1 mM, reduced pO2 to 10–14 Torr. This effect was accompanied by cell depolarization to −19.1 mV. Hypoxia increased [Ca2+]i to 231 nM when detected with Ca-sensitive microelectrodes, but only to 130.2 nM when measured with Indo-1/AM. Calcium increases were preceded by decreases in [Ca2+]i, which also were more pronounced with microelectrode measurements. CoCl2 1 mM blocked the hypoxic [Ca2+]i increase and exaggerated the decreases in [Ca2+]i. Correlations between ΔEm and Δ[Ca2+]i during hypoxia were significant (p<0.05) in 19% of the cells. But, in 29% of them significance was at the p<0.1 level. In the rest (52%), there was no correlation between these parameters. Thus, voltage-gated calcium channels are rare in mouse glomus cells. Their activation by depolarization cannot explain the two to threefold increase in [Ca2+]i seen during hypoxia. More likely, [Ca2+]i increase may be due to hypoxic inactivation of a Ca–Mg ATPase transport system across the cell membrane. The blunting of hypoxic [Ca2+]i increase, seen in Indo-1/AM experiments, is probably due to its solvent (DMSO), which also depresses hypoxic cell depolarization.  相似文献   

3.
A. Bordey  P. Feltz  J. Trouslard 《Glia》1994,11(3):277-283
Variations in intracellular free calcium concentration (Δ[Ca2+]i) were measured in intact and isolated human astrocytoma cells (U373 MG) loaded with fura-2 acetoxymethylester. Microperfusion of 50 nM substance P (SP), applied for 1 s, increased [Ca2+]i by 351 nM from a stable basal level of [Ca2+]i of 26 nM. The peak Δ[Ca2+]i induced by SP was dose dependent with a threshold of 10-3 nM, an ED50 of 1.3 nM and a maximal effect for concentrations of SP greater than 100 nM. The NKI receptor agonist, [Sar9Met(O2)11]SP, mimicked the effect of SP, while the NK2 and NK3 selective receptor agonists, [N110]NKA(4-10) and senktide, respectively, had no effect. The Δ[Ca2+]i induced by SP was unaffected by 100 μM cadmium or by removal of extracellular calcium ions. Caffeine up to 30 mM had no effect on [Ca2+]i. In contrast, thapsigargin increased resting [Ca2+]i by 92 nM and reduced the Δ[Ca2+]i induced by SP. A pertussis treatment (500 ng/ml-24 h) did not modify the Δ[Ca2+]i induced by SP. We conclude that SP, acting on a NK1 receptor, mobilizes cytosolic calcium from an intracellular calcium pool which can be partially depleted by thapsigargin. © 1994 Wiley-Liss, Inc.  相似文献   

4.
A preparation of acutely dissociated brain cells derived from adult (3-month-old) rat has been developed under conditions preserving the metabolic integrity of the cells and the function of N-methyl-d-aspartate (NMDA) receptors. The effects of glutamate and NMDA on [Ca2+]i measured with fluo3 and45Ca2+ uptake have been studied on preparations derived from hippocampus and cerebral cortex. Glutamate (100 μM) and N-methyl-dl-aspartate (200 μM) increased [Ca2+]i by 26-12 nM and 23-9 nM after 90 s in cerebral cortex and hippocampus, and stimulated45Ca2+ uptake about 16–10% in the same regions. The increases in [Ca2+]i and45Ca2+ uptake were inhibited by 40% in the presence of 1 mM MgCl2 and by 90–50% in the presence of MK-801. The results indicate (a) that a large fraction of the [Ca2+]i response to glutamate in freshly dissociated brain cells from the adult rat involves NMDA receptors, (b) when compared with results in newborn rats, there is a substantial blunting of the [Ca2+]i increase in adult age.  相似文献   

5.
The intracellular free calcium ion concentration ([Ca2+]i) of the neuroblastoma × glioma hybrid cell line, NG108-15, was measured using the 19F-nuclear magnetic resonance divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (5F-BAPTA). The basal [Ca2+]i was measured to be 106 ± 14 nM. Treatment with 5 μM lead (Pb) for 2 h produced a 2-fold increase in [Ca2+]i to 200 ± 24 nM and a measurable intracellular free Pb2+ concentration ([Pb2+]i) of 30 ± 10 pM. Intracellular free Zn2+ concentrations ([Zn2+]i) were also observed in the presence of Pb. This represents the first direct demonstration that Pb elevates the [Ca2+]i in neurons, thus providing evidence for a role of [Ca2+]i in mediating the neurotoxicity of Pb.  相似文献   

