首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Murine mammary carcinoma FM3A cells, deficient in cytosol thymidine (dThd) kinase (TK) activity and transformed by the herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) TK gene (designated FM3A TK-/HSV-1 TK+ and FM3A TK-/HSV-2 TK+, respectively) proved extremely sensitive to the cytostatic action of the potent antiherpetic drugs (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU). The fact that FM3A TK-/HSV-2 TK+ cells were 5-fold more sensitive to the cytostatic action of BVDU and IVDU but incorporated [125I]IVDU to a 20-fold lower extent into their DNA than did FM3A TK-/HSV-1 TK+ cells led us to conclude that incorporation of these compounds into DNA of HSV TK gene-transformed cell lines is not directly related to their cytostatic action. In attempts to unravel the mechanism of the cytostatic effects of BVDU and IVDU on HSV TK gene-transformed FM3A cells, both compounds were submitted to an intensive biochemical study. Thymidylate synthase was identified as the principal target enzyme for the cytostatic action of BVDU and IVDU since (i) both compounds were far more inhibitory to 2(1)-deoxyuridine (dUrd) than to dThd incorporation into HSV TK gene-transformed FM3A cell DNA, (ii) the cytostatic action of BVDU and IVDU was more readily reversed by dThd than by dUrd, (iii) both compounds strongly inhibited the metabolic pathway leading to the incorporation of 2'-deoxycytidine (dCyd) into DNA thymidylate, (iv) BVDU and IVDU strongly inhibited tritium release from [5-3H]dCyd and [5-3H]dUrd in intact HSV TK gene-transformed FM3A cells, and (v) [125I]IVDU accumulated intracellularly as its 5'-monophosphate to concentration levels considerably higher than those required to inhibit partially purified thymidylate synthase. The inhibitory effects mentioned under (i) to (iv) were not observed with the parental FM3A/0 and FM3A/TK- cells; they were more pronounced for FM3A TK-/HSV-2 TK+ cells than for FM3A TK-/HSV-1 TK+ cells, which correlates with the differential cytostatic effects of BVDU and IVDU on these cells.  相似文献   

2.
The carbocyclic analogues of the potent and selective antiherpes agents (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), and (E)-5-(2-bromovinyl)-2'-deoxycytidine (BVDC) were synthesized by conventional methods with use of carbocyclic 2'-deoxyuridine as starting material. C-BVDU, C-IVDU, and C-BVDC were equally selective, albeit slightly less potent, in their antiherpes action than BVDU, IVDU, and BVDC. Although resistant to degradation by pyrimidine nucleoside phosphorylases, C-BVDU did not prove more effective than BVDU in the systemic (oral, intraperitoneal) or topical treatment of HSV-1 infections in mice.  相似文献   

3.
The incorporation of (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU) into DNA of varicella-zoster virus (VZV)-infected human embryo fibroblasts was studied, using thymidine kinase-positive (TK+) and thymidine kinase-negative (TK-) VZV strains. [125I]IVDU was taken up by cells infected with TK+ VZV-, but not by TK- VZV- or mock-infected cells. [125I]IVDU was incorporated into both VZV DNA and cellular DNA of TK+ VZV-infected cells. When the cells were exposed to 0.3 microM IVDU, a more marked shift was noted in the buoyant density of viral DNA than of host DNA. In contrast, the DNAs isolated from TK- VZV- or mock-infected cells did not exhibit a detectable incorporation of [125I]IVDU. [125I] IVDU-labeled VZV DNA was purified from the viral nucleocapsids of TK+ VZV-infected cells. Substitution of no more than 0.1-1% of the thymidine residues in the VZV DNA by IVDU seemed to suffice to inhibit the replication of VZV.  相似文献   

