首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NOX enzymes as novel targets for drug development   总被引:2,自引:0,他引:2  
The members of the NOX/DUOX family of NADPH oxidases mediate such physiologic functions as host defense, cell signaling, and thyroid hormone biosynthesis through the generation of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide. Moreover, ROS are involved in a broad range of fundamental biochemical and cellular processes, and data accumulated in recent years indicate that the NOX enzymes comprise one of the most important biological sources of ROS. Given the high biochemical reactivity of ROS, it is not surprising that they have been implicated in a wide variety of pathologies and diseases. Prominent among the settings that feature ROS-mediated tissue injury are disorders associated with inflammation, aging, and progressive degenerative changes in cells and organ systems, and it appears that essentially no organ system is exempt. Among the disorders currently believed to be mediated at least in part by NOX-derived ROS are hypertension, aortic aneurysm, myocardial infarction (and other ischemia-reperfusion disorders), pulmonary fibrosis and hypertension, amyotropic lateral sclerosis, Alzheimer's disease, Parkinson's disease, ischemic stroke, diabetic nephropathy, and renal cell carcinoma. Several small-molecule and peptide inhibitors of the NOX enzymes have been useful in experimental studies, but issues of specificity, potency, and toxicity militate against any of the existing published compounds as candidates for drug development. Given the broad array of disease targets documented in recent work, the time is here for vigorous efforts to develop clinically useful inhibitors of the NOX enzymes. As most (though not all) NOX-related diseases appear to be mediated by a single member of the NOX family, agents with isoform specificity will be preferred, although broadly active NOX inhibitors may prove to be useful in some settings.  相似文献   

2.
Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.  相似文献   

3.
Surfactant proteins SP-A and SP-D in human health and disease   总被引:3,自引:0,他引:3  
Surfactant proteins A (SP-A) and D (SP-D) are lung surfactant-associated hydrophilic proteins that have been implicated in surfactant homeostasis and pulmonary innate immunity.They are collagen-containing C-type (calcium-dependent) lectins, called collectins, and are structurally similar to mannose-binding protein of the lectin pathway of the complement system. Being carbohydrate pattern-recognition molecules, they recognize a broad spectrum of pathogens and allergens via the lectin domain, with subsequent activation of immune cells via the collagen region, thus offering protection against infection and allergenic challenge. SP-A and SP-D have been shown to be involved in viral neutralization, clearance of bacteria, fungi, and apoptotic and necrotic cells, down-regulation of allergic reaction, and resolution of inflammation. Studies on single-nucleotide polymorphism, protein levels in broncho-alveolar lavage, and gene knock-out mice have clearly indicated an association between SP-A and SP-D and a range of pulmonary diseases. In addition, recent studies using murine models of allergy and infection have raised the possibility that the recombinant forms of SP-A and SP-D may have therapeutic potential in controlling pulmonary infection, inflammation, and allergies in humans.  相似文献   

4.
Acute lung injury (ALI) is a heterogeneous disease with the hallmarks of alveolar capillary membrane injury, increased pulmonary oedema and pulmonary inflammation. The most common direct aetiological factor for ALI is usually parenchymal lung infection or haemorrhage. Reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) are thought to play an important role in the pathophysiology of ALI. Glucose‐6‐phosphate dehydrogenase (G6PD) plays an important role both in production of ROS as well as their removal through the supply of NADPH. However, how G6PD modulation affects NOX2‐mediated ROS in the airway epithelial cells (AECs) during acute lung injury has not been explored previously. Therefore, we investigated the effect of G6PD inhibitor, 6‐aminonicotinamide on G6PD activity, NOX2 expression, ROS production and enzymatic anti‐oxidants in AECs in a mouse model of ALI induced by lipopolysaccharide (LPS). ALI led to increased G6PD activity in the AECs with concomitant elevation of NOX2, ROS, SOD1 and nitrotyrosine. G6PD inhibitor led to reduction of LPS‐induced airway inflammation, bronchoalveolar lavage fluid protein concentration as well as NOX2‐derived ROS and subsequent oxidative stress. Conversely, ALI led to decreased glutathione reductase activity in AECs, which was normalized by G6PD inhibitor. These data show that activation of G6PD is associated with enhancement of oxidative inflammation in during ALI. Therefore, inhibition of G6PD might be a beneficial strategy during ALI to limit oxidative damage and ameliorate airway inflammation.  相似文献   