6.
In the present study, we investigated the effects of chronic in vitro administration of amitriptyline, a tricyclic antidepressant, on cyclic GMP formation stimulated by 5-hydroxytryptamine (5-HT) in the neuroblastoma × glioma hybrid cell line, NG 108-15. 5-HT (0.01–100 μM)-stimulated cyclic GMP formation was concentration-dependent and was sensitive to ICS 205-930, a 5-HT3 receptor antagonist. Exposure of NG 108-15 cells to 5 μM amitriptyline for 3 days significantly reduced 5-HT-stimulated cyclic GMP formation. Acute treatment with amitriptyline had no effect on 5-HT-stimulated cyclic GMP formation. The reduction by chronic amitriptyline exposure of 10 μM 5-HT-stimulated cyclic GMP formation was concentration-dependent over the concentration range examined (0.5 to 10 μM). The IC50 of amitriptyline was 1.9 μM. In contrast, amitriptyline exposure, even at a concentration of 8 μM, failed to modify cyclic GMP formation stimulated by bradykinin, sodium nitroprusside, or atrial natriuretic peptide. Increases in intracellular Ca2+ concentration ([Ca2+]) evoked by 10 μM 5-HT were attenuated in amitriptyline-exposed cells, while 100 nM bradykinin-induced [Ca2+]i increases were not affected. In addition, chronic exposure to 5 μM amitriptyline caused a decrease in affinity (Kd) of [3H]zacopride specific binding to 5-HT3 recognition sites. TheBmax for the labelled ligand remained unchanged. These results suggest that chronic amitriptyline exposure reduces 5-HT-stimulated cyclic GMP formation and [Ca2+]i increases, and this may reflect the functional changes of 5-HT3 receptors.  相似文献   

7.
The hypothesis that intracellular calcium ([Ca2+]i) release in glomus cells via ryanodine receptor (RyR) activation by caffeine may be independent of natural stimuli and chemosensory discharge was tested in the rat carotid body (CB). CB type I cells were isolated, plated and preloaded with calcium-sensitive fluorescent probe, Indo-1AM. With the increase of caffeine dose (0–50 mM) cytosolic calcium ([Ca2+]c) increased from 85±15 nM to 1933±190 nM (n=6) at normoxia (P 2=125–130 Torr, P 2=25–30 Torr, pH 7.30–7.35). Hypoxia (P 2=10–15 Torr) increased and hypocapnia (P 2=7–9 Torr) decreased the cytoplasmic calcium [Ca2+]c levels, independent of caffeine. Caffeine-related [Ca2+]c increase was the same in the presence and the absence of extracellular calcium ([Ca2+]o), indicating the source of Ca2+ ions is the cellular store. Permeabilization of the cell membrane with saponin (25 μg/ml) retained the caffeine response. Additional treatment of the cells with 50 μM ryanodine (an inhibitor of the caffeine-activated RyR site) abolished caffeine-stimulated response. In vitro CB chemosensory (carotid sinus nerve, CSN) responses to hypoxia (P 2=35–40 Torr) were not altered by caffeine. These results suggest that [Ca2+]i stores in CB cells, mobilized by RyR activation, do not participate in the CSN responses to natural stimuli.  相似文献   

8.
Ethanol exposure affects cellular mechanisms involved in the regulation of calcium (Ca2+) homeostasis. Neurotrophins, such as nerve growth factor (NGF), stabilize intracellular Ca2+([Ca2+]i) during a variety of neurotoxic insults. In this study, changes in [Ca2+]i during treatment with ethanol and NGF were measured at the cell body of neurons using the Ca2+ indicator indo-1. Cultured postnatal day-of-birth (P0) septohippocampal (SH) neurons that were labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate (DiI), increased [Ca2+]i in response to ethanol. This response was dose-related. P0 SH neurons treated with NGF had lower [Ca2+]i than neurons withdrawn from NGF, implying that NGF may modulate Ca2+ homeostasis in these neurons. NGF also prevented the dose-related increase in [Ca2+]i in ethanol-treated SH neurons. The SH neurons increased [Ca2+]i when they were stimulated with 30 mM potassium chloride (KCl). Ethanol inhibited the potassium-stimulated change in [Ca2+]i but the combination of ethanol and NGF caused [Ca2+]i to increase with 100 mg% and 400 mg% ethanol and to decrease to a lower level with 200 mg% ethanol. These data were compared to data from previously published similar aged medial septal (MS) neurons (B. Webb, S.S. Suarez, M.B. Heaton, D.W. Walker, Clin. Exp. Res. 20 (1996) 1385–1394) and with embryonic gestational day 21 (E21) SH neurons (B. Webb, S.S. Suarez, M.B. Heaton, D.W. Walker, Brain Res. 729 (1996) 176–189). Differences in [Ca2+]i responses were observed in ethanol and NGF-treated postnatal SH neurons compared with P0 MS neurons and E21 SH neurons. Of these differences, most occurred during the combined treatment with ethanol and NGF compared with either treatment alone.  相似文献   