4.
Thymidine kinase (TK) enzymes encoded by herpes simplex viruses types 1 and 2 (HSV-1, HSV-2), and equine herpesvirus type 1 (EHV-1) catalyze the phosphorylation of thymidine (dThd) and (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). The replication of HSV-1 is sensitive to BVDU, but the replication of HSV-2 and EHV-1 is not. To investigate the differential sensitivity of the viruses to halogenated vinyldeoxyuridine drugs, the phosphorylation of 125I-labeled (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU) was studied. Cytosol enzymes from cells infected by HSV-2 and EHV-1 phosphorylated [125I]IVDU to the monophosphate, IVDUMP, but did not convert IVDUMP to higher di- plus triphosphates (IVDUDP plus IVDUTP) forms. In contrast, enzymes from HSV-1-infected cells converted [125I]IVDU to radioactive IVDUMP and IVDUDP plus IVDUTP. Experiments with mixtures of EHV-1- and HSV-1-induced enzymes showed that the EHV-1 enzyme did not inhibit formation of the IVDUDP plus IVDUTP by the HSV-1 enzyme. With [125I]IVDU as substrate, the Km values for the EHV-1 and HSV-1 TKs were 1.82 and 0.34 microM, respectively, and the Ki (dThd) value for the EHV-1 TK was 0.35 microM. In vivo experiments showed that HSV-1-infected cells converted IVDU to the mono- and the di- plus triphosphate forms. In contrast, EHV-1-infected cells converted IVDU to the monophosphate to a lesser extent than did HSV-1-infected cells, and did not produce the di- plus triphosphates. Thus, inefficient phosphorylation of the monophosphates probably contributes to the insensitivity of EHV-1 replication to IVDU, as it does to the insensitivity of HSV-2 replication to this drug.  相似文献   

5.
The (+)- and (-)-enantiomers of the carbocyclic analogues of (E)-5-(2-bromovinyl)-2'-deoxyuridine (C-BVDU) and 5-iodo-2'-deoxyuridine (C-IDU) were synthesized by separate routes. Both the (+)- and (-)-enantiomers of C-BVDU and C-IDU were markedly inhibitory to herpes simplex virus type 1 (HSV-1) replication. (+)-C-BVDU and (+)-C-IDU were as inhibitory to HSV-1 as the racemic (+/-)-C-BVDU and (+/-)-C-IDU, respectively, whereas the (-)-enantiomers were only 10-fold less active. Also, the (+)- and (-)-enantiomers of C-BVDU were equally inhibitory to the growth of murine mammary carcinoma cells transformed by the HSV-1 or HSV-2 thymidine kinase (TK) gene (designated FM3A TK-/HSV-1 TK+ and FM3A TK-/HSV-2 TK+). The (+)- and (-)-enantiomers of C-BVDU and the (+)- and (-)-enantiomers of C-IDU had a remarkably similar affinity for HSV-1 TK [Ki, 0.09 and 0.19 microM for (+)-C-BVDU and (+)-C-IDU and 0.16 and 0.19 microM for (-)-C-BVDU and (-)-C-IDU, respectively]. The inhibition of HSV-1 TK by BVDU, IDU, (+)-C-BVDU, and (+)-C-IDU was purely competitive with regard to the natural substrate (thymidine), whereas (-)-C-BVDU, (-)-C-IDU, (+/-)-C-BVDU, and (+/-)C-IDU showed a linear mixed-type inhibition of HSV-1 TK. C-BVDU and C-IDU are examples of chiral molecules of which both isomeric forms are markedly active at both the cellular and enzymatic level.  相似文献   

6.
The carbocyclic analogue of (E)-5-(2-iodovinyl)-2'-deoxyuridine (C-IVDU) is, like its parent compound (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1). There is a close correlation between the inhibition of viral DNA synthesis and the antiviral activity of both IVDU and C-IVDU. IVDU and C-IVDU inhibit viral DNA synthesis at 0.2 and 0.5 microM, respectively, and interfere with cellular DNA synthesis at concentrations that are 10- to 40-fold in excess of their antivirally effective doses. At concentrations affording a similar antiviral effect, C-[125I]IVDU is incorporated into viral and cellular DNA of HSV-1-infected Vero cells to a 7- to 10-fold lesser extent than IVDU. [125I]IVDU but not C-[125I]IVDU leads to breakage of both DNA strands when incorporated into HSV-1 DNA.  相似文献   