5.
The ROS-NOX connection in cancer and angiogenesis   总被引:1,自引:0,他引:1  
Initially viewed as dangerous byproducts of aerobic life, reactive oxygen species (ROS) nowadays appear to be essential secondary messengers of many signaling cascades and cellular functions. The establishment of ROS as important signaling molecules has been confirmed by the existence of specialized ROS producing complexes expressed in nonphagocytic cells, the NADPH oxidase complex (NOX). Because of the diversity of their proteic targets (besides lipids and DNA), ROS have multiple and sometimes contradictory functions. In the present review, we focus on several different signaling pathways influenced by ROS and NOX in tumorigenesis, focusing on proliferation and angiogenesis. We review the ROS targets regulating proliferation, including cellular signaling (phosphatases, AP1, and nuclear factor-kappa B [NF-kappaB]) and cell cycle targets (CDC25, cyclin D, and forkhead proteins), and the role of NOX during proliferation. Finally, we review the direct and indirect involvement of ROS and NOX in (tumor) angiogenesis through the regulation of different biologic systems such as vascular endothelial growth factor, angiotensin II, hypoxia-inducible factor, AP1, and inflammation.  相似文献   

6.
Reactive oxygen species (ROS) have long been studied in the context of their direct toxic effects on cells. As a result, ROS have conventionally been thought of as a necessary nuisance to aerobic living. However, in recent years, much work has been done to examine the contribution of ROS to the field of immunity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases were identified as one of the key sources of ROS in immune cells. The NOX2 NADPH oxidase in particular has been assigned multiple roles, functioning as a source of antimicrobial ROS, an activator of many signaling pathways, a participant in chemotaxis, an immune modulator, and a critical player in the initiation of antigen cross-presentation. Furthermore, recent studies have revealed a novel role for the NOX2 NADPH oxidase in the activation of autophagy, a cellular degradative pathway. Here, we examine these functions of NOX2 NADPH oxidase in immunity.  相似文献   

7.
Transforming growth factor-betas (TGF-beta) regulate a wide variety of cellular functions in normal development and are involved in both tissue homeostasis and disease pathogenesis. The regulation of the TGF-beta family of growth factors is unique because they are targeted to the extracellular matrix in a biologically inactive form. The release from pericellular matrices and the activation of TGF-beta are important mechanisms in several pathophysiologic conditions. Reactive oxygen species (ROS) can activate TGF-beta either directly or indirectly via the activation of proteases. In addition, TGF-beta itself induces ROS production as part of its signal-transduction pathway. The lung is a unique organ, because its structures act as boundaries between gaseous and aqueous phases, allowing the utilization of inhaled oxygen. However, this renders pulmonary tissues vulnerable to the toxic effects of inhaled air. The oxidant pathways are especially relevant in the lung, where TGF-beta is known to have a role in tissue repair and connective tissue turnover. In pulmonary fibrosis, TGF-beta activation is considered as a hallmark of disease progression. More recently, the oxidative effects of cigarette smoking have been found to activate TGF-beta in chronic obstructive pulmonary disease (COPD), a disease consisting of emphysema, airway fibrosis, and focal lung fibrosis.  相似文献   

8.
《Mucosal immunology》2018,11(4):1011-1023
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.  相似文献   

9.
Wu M 《Current gene therapy》2005,5(2):225-236
Endogenous and environmental oxidation is increasingly becoming an important factor associated with numerous disorders in both children and adults. The lung is particularly prone to oxidation, as the gas exchange organ is continuously exposed to a great deal of airborne oxidants. Lung oxidation-induced toxicity is a critical clinical problem that is currently lacking cure. For example, treatment for acute respiratory distress syndrome (ARDS), a common type of acute diffuse lung injury, is strictly supportive. Alkylating chemotherapeutics and many methyl chemicals can cause acute or chronic lung injury, which is also difficult to treat. Many new approaches are being tried to improve the treatment of lung oxidation and alkylation; one of these is the use of DNA repair proteins, such as base excision repair proteins that are largely involved in repairing DNA damage caused by oxidation and alkylation. Recent advances have revealed their promising potential for treating oxidation toxicity. Here we discuss discoveries that have led to this possibility, including pioneering research into the cellular signaling transduction and molecular mechanisms of DNA repair proteins. In conclusion, when combined with other therapeutic measures such as anti-oxidant chemicals and enzymes, DNA repair proteins may have great potential for treating acute and chronic lung toxicity induced by oxidation and alkylation.  相似文献   