9.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

10.
The effect of several neuromodulators (carbachol (CCh), serotonin (5-HT), noradrenaline (NE), and dopamine (DA)) on the climbing fiber (CF)-induced [Ca2+]i increase in the dendrites of cerebellar Purkinje cells was examined in slices from the rat cerebellum. Purkinje cells were filled with the Ca2+ indicator bis-fura-2 with patch electrodes on the soma. [Ca2+]i changes were measured from regions of interest in the dendrites with a high speed camera. Changes evoked by one or three responses were measured in control conditions and with neuromodulators added to the bath. None of these four classic modulators caused a significant change in the CF-induced [Ca2+]i amplitude. Buspirone, a partial 5-HT1A agonist and a weak DA receptor antagonist caused a small (10–15%) reduction in the response.  相似文献   

11.
The muscarinic modulation of [H]

The effects of ACh on [3H]

-aspartate efflux and on calcium levels ([Ca2+]i) were studied at the same time in sister cultures of rat cerebellar granule cells stimulated with electrical pulses (5–20 Hz) or depolarized with KCl (15–40 mM). ACh, 0.3–1000 nM, greatly facilitated the 10-Hz-evoked tritium efflux while its effect on 20 mM KCl-evoked efflux was significantly smaller. ACh, 10–1000 nM, enhanced [Ca2+]i levels to a limited extent under both experimental conditions. Therefore, ACh facilitation was evident above all on the electrically evoked [3H]

-aspartate efflux. The ACh-mediated responses depended on the activation of M3-muscarinic receptors since these responses were blocked by 4-DAMP. ACh, 50 μM, reduced the [Ca2+]i plateau, determined by prolonged electrical or KCl stimulation. This effect was due to its action of M2-receptors being blocked by AF-DX 116. In conclusion, at very low concentrations, ACh greatly facilitated the electrically evoked [3H]

-aspartate efflux through M3-receptors, while at a higher concentrations, it inhibited, through M2-receptors, the rise in [Ca2+]i caused by prolonged cell depolarization.  相似文献   

12.
By means of the fura-2 technique and image analysis the intracellular concentration of free calcium ions [Ca2+]i was examined in isolated rainbow trout pinealocytes identified by S-antigen immunocytochemistry. Approximately 30% of the pinealocytes exhibited spontaneous [Ca2+]i oscillations whose frequency differed from cell to cell. Neither illumination with bright light nor dark adaptation of the cells had an apparent effect on the oscillations. Removal of extracellular Ca2+ or application of 10 μM nifedipine caused a reversible breakdown of the [Ca2+]i oscillations. Application of 60 mM KCl elevated [Ca2+]i in 90% of the oscillating and 50% of the non-oscillating pinealocytes. The effect of KCl was blocked by 50 μM nifedipine. These results suggest that voltage-gated L-type calcium channels play a major role in the regulation of [Ca2+]i in trout pinealocytes. Experiments with thapsigargin (2 μM) revealed the presence of intracellular calcium stores in 80% of the trout pinealocytes, but their role for regulation of [Ca2+]i remains elusive. Treatment with norepinephrine (100 pM–50 μM), previously shown to induce calcium release from intracellular calcium stores in rat pinealocytes, had no apparent effect on [Ca2+]i in any trout pinealocyte. This finding conforms to the concept that noradrenergic mechanisms are not involved in signal transduction in the directly light-sensitive pineal organ of anamniotic vertebrates.  相似文献   

