首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mesenteric lymph has recently been invoked as an avenue for gut-derived factors that may result in distant organ injury following hemorrhagic shock. We demonstrate that posthemorrhagic shock mesenteric lymph primes neutrophils (PMNs) and causes lung injury. Methods. Mesenteric lymph was collected from Sprague-Dawley rats from their mesenteric lymph duct prior to, during, and following hemorrhagic shock (MAP 40 for 90 min). The rats were then resuscitated with shed blood plus lactated Ringers (2X shed blood) over 3 h. Lung leak was assessed by transudation of Evan's blue dye into the alveolus as measured by bronchoalveolar lavage. Isolated human PMNs were incubated with 1 and 10% lymph; priming was measured by the fMLP (1 microM)-stimulated production of superoxide and surface expression of CD11b determined by flow cytometry. Results. Mesenteric lymph flow increased significantly during resuscitation: preshock 144.4 microl/h, shock 44.5 microl/h, resuscitation 566.6 microl/h. Furthermore, diversion of this lymph abrogated lung injury as compared to rats without lymph diversion. Finally, mesenteric lymph from postshock animals primed PMNs for superoxide production (nearly three times control cells) as well as increased surface expression of CD11b (2-fold over control). Conclusion. Mesenteric lymph primes PMNs and causes lung injury following hemorrhagic shock. Mesenteric lymph provides a conduit for proinflammatory mediators that may participate in the pathogenesis of MOF.  相似文献   

2.
BACKGROUND: Our previous work identified posthemorrhagic shock mesenteric lymph (PHSML) lipids as key elements in polymorphonuclear neutrophil (PMN)--provoked acute lung injury. We hypothesize that gut phospholipase A(2) (PLA(2)) is responsible for the generation of proinflammatory lipids in PHSML that primes circulating PMNs for enhanced oxidative burst. METHODS: Mesenteric lymph was collected from rats (n = 5) before (preshock), during the induction of hemorrhagic shock (mean arterial pressure, 40 mm Hg x 30 minutes), and at resuscitation (shed blood + 2x lactated Ringer's solution). PLA(2) inhibition (quinacrine, 10 mg/kg, intravenously) was given before shock was induced. Extracted lipids were separated by normal phase high-pressure liquid chromatography and resuspended in albumin. PMNs were exposed to a 5% vol:vol concentration of eluted lipids and activated with N-formyl-methionyl-leucyl-phenylalanine (1 micromol/L). Superoxide production was assessed by cytochrome C reduction. RESULTS: High-pressure liquid chromatography--extracted neutral lipids of lymph collected before hemorrhagic shock did not prime the PMN oxidase, whereas isolated neutral lipids of postshock lymph primed PMNs 2.6- +/- 0.32-fold above baseline (P <.05). PLA(2) inhibition returned PHSML neutral lipid priming to baseline levels. CONCLUSIONS: PLA(2) inhibition before hemorrhagic shock abrogates the neutrophil priming effects of PHSML through reduction of the accumulation of proinflammatory neutral lipids. Identification of these PLA(2)-dependent lipids provides a mechanistic link that may have therapeutic implications for postshock acute lung injury.  相似文献   

3.
OBJECTIVE: To determine whether gut-derived factors leading to organ injury and increased endothelial cell permeability would be present in the mesenteric lymph at higher levels than in the portal blood of rats subjected to hemorrhagic shock. This hypothesis was tested by examining the effect of portal blood plasma and mesenteric lymph on endothelial cell monolayers and the interruption of mesenteric lymph flow on shock-induced lung injury. SUMMARY BACKGROUND DATA: The absence of detectable bacteremia or endotoxemia in the portal blood of trauma victims casts doubt on the role of the gut in the generation of multiple organ failure. Nevertheless, previous experimental work has clearly documented the connection between shock and gut injury as well as the concept of gut-induced sepsis and distant organ failure. One explanation for this apparent paradox would be that gut-derived inflammatory factors are reaching the lung and systemic circulation via the gut lymphatics rather than the portal circulation. METHODS: Human umbilical vein endothelial cell monolayers, grown in two-compartment systems, were exposed to media, sham-shock, or postshock portal blood plasma or lymph, and permeability to rhodamine (10K) was measured. Sprague-Dawley rats were subjected to 90 minutes of sham or actual shock and shock plus lymphatic division (before and after shock). Lung permeability, pulmonary myeloperoxidase levels, alveolar apoptosis, and bronchoalveolar fluid protein content were used to quantitate lung injury. RESULTS: Postshock lymph increased endothelial cell monolayer permeability but not postshock plasma, sham-shock lymph/plasma, or medium. Lymphatic division before hemorrhagic shock prevented shock-induced increases in lung permeability to Evans blue dye and alveolar apoptosis and reduced pulmonary MPO levels. In contrast, division of the mesenteric lymphatics at the end of the shock period but before reperfusion ameliorated but failed to prevent increased lung permeability, alveolar apoptosis, and MPO accumulation. CONCLUSIONS: Gut barrier failure after hemorrhagic shock may be involved in the pathogenesis of shock-induced distant organ injury via gut-derived factors carried in the mesenteric lymph rather than the portal circulation.  相似文献   