10.
11.
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer’s disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.  相似文献   

12.
NADPH oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. ROS is involved as key secondary messengers in numerous signaling pathways, and NADPH oxidases complex has been increasingly recognized as key elements of intracellular signaling of hepatic fibrogenesis. In the liver, NADPH oxidase is functionally expressed both in the phagocytic form and in the non-phagocytic form. The non-phagocytic NADPH oxidase complex is structurally and functionally similar to the phagocytic NADPH, resulting in reduction of molecular oxygen to generate superoxide. There are six homologous NOX proteins in the non-phagocytic forms of NADPH oxidase. An emerging concept is that both phagocytic and nonphagocytic NADPH oxidase components in hepatic stellate cells (HSCs) mediate hepatic fibrosis, suggesting its potential role as a pharmacological target for anti-fibrotic therapy. The molecular components and signaling pathways of various NADPH oxidase homologues that are critical for the fibrotic activity in HSCs need to be more clearly identified.  相似文献   

13.
'Oxidative stress' is a term defining states of elevated reactive oxygen species (ROS) levels. Normally, ROS control several physiological processes, such as host defence, biosynthesis of hormones, fertilization and cellular signalling. However, oxidative stress has been involved in different pathologies, including metabolic syndrome and numerous cardiovascular diseases. A major source of ROS involved in both metabolic syndrome and cardiovascular pathophysiology is the NADPH oxidase (NOX) family of enzymes. NOX is a multi‐component enzyme complex that consists of membrane‐bound cytochrome b‐558, which is a heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox and p67phox, and the small GTP‐binding protein Rac1. Rac1 plays many important biological functions in cells, but perhaps the most unique function of Rac1 is its ability to bind and activate the NOX complex. Furthermore, Rac1 has been reported to be a key regulator of oxidative stress through its co‐regulatory effects on both nitric oxide (NO) synthase and NOX. Therefore, the main goal of this review is to give a brief outline about the important role of the Rac1–NOX axis in the pathophysiology of both metabolic syndrome and cardiovascular disease. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

14.
15.
目的:观察舒洛地特(SDX)在糖尿病状态下对视网膜微血管内皮细胞的保护作用。方法:(1)采用高脂喂养及腹腔注射链脲佐菌素的方法构建C57BL/6小鼠的2型糖尿病模型,对小鼠腹腔注射SDX或等体积生理盐水治疗12周。用伊文思蓝法检测视网膜微血管渗漏及微血管密度改变;用Western blot、免疫荧光等方法检测各组小鼠视网膜中NLRP3炎症小体成分、紧密连接蛋白1(ZO-1)及NADPH氧化酶4(NOX4)的表达情况。(2)用高糖处理人视网膜微血管内皮细胞(HRMECs),并与梯度浓度的SDX共处理;用腺病毒感染HRMECs以过表达NOX4或者用siRNA转染HRMECs以敲减NOX4,观察NLRP3炎症小体成分、NOX4、ZO-1和VE-钙黏着蛋白(VE-Cad)的表达情况,以及活性氧簇(ROS)的生成情况。结果:(1)SDX处理增加糖尿病小鼠视网膜中ZO-1蛋白的表达,抑制糖尿病小鼠视网膜微血管渗漏,增加糖尿病小鼠视网膜微血管密度和节细胞数量,并抑制NLRP3炎症小体的活化(P<0. 05)。(2)在高糖刺激的HRMECs中,SDX处理增加ZO-1和VE-Cad蛋白的表达,显著...  相似文献   