13.
Ethanol and nerve growth factor (NGF) affect the survival of cholinergic neurons in the rat medial septum. To investigate whether calcium (Ca2+) homeostasis in these neurons is affected by ethanol or NGF treatment, changes in intracellular free Ca2+ concentration ([Ca2+]i) were studied in embryonic (E21) cultured medial septal neurons before stimulation (basal) and during stimulation with high potassium (K+). Changes in [Ca2+]; across time were measured in cultures of neurons treated without ethanol or with 100, 2110, 400, or 800 mg% ethanol with NGF (+NGF) or without NGF (-NGF). Changes in [Ca2+]i were analyzed from fluorescence images, using indo-1. The effect of ethanol or NGF treatment was to reduce the rise in basal [Ca2+]i. The combination of ethanol and NGF treatment in +NGF neurons led to increases in basal [Ca2+]i with the greatest increase in basal [Ca2+]i occurring with 200 mg% ethanol. The effect of ethanol or NGF was to increase [Ca2+]i; during stimulation with high K+. The greatest increases in [Ca+]i occurred with 100 and 800 mg% ethanol. Together, ethanol and NGF treatment in +NGF-treated neurons led to significantly greater increases or decreases in K+ stimulated changes in [Ca2+]i compared to similarly treated -NGF neurons. We conclude that in medial septal neurons (before and during depolarization) changes in Ca2+ homeostasis occur in the presence of ethanol or NGF. The changes in [Ca2+]i, following ethanol treatment are greater when NGF is present.  相似文献   

14.
In this study the effects of nitric oxide (NO) donors on intracellular free calcium ([Ca2+]i) in human platelets was examined. Inhibition of guanylyl cyclase (GC) with either methylene blue or ODQ slightly inhibited the ability of submaximal concentrations of thrombin to increase [Ca2+]i which suggests that a small portion of the thrombin mediated increase in [Ca2+]i was due to an increase in NO and subsequent increase in cGMP and activation of cGMP dependent protein kinase (cGPK). Thrombin predominantly increases [Ca2+]i by stimulating store-operated Ca2+ entry (SOCE). The NO donor GEA3162 was previously shown to stimulate SOCE in some cells. In platelets GEA3162 had no effect to increase [Ca2+]i however it inhibited the ability of thrombin to increase [Ca2+]i and this effect was reversed by ODQ. The addition of low concentrations (2.0 - 20 nM) of the NO donor sodium nitroprusside (SNP) slightly potentiated the ability of thrombin to increase [Ca2+]i whereas higher concentrations (> 200 nM) of SNP inhibited thrombin induced increases in [Ca2+]i. Both of these effects of SNP were reversed by ODQ which implies that they were both mediated by cGPK. Ba2+ influx was stimulated by low concentrations (2.0 nM) of SNP and inhibited by high concentrations (> 200 nM) of SNP and both effects were inhibited by ODQ. Previous studies showed that Ba2+ influx was blocked by the SOCE inhibitors 2-aminoethoxydipheny borate and diethylstilbestrol. It was concluded that low levels of SNP can stimulate SOCE in platelets and this effect may account for the increased aggregation and secretion previously observed with low concentrations of NO donors. Of the proteins known to be involved in SOCE (e.g. stromal interaction molecule 1 (Stim1), Stim2 and Orai1) only Stim2 has cGPK phosphorylation sites. The possibility that Stim2 phosphorylation regulates SOCE in platelets is discussed.  相似文献   

15.
Mechanical stimulation of a single cell in a primary mixed glial cell culture induced a wave of increased intracellular calcium concentration ([Ca2+]i) that was communicated to surrounding cells. Following propagation of the Ca2+ wave, many cells showed asynchronous oscillations in [Ca2+]i. Dantrolene sodium (10 μM) inhibited the increase in [Ca2+]i associated with this Ca2+ wave by 60-80%, and prevented subsequent Ca2+ oscillations. Despite the markedly decreased magnitude of the increase in [Ca2+]i, the rate of propagation and the extent of communication of the Ca2+ wave were similar to those prior to the addition of dantrolene. Thapsigargin (10 nM to 1 μM) induced an initial increase in [Ca2+]i ranging from 100 nM to 500 nM in all cells that was followed by a recovery of [Ca2+]i to near resting levels in most cells. Transient exposure to thapsigargin for 2 min irreversibly blocked communication of a Ca2+ wave from the stimulated cell to adjacent cells. Glutamate (50 μM) induced an initial increase in [Ca2+]i in most cells that was followed by sustained oscillations in [Ca2+]i in some cells. Dantrolene (10 μM) inhibited this initial [Ca2+]i increase caused by glutamate by 65-90% and abolished subsequent oscillations. Thapsigargin (10 nM to 1 μm) abolished the response to glutamate in over 99% of cells. These results suggest that while both dantrolene and thapsigargin inhibit intracellular Ca2+ release, only thapsigargin affects the mechanism that mediates intercellular communication of Ca2+ waves. These findings are consistent with the hypothesis that inositol trisphosphate (IP3) mediates the propagation of Ca2+ waves whereas Ca2+ -induced Ca2+ release amplifies Ca2+ waves and generates subsequent Ca2+ oscillations.  相似文献   