7.
The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this amino acid change on enzymatic activity. In marked contrast with wild-type HSV-1 TK, which displays both thymidine kinase and thymidylate kinase activities, the HSV-1 TK(Q125N) mutant was unable to phosphorylate pyrimidine nucleoside monophosphates but retained significant phosphorylation activity for thymidine and a series of antiherpetic pyrimidine and purine nucleoside analogs. The abrogation of HSV-1 TK-associated thymidylate kinase activity resulted in a 100-fold accumulation of the monophosphate form of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) in osteosarcoma cells transfected with the HSV-1 TK(Q125N) gene compared with osteosarcoma cells expressing wild-type HSV-1 TK. BVDU monophosphate accumulation gave rise to a much greater inhibition of cellular thymidylate synthase in HSV-1 TK(Q125N) gene-transfected cells than wild-type HSV-1 TK gene-transfected osteosarcoma tumor cells without significantly changing the cytostatic potency of BVDU for the HSV-1 TK gene-transfected tumor cells. Accordingly, the presence of the Q125N mutation in HSV-1 TK gene-transfected tumor cells was found to result in a multilog decrease in the cytostatic activity of those pyrimidine nucleoside analogs that in their monophosphate form do not have marked affinity for thymidylate synthase [i.e., 1-beta-D-arabinofuranosylthymine and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil].  相似文献   

8.
Novel N1-substituted thymine derivatives related to 1-[(Z)-4-(triphenylmethoxy)-2-butenyl]thymine have been synthesized and evaluated against thymidine kinase-2 (TK-2) and related nucleoside kinases [i.e., Drosophila melanogaster deoxynucleoside kinase (Dm-dNK) and herpes simplex virus type 1 thymidine kinase (HSV-1 TK)]. The thymine base has been tethered to a distal triphenylmethoxy moiety through a polymethylene chain (n = 3-8) or through a (2-ethoxy)ethyl spacer. Moreover, substitutions at position 4 of one of the phenyl rings of the triphenylmethoxy moiety have been performed. Compounds with a hexamethylene spacer (18, 26b, 31) displayed the highest inhibitory values against TK-2 (IC50 = 0.3-0.5 microM). Compound 26b competitively inhibited TK-2 with respect to thymidine and uncompetitively with respect to ATP. A rationale for the biological data was provided by docking some representative inhibitors into a homology-based model of human TK-2. Moreover, two of the most potent TK-2 inhibitors (18 and 26b) that also inhibit HSV-1 TK were able to reverse the cytostatic activity of 1-(beta-D-arabinofuranosyl)thymine (Ara-T) and ganciclovir in HSV-1 TK-expressing OST-TK-/HSV-1 TK+ cell cultures.  相似文献   

9.
Both enantiomers of the carbocyclic analogues of 5-iodo-2'-deoxyuridine (14 and ent-14) and of (E)-5-(2-bromo-vinyl)-2'-deoxyuridine (16 and ent-16) were synthesized by using (+)- or (-)-endo-norborn-5-en-2-yl acetate or butyrate, respectively, as starting materials. Against herpes simplex virus type 1 (+)-C-BVDU (16) was only slightly less active than BVDU itself, whereas (-)-C-BVDU (ent-16) proved to be 10-400-fold less effective, depending on the strain investigated. Against HSV-2 both (+)- and (-)-C-BVDU as well as (+)- and (-)-C-IDU showed minor activity. All carbocyclic analogues were inactive against TK-HSV-1 strains, pointing to the prerequisite of phosphorylation (activation) by the viral thymidine kinase (TK).  相似文献   