4.
Adams CA  Magnotti LJ  Xu DZ  Lu Q  Deitch EA 《The American surgeon》2000,66(10):905-12; discussion 912-3
Recent studies have established gut-derived lymph rather than portal blood as the major source of toxic mediators after hemorrhagic shock that causes distant organ injury. Similarly, emerging data have identified sex as a major modifier of the response to injury and illness. Thus we tested the hypothesis that female rats would be more resistant to shock-induced lung injury than male rats because females are more resistant to shock-induced gut injury and produce mesenteric lymph that is less toxic to endothelial cells. Male and female rats were subjected to sham or hemorrhagic shock and lung permeability was quantitated by Evans blue dye and protein extravasation into the alveolar space. Next, mesenteric lymph collected from shocked and sham-shocked rats of both sexes was incubated with human umbilical vein endothelial cells (HUVECs) and assayed for toxicity. Trypan blue dye exclusion and the release of lactate dehydrogenase assessed HUVEC viability and injury respectively. Lastly, sections of the terminal ileum were histologically examined for evidence of shock-induced mucosal injury. Male rats but not female rats subjected to hemorrhagic shock had evidence of increased lung permeability and produced mesenteric lymph that was cytotoxic to HUVECs. Shock caused gut injury in the male rats whereas histological evidence of gut injury was not observed in the female rats. Hemorrhagic shock-induced lung injury depends on gut injury and mesenteric lymph appears to be the route by which gut-derived toxic factors exit the gut to cause lung injury. The resistance of female rats to shock-induced lung injury appears to be secondary to their resistance to shock-induced gut injury.  相似文献   

5.
Dayal SD  Hauser CJ  Feketeova E  Fekete Z  Adams JM  Lu Q  Xu DZ  Zaets S  Deitch EA 《The Journal of trauma》2002,52(6):1048-55; discussion 1055
BACKGROUND: After trauma and hemorrhagic shock (T/HS), mesenteric lymph (ML) activates polymorphonuclear neutrophils (PMNs), injures endothelial cells (ECs), and predisposes to lung injury. The involved mediators, however, are unknown. We studied the ability of aqueous (AQ) and lipid (LIP) extracts of rat T/HS ML to activate PMNs and injure ECs. METHODS: ML was collected from male rats undergoing trauma (laparotomy) plus hemorrhagic shock (30 mm Hg, 90 minutes) or sham shock. AQ and LIP ML fractions were separated using the Bligh-Dyer technique. Human umbilical vein endothelial cells were incubated 18 hours in 5% LIP or AQ lymph fractions and viability was assessed using the MTT assay. Rat PMNs incubated 5 minutes with 3% LIP or AQ fractions were assessed for respiratory burst (RB) and cytosolic calcium ([Ca(2+)](i)) using dihydrorhodamine 123 and fura-2AM. Human PMN responses to AQ and LIP T/HS lymph were studied similarly. RESULTS: EC incubated in AQ showed 19 +/- 4% viability as compared with 65 +/- 11% in LIP (p < 0.001). Whole lymph affected ECs comparably to AQ T/HS lymph. Rat PMN basal [Ca(2+)](i) increased after exposure to AQ but not LIP T/HS lymph extracts. AQ T/HS lymph primed [Ca(2+)](i) responses to macrophage inflammatory protein-2 and platelet-activating factor; neither LIP T/HS nor any trauma and sham shock lymph fraction caused PMN priming. Rat PMN RB was elevated after AQ T/HS lymph incubation when compared with buffer (610 +/- 122 U/s vs. 225 +/- 38 U/s, p = 0.01). Rat PMN incubation in LIP T/HS lymph caused minimal activation (289 +/- 28 U/s, p = NS). Conversely, human PMN showed [Ca(2+)](i) and RB priming by rat T/HS LIP and not AQ extracts. CONCLUSION: T/HS mesenteric lymph contains multiple biologically active mediators. Both AQ and LIP extracts of T/HS lymph are toxic to human umbilical vein endothelial cells, with AQ more active than LIP. Only AQ T/HS lymph activates rat PMNs, although LIP rat lymph extract activates human PMNs. These findings demonstrate the complex nature of gut lymph-derived biologic factors as well as species-specific differences on PMN and EC physiology. Therapies directed at any one specific molecule or mediator are therefore unlikely to be successful.  相似文献   