16.
Prolonged exposure to inorganic lead (Pb2+) during development has been shown to influence activity-dependent synaptic plasticity in the mammalian brain, possibly by altering the regulation of intracellular Ca2+ concentration ([Ca2+]i). To explore this possibility, we studied the effect of Pb2+ exposure on [Ca2+]i regulation and synaptic facilitation at the neuromuscular junction of larval Drosophila. Wild-type Drosophila (CS) were raised from egg stages through the third larval instar in media containing either 0 μM, 100 μM or 250 μM Pb2+ and identified motor terminals were examined in late third-instar larvae. To compare resting [Ca2+]i and the changes in [Ca2+]i produced by impulse activity, the motor terminals were loaded with a Ca2+ indicator, either Oregon Green 488 BAPTA-1 (OGB-1) or fura-2 conjugated to a dextran. We found that rearing in Pb2+ did not significantly change the resting [Ca2+]i nor the Ca2+ transient produced in synaptic boutons by single action potentials (APs); however, the Ca2+ transients produced by 10 Hz and 20 Hz AP trains were larger in Pb2+-exposed boutons and decayed more slowly. For larvae raised in 250 μM Pb2+, the increase in [Ca2+]i during an AP train (20 Hz) was 29% greater than in control larvae and the [Ca2+]i decay τ was 69% greater. These differences appear to result from reduced activity of the plasma membrane Ca2+ ATPase (PMCA), which extrudes Ca2+ from these synaptic terminals. These findings are consistent with studies in mammals showing a Pb2+-dependent reduction in PMCA activity. We also observed a Pb2+-dependent enhancement of synaptic facilitation at these larval neuromuscular synapses. Facilitation of EPSP amplitude during AP trains (20 Hz) was 55% greater in Pb2+-reared larvae than in controls. These results showed that Pb2+ exposure produced changes in the regulation of [Ca2+]i during impulse activity, which could affect various aspects of nervous system development. At the mature synapse, this altered [Ca2+]i regulation produced changes in synaptic facilitation that are likely to influence the function of neural networks.  相似文献   

17.
ATP receptor-mediated Ca2+ concentration changes were recorded from neocortical neurones in brain slices from 2 week-old rats. To measure the cytoplasmic concentration of Ca2+ ([Ca2+]i) slices were incubated with fura-2/AM, and the microfluorimetry system was focused on an individual cell. During transients the intracellular level of [Ca2+]i in the majority of neocortical neurones (98 of 102) varied in the concentration range of ATP 5–2000 μM between 41.3±5 and 163±7 nM. The rank order of efficacy for purinoreceptor agonists in concentration 100 μM was: ATPγS>ATP>ADPAMP≈Adenosine≈α,β-methylene ATP>UTP. 10 μM PPADS, a P2-purinoreceptor antagonist, reduced the ATP-induced [Ca2+]i response by 26%±4%. After elimination of calcium from extracellular solution the first ATP-induced [Ca2+]i transient decreased to 65±8%, suggesting the participation of metabotropic P2y triggered Ca-release in the generation of the transient. Elevation of cytosolic Ca2+ by activation of plasmalemmal Ca2+ channels failed to potentiate such release indicating the absence of effective reloading of the corresponding stores. No Ca2+-induced Ca2+-release has been observed in the investigated neurons.  相似文献   