10.
5'-O-Trityl derivatives of thymidine (dThd), (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), and their acyclic analogs 1-[(Z)-4-triphenylmethoxy-2-butenyl]thymine (KIN-12) and (E)-5-(2-bromovinyl)-1-[(Z)-4-triphenylmethoxy-2-butenyl]uracil (KIN-52) have been synthesized and evaluated for their inhibitory activity against the amino acid sequence related mitochondrial dThd kinase (TK-2), herpes simplex virus type 1 (HSV-1) TK, and Drosophila melanogaster multifunctional 2'-deoxynucleoside kinase (Dm-dNK). Several compounds proved markedly inhibitory to these enzymes and represent a new generation of nucleoside kinase inhibitors. KIN-52 was the most potent and selective inhibitor of TK-2 (IC(50), 1.3 microM; K(i), 0.50 microM; K(i)/K(m), 0.37) but was not inhibitory against HSV-1 TK and Dm-dNK at 100 microM. As found for the alternative substrate BVDU, the tritylated compounds competitively inhibited the three enzymes with respect to dThd. However, whereas BVDU behaved as a noncompetitive inhibitor (alternative substrate) of TK-2 and HSV-1 TK with respect to ATP as the varying substrate, the novel tritylated enzyme inhibitors emerged as reversible purely uncompetitive inhibitors of these enzymes. Computer-assisted modeling studies are in agreement with these findings. The tritylated compounds do not act as alternative substrates and they showed a type of kinetics against the nucleoside kinases different from that of BVDU. KIN-12, and particularly KIN-52, are the very first non-nucleoside specific inhibitors of TK-2 reported and may be useful for studying the physiological role of the mitochondrial TK-2 enzyme.  相似文献   

11.
The phosphonylmethoxyalkyl derivatives HPMPA [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine], HPMPC [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] and PMEA [9-(2-phosphonylmethoxyethyl)adenine] were evaluated as 0.2% eyedrops for their efficacy in the treatment of experimental herpes simplex virus type 1 (HSV-1) keratitis in the rabbit model. BVDU 0.2% eyedrops were used as the reference treatment. HPMPA, HPMPC, PMEA and BVDU eyedrops showed a rapid and highly significant healing effect (P less than 0.005) on keratitis caused by TK+ HSV-1 (McIntyre strain) when compared with placebo eyedrops, whereas BVDU treatment did not affect the course of TK- HSV-1 (VMW-1837) keratitis. HPMPA and HPMPC treatment again caused a highly significant healing (P less than 0.005, compared with placebo eyedrops). Although PMEA eyedrops were less effective than HPMPA or HPMPC eyedrops, the effect of PMEA eyedrops was significantly (P less than 0.05) different from the effect of either BVDU or placebo eyedrops.  相似文献   

12.
The affinity of a large number of sugar-modified derivatives of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) was determined towards deoxythymidine (dThd) kinases (TK) of various origin, i.e. human cytosol and mitochondrial TK, as well as herpes simplex virus (HSV) type 1 and type 2 TK. Substitution at the 3'- and 5'-position had differential effects on the interaction of BVDU with TK from different sources. The binding affinity of the nucleoside analogs for these different TKs was also influenced by the nature of the 5-substituent (2-bromovinyl vs 2- chlorovinyl ). The 5'-azido and 5'-amino derivatives of BVDU showed affinity for HSV-1 TK only and may, therefore, be useful to differentiate HSV-1 TK from all other TKs . There was no stringent correlation between the antiviral effects of the compounds and their binding constants for viral TK, suggesting that phosphorylation by viral TK is an essential but not sufficient factor in determining the antiviral activity of these analogs.  相似文献   

13.
The thymidine kinases from feline herpesvirus (FHV TK) and canine herpesvirus (CHV TK) were cloned and characterized. The two proteins are closely sequence-related to each other and also to the herpes simplex virus type 1 thymidine kinase (HSV-1 TK). Although FHV TK and CHV TK have a level of identity of 31 and 35%, respectively, with HSV-1 TK, and a general amino acid similarity of approximately 54% with HSV-1 TK, they do not recognize the same broad range of substrates as HSV-1 TK does. Instead the substrate recognition is restricted to dThd and pyrimidine analogs such as 1-beta-d-arabinofuranosylthymine (araT), 3'-azido-2',3'-dideoxythymidine (AZT) and (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). FHV TK and CHV TK differ in substrate recognition from mammalian cytosolic thymidine kinase 1 (TK1) in that TK1 does not phosphorylate BVDU and they also differ from mammalian mitochondrial thymidine kinase 2 (TK2), which, in addition to thymidine and thymidine analogs also phosphorylates dCyd. Although the nucleoside analog BVDU was a good substrate for FHV and CHV TK, the compound was poorly inhibitory to virus-induced cytopathic effect in FHV- and CHV-infected cells. The reason is likely the poor, if any, thymidylate kinase activity of FHV and CHV TK, which in HSV-1 TK-expressing cells convert BVDU-MP to its 5'-diphosphate derivative.  相似文献   