6.
Deitch EA  Adams C  Lu Q  Xu DZ 《Surgery》2001,129(1):39-47
BACKGROUND: We have previously documented that lymphatic duct division protects against shock-induced lung injury when tested 3 hours post-shock and that lymph collected at 3 hours post-shock increases endothelial cell monolayer permeability. However, whether lymph collected at other time points post-shock also increases endothelial cell permeability is not known. We tested the protective effects of lymphatic division on lung permeability at 6, 12, and 24 hours post-shock and the ability of lymph collected before, during, and hourly (up to 6 hours) after shock to increase endothelial cell monolayer permeability. METHODS: At 3, 6, 12, or 24 hours after sham or actual shock (30 mm Hg for 90 min), lung permeability was measured by using Evans blue dye in rats subjected to sham or actual mesenteric duct ligation. In separate experiments, the ability of lymph collected from rats subjected to shock or sham shock to increase human umbilical vein endothelial cell (HUVEC) monolayer permeability to a 40 kd dextran rhodamine permeability probe. Lymph was tested at 10% and 1% concentrations. RESULTS: Hemorrhagic shock induced a 3- to 4-fold increase in lung permeability compared with sham-shock rats when tested at 3, 6, 12, or 24 hours post-shock. Lymphatic division prevented this increase in lung permeability at each of these time points. Sham shock lymph did not increase HUVEC permeability, while lymph from the shocked rats did, whether tested at 1% or 10%. Lymph samples collected during the shock period and hourly for 6 hours post-shock all increased HUVEC permeability; however, the greatest relative increase in HUVEC permeability was observed in the 3- and 6- hour post-shock samples. CONCLUSIONS: Lung injury after hemorrhagic shock appears to be caused by toxic factors carried in the mesenteric lymph, and factors capable of increasing HUVEC permeability initially appear in the lymph during the shock period and increase over time.  相似文献   

7.
BACKGROUND: Post-hemorrhagic shock mesenteric lymph (PHSML) has been linked with neutrophil (PMN) priming, endothelial cell (EC) activation, and acute lung injury (ALI) in rodent models. We have previously identified the lipid fraction of PHSML as containing the causative agent(s). Due to the lesson learned from the rodent gut bacterial translocation experience, we sought to confirm this phenomenon using a large animal model; hypothesizing that lymph collected from the porcine gut following ischemia/reperfusion (I/R) would cause PMN priming. METHODS: Mesenteric lymph was collected from adult pigs before, during, and for 2 hours after non-lethal hemorrhagic shock (mean arterial pressure = 30 mm Hg x 45 minutes). Whole lymph and the extracted lipid fractions of the lymph were then added to isolated human and porcine PMNs and superoxide production was measured by cytochrome C reduction. RESULTS: Hemorrhagic shock profoundly affected mesenteric lymph flow from baseline (pre-shock) flow rates of 75.63 +/- 8.86 mL/hr to 49.38 +/- 5.76 mL/hr during shock and increasing to 253.38 +/- 27.62 mL/hr after 2 hours of resuscitation. Human PMNs exposed to both whole lymph (PHSML) and its extracted lipids (PHSML Lipid) collected 2 hours after shock exhibited more than a two-fold increase in superoxide release upon activation compared with pre-shock samples: PHSML- 6.27 +/- 0.83 versus 2.56 +/- 0.60 nmolO2(-)/ 3.75 cells/mL/min, respectively (p = 0.007), PHSML Lipid- 4.93 +/- 0.34 versus 2.49 +/- 0.11 nmolO2(-)/ 3.75 cells/mL/min (p < 0.001). Similarly, porcine PMNs exhibited close to a two-fold activation when exposed to the lymph and lipid fraction: PHSML- 4.51 +/- 0.42 versus 1.06 +/- 0.28 nmolO2(-)/ 3.75 cells/mL/min (p = 0.008), PHSML Lipid-4.80 +/- 0.81 versus 1.55 +/- 0.23 nmolO2(-)/ 3.75 cells/mL/min (p = 0.002). CONCLUSION: Mesenteric lymphatics serve as the conduit for inflammatory mediators elaborated by the post-ischemic gut in both small and large animal models. Further, the causal agent(s) exist in the lipid fraction of the lymph and are active on both human and animal PMNs.  相似文献   