16.
Research on oxidative stress focused primarily on determining how reactive oxygen species (ROS) damage cells by indiscriminate reactions with their macromolecular machinery, particularly lipids, proteins, and DNA. However, many chronic diseases are not always a consequence of tissue necrosis, DNA, or protein damage, but rather to altered gene expression. Gene expression is highly regulated by the coordination of cell signaling systems that maintain tissue homeostasis. Therefore, much research has shifted to the understanding of how ROS reversibly control gene expression through cell signaling mechanisms. However, most research has focused on redox regulation of signal transduction within a cell, but we introduce a more comprehensive-systems biology approach to understanding oxidative signaling that includes gap junctional intercellular communication, which plays a role in coordinating gene expression between cells of a tissue needed to maintain tissue homeostasis. We propose a hypothesis that gap junctions are critical in modulating the levels of second messengers, such as low molecular weight reactive oxygen, needed in the transduction of an external signal to the nucleus in the expression of genes. Thus, any comprehensive-systems biology approach to understanding oxidative signaling must also include gap junctions, in which aberrant gap junctions have been clearly implicated in many human diseases.  相似文献   

17.
Matrix metalloproteinase-9 in lung remodeling   总被引:46,自引:0,他引:46  
Matrix metalloproteinase (MMP)-9 (Gelatinase B, 92-kD type IV collagenase, EC 3.4.24.35) is an MMP that is present in low quantities in the healthy adult lung, but much more abundant in several lung diseases, including asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). Despite numerous reports of MMP-9 in these and other lung diseases, whether MMP-9 is causal in lung remodeling or part of the inflammatory and reparative response remains to be determined. Many intrinsic lung cells can be stimulated to produce MMP-9, but much of the information regarding MMP-9 in the lung deals with MMP-9 from inflammatory cells. The multiple locations and cell types producing MMP-9 are consistent with multiple functions in different microenvironments. In addition to digestion of structural proteins and antiproteases, MMP-9 can modify cellular function by regulation of cytokines and matrix-bound growth factors. Determining the role of MMP-9 in health and disease will be important, because broad spectrum and specific inhibitors will soon be available to enable conversion of the bench knowledge to bedside practice. This review addresses the current understanding of MMP-9 in human asthma, IPF, and COPD, and in animal models of these conditions.  相似文献   

18.
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.  相似文献   

19.
硫氧还蛋白系统是一个广泛存在于自然界的巯基氧化还原系统,它能够维持细胞的氧化还原动态平衡及阻止炎症反应的发生。它由硫氧还蛋白(thioredoxin,Trx)、硫氧还蛋白还原酶(thioredoxin reductase,Tr x R)和还原型辅酶II(reduced coenzy me II,NADPH)三部分组成。人类Tr x作为一种分泌性蛋白,在细胞内外发挥着多种氧化还原调控作用。Trx通过直接抑制氧化应激和间接与关键信号转导分子结合而发挥了抗氧化、抗凋亡和抗炎症作用。最近的研究显示Trx作为机体内主要的氧化应激相关因子,可能在肺部疾病中发挥了一定作用,且有可能成为临床干预治疗的靶点。本文对Trx在呼吸系统的表达与慢性阻塞性肺疾病、支气管哮喘、急性肺损伤(acute lung disease,ALI)和间质性肺疾病(interstitial lung disease,ILD)的关系进行简述。  相似文献   

20.
Cigarette smoke induces damage to proteins and organelles by oxidative stress, resulting in accelerated epithelial cell senescence in the lung, which is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Although the detailed molecular mechanisms are not fully understood, cellular energy status is one of the most crucial determinants for cell senescence. Creatine kinase (CK) is a constitutive enzyme, playing regulatory roles in energy homeostasis of cells. Among two isozymes, brain-type CK (CKB) is the predominant CK in lung tissue. In this study, we investigated the role of CKB in cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBECs). Primary HBECs and Beas2B cells were used. Protein carbonylation was evaluated as a marker of oxidative protein damage. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. CKB inhibition was examined by small interfering RNA and cyclocreatine. Secretion of IL-8, a hallmark of senescence-associated secretary phenotype, was measured by ELISA. CKB expression levels were reduced in HBECs from patients with COPD compared with that of HBECs from nonsmokers. CSE induced carbonylation of CKB and subsequently decreased CKB protein levels, which was reversed by a proteasome inhibitor. CKB inhibition alone induced cell senescence, and further enhanced CSE-induced cell senescence and IL-8 secretion. CSE-induced oxidation of CKB is a trigger for proteasomal degradation. Concomitant loss of enzymatic activity regulating energy homeostasis may lead to the acceleration of bronchial epithelial cell senescence, which is implicated in the pathogenesis of COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号