18.
Ethanol and nerve growth factor (NGF) affect the survival of septohippocampal (SH) neurons. The effect of ethanol and NGF on calcium (Ca2+) homeostasis in these neurons was investigated in this study. Changes in intracellular-free Ca2+ concentration ([Ca2+]i) were measured using indo-1 in cultured embryonic (E21) SH neurons before stimulation (basal) and during stimulation with 30 mM potassium cloride (KCl+). SH neurons were treated with 0, 100, 200, 400, or 800 mg% ethanol with NGF (+NGF) or without NGF (−NGF). NGF treatment decreased, while ethanol did not affect basal [Ca2+]i. The combination of ethanol and NGF treatment led to increases in basal [Ca2+]i. While [Ca2+]i was lower during stimulation with KCl+ following ethanol or NGF treatment, ethanol and NGF treatment together led to significantly greater increases or decreases in [Ca2+]i compared to similarly treated NGF neurons. Responses of SH neurons were compared to those of medial septal (MS) neurons. Changes in [Ca2+]i during treatment with ethanol and/or NGF were reduced in SH neurons compared with MS neurons. We conclude that changes in Ca2+ homeostasis can occur in SH neurons in the presence of ethanol and/or NGF. The changes following ethanol treatment are enhanced by NGF. By altering Ca2+ homeostasis, NGF may enhance the survival of SH neurons during ethanol-induced neurotoxicity.  相似文献   

19.
To examine the functional role of calcium signaling in the interactive modulation of gonadotropin releasing hormone (GnRH) neurons by γ-aminobutyric acid (GABA) and GnRH itself, we analyzed the intracellular calcium level ([Ca2+]i), using fura-2AM fluorescent dye in immortalized hypothalamic GT1-1 cells. GT1-1 cells showed spontaneous [Ca2+]i oscillations, which were dependent on extracellular Ca2+ level, L-type Ca2+ channel and SK-type K+ channel. When GABA or a specific GABAA type receptor agonist, muscimol was applied to the media, [Ca2+]i rapidly increased through L-type Ca2+ channel in a dose-dependent manner, and subsequently decreased below the basal level without any oscillation. However, a specific GABAB type receptor agonist, baclofen showed no effect. On the other hand, application of GnRH or its potent agonist buserelin, rapidly abolished the spontaneous [Ca2+]i oscillations. Interestingly, a prior treatment with buserelin abolished GABA-evoked increase in [Ca2+]i in a noncompetitive manner. Since buserelin also blocked K+-evoked increase in [Ca2+]i, we suggest that GnRH may block spontaneous [Ca2+]i oscillation through modulating the L-type [Ca2+]i channel activity. These results show that GABAergic agents may exert both stimulatory and inhibitory controls over the GnRH neuronal activity, and GnRH can block the stimulatory effect of GABA, implicating the possible existence of an ultrashort feedback circuit.  相似文献   

20.
The effects of the removal of extracellular Ca2+ on the responses of cytosolic concentrations of Ca2+ ([Ca2+]i) to acidic stimuli, a protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and an organic acid acetate, were examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2 microfluorometry. Application of FCCP (1 μM) induced an increase in [Ca2+]i (mean±S.E.M., 108±14%). After withdrawal of the protonophore the increased [Ca2+]i returned slowly to a resting level. The [Ca2+]i response was attenuated by an inorganic Ca2+ channel antagonist Ni2+ (2 mM) by 81±4%, and by an L-type voltage-gated Ca2+ channel antagonist D600 (10 μM) by 53±13%. The removal of extracellular Ca2+ eliminated the [Ca2+]i response in 71% of the tested cells (n=17), and depressed it by 68±6% in the rest. Recovery following stimulation with FCCP in the absence of Ca2+ reversibly produced a rapid and large rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/FCCP. The magnitude of a [Ca2+]i rise after Ca2+-free/FCCP (285±28%, P<0.05) was larger than that of an increase in [Ca2+]i induced by FCCP in the presence of Ca2+ and had a correlation with the intensity of the suppression of the [Ca2+]i response by Ca2+ removal. A [Ca2+]i rise after Ca2+-free/FCCP was inhibited mostly by D600. Similarly, recovery following exposure to acetate in the absence of Ca2+ caused a rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/acetate which was sensitive to D600. The magnitude of the [Ca2+]i rise was larger than that of a change in [Ca2+]i caused by acetate in the presence of Ca2+. These results suggest that FCCP-induced increase in [Ca2+]i was, in most cells, due to Ca2+ influx via L-type voltage-gated Ca2+ channels and, in some cells, due to both Ca2+ influx and Ca2+ release from internal Ca2+ pool. The removal of extracellular Ca2+ might modify [Ca2+]i responses to acidic stimuli, causing [Ca2+]i rises after Ca2+-free/acidic stimuli which involve mostly L-type Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号