8.
BACKGROUND: Splanchnic hypoperfusion is believed to be central in the pathogenesis of hemorrhagic shock-induced acute respiratory distress syndrome and multiple organ failure. Our previous work focused on the portal circulation as the conduit for gut-derived mediators of acute respiratory distress syndrome. Our current focus is the proinflammatory effects of postshock mesenteric lymph. We hypothesize that postshock lymph induces neutrophil (PMN)-mediated endothelial cell damage in an intercellular adhesion molecule-1 (ICAM-1)-dependent fashion, and devised a two-insult model to test this hypothesis. METHODS: Rats (n > or = 5) underwent hemorrhagic shock (mean arterial pressure, 40 mm Hg for 30 minutes) and resuscitation (shed blood plus two times crystalloid) with lymph collection. Human pulmonary microvascular endothelial cells (HMVECs) were divided into three groups and grown to near confluence. Group 1 was incubated for 6 hours in 1% preshock or postshock lymph and ICAM-1 was measured by flow cytometry. Group 2 consisted of coculture of HMVECs and PMNs after endothelial cell activation to determine whether postshock lymph would stimulate PMN adherence. Group 3 was incubated under identical conditions, but PMNs were added for 30 minutes, and then activated with 4.5 micromol/L lysophosphatidylcholine (lyso-PC) for 1 hour to ascertain cytotoxicity. HMVEC density was measured using microscopy and recorded as HMVECs per millimeter squared. ICAM-1-blocking antibody and isotype control were used to assess the effects of ICAM-1 on PMN cytotoxicity. A buffer control was used for comparison using analysis of variance with Tukey's correction. RESULTS: Postshock lymph activated HMVECs for increased surface expression of ICAM-1 and stimulated PMNs to adhere to endothelial cell monolayers. Activation of PMNs with lyso-PC in the presence of postshock lymph resulted in marked HMVEC death. The addition of an ICAM-1-blocking antibody abrogated this effect. Neither postshock lymph alone (758 +/- 35 HMVECs/mm(2)), nor postshock lymph in the presence of quiescent PMNs alone (734 +/- 28 HMVECs/mm(2)), nor lymph plus lyso-PC (834 +/- 21 HMVECs/mm(2)) provoked endothelial cell damage. CONCLUSION: Postshock mesenteric lymph activates endothelial cells for increased ICAM-1 expression and PMN adherence. Furthermore, postshock lymph acts as an inciting event in a two-event in vitro model of PMN-mediated endothelial cell injury. These findings further substantiate the key mechanistic role of mesenteric lymph in hemorrhagic shock-induced acute lung injury and suggest that ICAM-1 expression is pivotal in the two-event model of multiple organ failure.  相似文献   

9.
Introduction: The lipid fraction of mesenteric lymph collected after hemorrhagic shock (HS) and reperfusion primes the neutrophil oxidative burst in vitro. Recently, we have identified the culprit agent to be a neutral lipid consistent with Leukotriene B4 (LTB4). We hypothesized that plasma LTB4 increases after HS and that diversion of mesenteric lymph (DML) abrogates this effect. Furthermore, we posited that administration of an LTB4 antagonist blocks the priming effect of mesenteric lymph on neutrophils (PMNs). Methods: Adult male Sprague-Dawley rats (325-375 g) underwent laparotomy with cannulation of the mesenteric lymphatics for lymph diversion (DML) or laparotomy without mesenteric cannulation (Sham). Additionally, DML rats had lymph collected both pre- and post-shock. All rats underwent cannulation of the femoral artery and vein. HS to a MAP of 30 mmHg for 45 minutes was achieved via venous exsanguination. Animals were resuscitated with shed blood and with 2x the shed blood volume of NS over two hours. After resuscitation, plasma was collected for LTB4 measurement by ELISA. Lymph collected in the resuscitation phase was added to isolated PMNs that were then measured for superoxide release in the presence and absence of the LTB4 receptor antagonist CP-105,696. Results: LTB4 concentration in the lymph collected from the DML group measured 281.25 ± 53.81 ng/ml pre-shock, increasing to 692.13 ± 176.91 ng/ml post-shock (p < 0.05). LTB4 plasma concentrations after resuscitation differed based on lymph diversion. LTB4 concentration for DML animals measured 2745 ± 214.77 pg/ml vs. Sham animals, 4012 ± 628.93 pg/ml (p < 0.05). PMN pre-treatment with the LTB4 receptor antagonist completely abrogated superoxide release in response to lymph exposure compared with the untreated control, 1.39 ± 0.23 vs. 4.22 ± 0.68 nmol O2/3.75 x 105 cells/mL/min respectively (p < 0.05). Conclusion: These data suggest that splanchnic ischemia secondary to HS increases concentrations of the known priming agent LTB4 in mesenteric lymph and the systemic circulation. Furthermore, selective blockade of LTB4 markedly attenuates the effect of mesenteric lymph on PMN priming, indicating a potential therapeutic location for disruption of the dysfunctional PMN priming/activation sequence.  相似文献   

10.
BACKGROUND: A wide variety of neutrophil (PMN) functions are regulated by cytosolic calcium concentration. Calcium channel blockade might therefore decrease postshock inflammation but could also limit important cardiovascular compensations. PMN Ca2+ entry occurs, however, through store-operated calcium entry (SOCE) channels rather than the voltage operated (L-type) channels that regulate cardiovascular tone. We hypothesized that SOCE inhibition might suppress postshock PMN activation, lessening lung injury without compromising cardiovascular performance. METHODS: Human PMNs were treated in vitro with N-propargyl-nitrendipine (MRS1845 [MRS]) a dihydropyridine Ca2+ channel blocker with relative specificity for SOCE channels. Calcium flux was measured by fura fluorescence. Chemotaxis was studied in modified Boyden chambers. Respiratory burst was studied by dihydrorhodamine fluorescence. Exploratory studies were then performed where rats were subjected to trauma and hemorrhagic shock (T/HS) (laparotomy, then hemorrhage to a mean arterial pressure of 30-40 mm Hg for 90 minutes) after pretreatment with MRS or vehicle given intraperitoneally at laparotomy. In vivo PMN CD11b expression was then assayed by flow cytometry and lung injury was assessed as percentage Evans blue dye leak 3 hours after resuscitation. The shed blood volume required to achieve standardized hypotension was measured. RESULTS: In vitro, MRS suppressed human PMN SOCE without affecting calcium store release; it suppressed chemotaxis (60 +/- 6 vs. 150 +/- 15 x 10(3) PMNs/well, p = 0.002) and suppressed respiratory burst (62 +/- 11% vs. 100%, p < 0.05) at IC50 concentrations similar to those needed to suppress SOCE. In subsequent in vivo rat studies, MRS decreased postshock PMN CD11b expression from 397 +/- 93 to 268 +/- 39 MFU mean flourescent units (p < 0.05) and decreased lung Evans blue dye permeability from 8.1 +/- 1.9% to 3.4 +/- 0.1% (p < 0.05). MRS had no noticeable effect on the relationship between blood pressure and blood loss, with shed blood volume remaining almost identical (26 +/- 2 mL/kg vs. 27 +/- 3 mL/kg, p = not significant). CONCLUSION: Modulation of PMN Ca2+ entry by means of selective SOCE channel inhibition attenuates PMN inflammatory responses in vitro. In vivo, SOCE channel blockade attenuates trauma and hemorrhagic shock-induced PMN priming and lung injury without gross evidence of hemodynamic side effects. The relative specificity of SOCE channel blockade for "nonexcitable" cells such as PMNs may make it a valuable form of chemoprophylaxis for the inflammatory consequences of hemorrhagic shock in trauma patients.  相似文献   

11.
OBJECTIVE: Neutrophil (PMN) priming after hemorrhagic shock is predictive of the subsequent development of multiple organ failure, but the mechanism remains unknown. Recently, we and others have demonstrated that mesenteric lymph from shock animals resuscitated with lactated Ringer's solution (LR) is not only a potent PMN priming agent but also causes lung injury. Work by others has shown that resuscitation with hypertonic saline (HTS) protects animals from lung injury after hemorrhagic shock. Therefore, we hypothesize that resuscitation with HTS will abolish PMN priming by postshock mesenteric lymph. METHODS: After mesenteric lymph duct catheterization, male rats underwent hemorrhagic shock (mean arterial pressure of 40 mm Hg for 90 minutes) and resuscitation with shed blood plus either LR (2x volume of shed blood) or 4 mL/kg of 7% HTS (isonatremic). Priming for superoxide by PMN was measured after fMLP (1 microM) activation. RESULTS: Shock significantly decreased mesenteric lymph flow from preshock levels in both groups. LR resuscitation produced significantly more mesenteric lymph than HTS resuscitation. Mesenteric lymph from LR animals primed PMN for superoxide production, whereas, HTS eliminated this priming. CONCLUSION: HTS not only decreases postshock mesenteric lymph production, it eliminates PMN priming by mesenteric lymph, suggesting a mechanism for the beneficial effects of HTS resuscitation.  相似文献   

12.
BACKGROUND: Resuscitation with oxygen-carrying fluids is critically important in the patient with hemorrhagic shock caused by trauma. However, it is clear that a number of biologic mediators present in stored blood (packed red blood cells [PRBCs]) have the potential to exacerbate early postinjury hyperinflammation and multiple organ failure through priming of circulating neutrophils (PMNs). PolyHeme (Northfield Laboratories, Evanston, IL), a hemoglobin-based substitute that is free of priming agents, provides an alternative. We hypothesized that PMN priming would be attenuated in patients resuscitated with PolyHeme in lieu of stored blood. METHODS: Injured patients requiring urgent transfusion were given either PolyHeme (up to 20 units) or PRBCs. Early postinjury PMN priming was measured via beta-2 integrin expression, superoxide production, and elastase release. RESULTS: Treatment groups were comparable with respect to extent of injury and early physiologic compromise. PMNs from patients resuscitated with PRBCs showed priming in the early postinjury period by all three measures. No such priming was evident in patients resuscitated with PolyHeme. CONCLUSION: The use of a blood substitute in the early postinjury period avoids PMN priming and may thereby provide an avenue to decrease the incidence or severity of postinjury multiple organ failure.  相似文献   

13.
《Renal failure》2013,35(5):584-591
Background: The kidney is a common target in multiple organ dysfunction syndrome (MODS). The aim of this study is to determine the role of intestinal lymphatic pathway on renal injury in hemorrhagic shock rats. Methods: Wistar rats were divided into sham, shock, and ligation groups. The hemorrhagic shock model was induced in the shock and ligation groups. After resuscitation, the mesenteric lymph ducts were ligated in the ligation group. Blood from the carotid artery was taken to determine renal functional indices. The kidneys were used to observe histomorphological changes at 6 h after resuscitation. In addition, kidney homogenate was used to determine malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and myeloperoxidase (MPO) levels at 90 min after shock and 0, 1, 3, 6, 12, and 24 h after resuscitation. And the survival rate of 24 h was recorded. Results: The survival rate in shock group was obviously lower than sham and ligation groups. The urea and creatinine contents in the serum of shock and ligation groups were significantly higher than the sham group; the indices in the ligation group were significantly lower than the shock group. Histological studies showed various degrees of renal injury in the shock and ligation groups with a lesser severity in the ligation group. MDA, TNFα, IL-6, and MPO in renal homogenate of the shock group were raised, and the activity of SOD was lower in comparison to the sham group. Further, MDA, TNFα, IL-6, and MPO in renal homogenate of the ligation group at 6, 12, and 24 h were lower, and the SOD activity was higher than that of the shock group at the same time points. Conclusion: The mesenteric lymph duct ligation could be used to attenuate renal injury in shock rats. Its mechanism might be related to reducing the polymorph nuclear (PMN) and decreasing inflammatory mediator and free radical.  相似文献   

14.
Adams CA  Sambol JT  Xu DZ  Lu Q  Granger DN  Deitch EA 《The Journal of trauma》2001,51(4):625-31; discussion 631-2
BACKGROUND: Previous studies have shown that mesenteric lymph duct interruption prevents lung injury and decreases lung neutrophil sequestration after hemorrhagic shock (HS). Since endothelial cells rapidly express P-selectin after ischemia/reperfusion injury and HS-induced lung injury appears to involve neutrophil-endothelial cell interactions, we tested the following two hypotheses. First, that HS increases endothelial cell P-selectin expression and that interruption of mesenteric lymph flow in vivo would diminish this expression. Second, that incubation of human umbilical vein endothelial cells with post-HS mesenteric lymph but not sham shock (SS) lymph or postshock portal vein plasma would up-regulate P-selectin expression. METHODS: Pulmonary microvascular P-selectin expression was measured in male rats subjected to 90 minutes of HS (30 mm Hg), SS, or HS with lymphatic ligation, with a dual radiolabeled monoclonal antibody technique. The lungs from these animals were subsequently harvested and P-selectin expression was expressed as mean +/- SEM nanograms of monoclonal antibody per gram of tissue. RESULTS: Pulmonary P-selectin expression was 2.0 +/- 0.4 after SS, 9.7 +/- 3.0 after HS, but decreased to 2.3 +/- 0.3 after HS with lymph interruption (p < 0.05 HS vs. SS or HS plus lymph ligation). Incubation of human umbilical vein endothelial cells with shock lymph collected 3 to 4 hours after shock resulted in a nearly fivefold increase in P-selectin expression (p < 0.001) as compared with SS lymph, lymph collected 6 hours after shock, or postshock portal vein plasma. CONCLUSION: These results support the concept that gut-derived lymph promotes HS-induced lung injury through up-regulation of microvascular adhesion molecules and that intestinal lymph duct interruption may prevent distant organ injury by blunting the expression of these molecules.  相似文献   

15.
BACKGROUND: Mesenteric ischemia/reperfusion (I/R) activates pro-inflammatory mediators that exacerbate gut reperfusion injury and prime circulating neutrophils that cause remote organ injury. We have shown that regional intraischemic hypothermia protects the intestinal mucosa during I/R in rats. In this study, we examined the effects of regional hypothermia on I/R-induced transvascular protein clearance, NF-kappaB DNA binding activity, and polymorphonuclear neutrophil (PMN) priming via gut lymph in a canine mesenteric lymphatic fistula model. MATERIALS AND METHODS: Conditioned dogs underwent 60 min of mesenteric ischemia, with or without regional intraischemic hypothermia, and 3 h reperfusion. A mesenteric lymphatic fistula model was used to measure transvascular protein clearance and harvest lymph. Biopsies of distal ileum were obtained at baseline and 0, 180 min of reperfusion for NF-kappaB DNA binding activity using electrophoretic mobility shift assay (EMSA). A kinetic spectrophotometric assay was used to determine fMLP stimulated PMN superoxide production after priming by gut lymph obtained at baseline and 180 min reperfusion. RESULTS: Transvascular protein clearance increased during reperfusion compared to baseline, and hypothermia had no significant effect on this I/R-induced protein clearance. NF-kappaB activity increased three-fold at the end of ischemia and hypothermia prevented this early activation. PMN superoxide production increased 19-fold during I/R (0.06 +/- 0.04 versus 1.14 +/- 0.50 nmol O(2), P < 0.05), but only 2.5-fold during I/R + hypothermia (0.28 +/- 0.09 versus 0.70 +/- 0.32 nmol O(2), P = 0.2). CONCLUSIONS: Regional intraischemic hypothermia prevented early intestinal NF-kappaB activation, partially abrogated PMN priming via gut lymph, but had no significant effect on increased transvascular protein clearance during mesenteric I/R in dogs.  相似文献   

16.
目的 探讨盐酸戊乙奎醚预先给药对失血性休克大鼠急性肺损伤时Toll样受体4(TLR4)mRNA表达的影响.方法 健康SD大鼠40只,体重200~250 g,随机分为5组(n=8):假手术组(S组)、失血性休克致急性肺损伤组(ALI组)和低、中、高剂量盐酸戊乙奎醚预先给药组(P1~3组).S组仅行动静脉穿刺,不放血,ALI组股动脉放血至35~45 mm Hg制备急性肺损伤模型,P1~3组分别于放血前30 min股静脉注射盐酸戊乙奎醚0.3、1.0、3.0 mg/kg,随后制备急性肺损伤模型.各组复苏后4 h时处死大鼠取肺,称重后计算肺湿干重比,检测TLR4 mRNA和NF-κB p65蛋白的表达水平,观察病理学结果.结果 与S组比较,ALI组和P1组TLR4 mRNA、NF-κB p65蛋白表达水平及肺湿干重比升高(P<0.05或0.01),P2.3组差异无统计学意义(P>0.05);与ALI组比较,P2,3组TLR4 mRNA、NF-κB p65蛋白表达水平及肺湿干重比降低(P<0.05或0.01);P2组和P3组上述指标比较差异无统计学意义(P>0.05).P2,3组肺组织病理学损伤程度较ALI组明显减轻.结论 盐酸戊乙奎醚预先给药可通过抑制肺组织TLR4 mRNA表达上调,进而降低NF-κB活性,从而减轻失血性休克诱发大鼠的急性肺损伤.  相似文献   

17.
OBJECTIVE: To evaluate the in vivo effects of hypertonic saline (HTS) resuscitation on the interactions of endothelial cells (ECs) and polymorphonuclear neutrophils (PMNs) and vascular permeability after hemorrhagic shock. SUMMARY BACKGROUND DATA: The PMN has been implicated in the pathogenesis of EC damage and organ injury following hemorrhagic shock. Compared to Ringer's lactate (RL), HTS resuscitation diminishes PMN and EC adhesion molecule expression and organ sequestration of PMNs. METHODS: In a murine model of hemorrhagic shock (50 mmHg for 45 minutes followed by resuscitation) using intravital microscopy on cremaster muscle, the authors studied PMN-EC interactions and vascular leakage (epifluorescence after 50 mg/kg fluorescent albumin) in three resuscitation groups: HTS (shed blood + 4 cc/kg 7.5% HTS, n = 12), RL (shed blood + RL [2x shed blood volume], n = 12), and sham (no hemorrhage or resuscitation, n = 9). EC ICAM-1 expression was evaluated by immunohistochemistry. Data, presented as mean +/- SEM, were evaluated by analysis of variance with Bonferroni correction. RESULTS: There were no differences between groups in flow mechanics. Compared to RL, HTS animals (t = 90 minutes) displayed diminished PMN rolling and PMN adhesion to EC at time intervals beyond t = 0. There were no differences between the sham and HTS groups. Vascular leakage was 45% lower in HTS than in RL-resuscitated animals. Cremaster EC ICAM-1 expression was similar in the two groups. CONCLUSIONS: Using HTS instead of RL to resuscitate hemorrhagic shock diminishes vascular permeability in vivo by altering PMN-EC interactions. HTS could serve as a novel means of immunomodulation in hemorrhagic shock victims, potentially reducing PMN-mediated tissue injury.  相似文献   

18.
BACKGROUND: It is well known that hemorrhagic shock induces inflammatory changes. Our objective was to study the histologic and biochemical changes in the lung and evaluate alterations in respiratory function after hemorrhage and resuscitation (H/R) in mice. METHODS: After 30 min of hemorrhagic shock, mice were resuscitated with shed blood to restore mean arterial blood pressure to baseline. A sham group was anesthetized and instrumented for 30 min, but did not undergo hemorrhage. Myeloperoxidase (MPO) levels were measured and histologic analysis was performed on lung tissue. Pulmonary function was evaluated using whole-body plethysmography (WBP) 1, 3, and 5 days postprocedure. Alveolar function was evaluated by measuring carbon monoxide uptake via gas chromatography 5 days after H/R. RESULTS: Five days after H/R, mice exposed to shock had significantly higher lung MPO levels and showed greater histologic evidence of lung injury. Airway resistance (Penh) in the sham mice was 0.91 +/- 0.06 versus 1.21 +/- 0.09 in the hemorrhage group (P < 0.01). Alveolar function was significantly decreased in the H/R group (70.8 +/- 3.6%) compared with shams (81.6 +/- 1.8%) (P < 0.05). CONCLUSIONS: Hemorrhage and resuscitation cause delayed biochemical, histologic, and physiologic changes in the lung. These were marked by increased lung MPO, increased neutrophils, and decreased alveolar function. The alterations of pulmonary function and structure were most severe 5 days after H/R.  相似文献   

19.
Fujiyoshi N  Feketeova E  Lu Q  Xu DZ  Haskó G  Deitch EA 《Surgery》2006,140(5):810-817
BACKGROUND: Amiloride, an inhibitor of Na+/H+ exchangers and Na+ channels has been shown recently to ameliorate both gut and lung injury in rats subjected to a combined insult of trauma and hemorrhagic shock (T/HS). We have shown previously that mesenteric lymph duct ligation prevents T/HS-induced lung endothelial injury and neutrophil activation, suggesting that toxic inflammatory factors originating from the gut and carried in the lymph are responsible for the lung injury observed after T/HS. This study investigates whether the protective effect of amiloride against T/HS-induced lung injury was associated with decreased lymph toxicity and gut permeability. METHODS: Male rats subjected to trauma (laparotomy) plus hemorrhagic shock (mean arterial pressure, 30 mm Hgx90 min) (T/HS) or trauma plus sham shock (T/SS) and treated with amiloride or its vehicle had their mesenteric lymph duct catheterized. Mesenteric lymph collected before and after shock was assayed for biologic activity on endothelial cells (cytotoxicity and permeability) and neutrophils (respiratory burst activity). Gut permeability was assessed by monitoring plasma concentrations of the fluorescent dye FITC-dextran after its injection into the ileum. RESULTS: Amiloride administration reduced the capacity of post-shock mesenteric lymph to prime neutrophils for an increased respiratory burst. Amiloride failed to decrease the ability of mesenteric lymph to kill endothelial cells or increase their permeability. Amiloride decreased gut permeability. CONCLUSIONS: The mechanisms of the lung protective effect of amiloride in rats undergoing T/HS may be secondary to decreased neutrophil activation, diminished gut permeability, or an effect on the end organ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号