14.
The following 5-(2-substituted vinyl)-6-aza-2'-deoxyuridines were synthesized: (E)-5-(2-bromovinyl) (2) (6-aza-BVDU), 5-(2-bromo-2-fluorovinyl) (a mixture of E and Z isomers) (3), (E)-5-(2-chlorovinyl) (4), (E)-5-[2-(methylthio)vinyl] (5), 5-(2,2-dibromovinyl) (6), and 5-(3-furyl) (7). The synthesis of 2-6 utilized Wittig-type reactions on 5-formyl-1-(2'-deoxy-3', 5'-di-O-p-toluoyl-beta-D-erythro-pentofuranosyl)-6-azauracil (16). 6-Aza-BVDU (and its alpha-anomer) was also synthesized from (E)-5-(2-bromovinyl)-6-azauracil (12) by using standard deoxyribosidation methodology. Compound 7 was prepared from 5-(3-furyl)-6-azauracil (33) via a ribosidation/deoxygenation sequence. An attempt to prepare the corresponding 5-(2,2-difluorovinyl) analogue afforded instead a mixture of the 5-[(2,2-difluoro-2-methoxy)ethyl] and 5-(2,2,2-trifluoroethyl) derivatives 29 and 30. Compounds 2-7, 29, and 30 were tested for in vitro activity against herpes simplex virus types 1 and 2 (HSV-1, HSV-2). 6-Aza-BVDU (2) exhibited ID50s of 8 micrograms/mL vs. HSV-1 and 190 micrograms/mL vs. HSV-2. BVDU (1) had ID50s of 0.015 and 1.6 micrograms/mL against HSV-1 and HSV-2, respectively. Compound 4 showed a similar profile of activity, but the other analogues were either weakly active or inactive.  相似文献   

15.
Anti-herpesvirus activity of carbocyclic oxetanocin G in vitro   总被引:3,自引:0,他引:3  
A series of new compounds, carbocyclic oxetanocins, have been synthesized and their anti-herpesvirus activity determined. Carbocyclic oxetanocin G (OXT-G) was most active against herpes simplex virus (HSV) and human cytomegalovirus (HCMV) among carbocyclic oxetanocins tested; the median effective concentrations (EC50) for HSV-1, -2, and HCMV were 0.23, 0.04 and 0.40 micrograms/ml, respectively. The EC50 value of carbocyclic OXT-G against HSV-2 was significantly lower than those of acyclovir, ganciclovir (DHPG) and OXT-G, while the value for HCMV was comparable to those of DHPG and OXT-G. Carbocyclic OXT-G showed much higher activity against TK+ HSV-2 than against a TK- mutant, suggesting that this compound is a good substrate for HSV-2-induced TK. The antiviral activity of the compound was only partially reversed even by the addition of 100-fold excess deoxyguanosine. The results suggest that the mode of action of carbocyclic OXT-G is different from that of OXT-G.  相似文献   

16.
Replication of equine herpesvirus type 1 (EHV-1) was sensitive to 9-(1,3-dihydroxy-2-propoxymethyl)guanine(DHPG) but relatively resistant to E-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). Likewise, plaque formation by EHV-1 was inhibited by DHPG, but not by BVDU. Plaque formation by a thymidine kinase-negative (tk-) mutant of EHV-1 was not inhibited by DHPG. In order to investigate biochemical mechanisms determining the differential sensitivity of EHV-1 to these drugs, the EHV-1-encoded thymidine kinase enzyme activity (TK)1 was partially purified from EHV-1-infected cells and analyzed. The EHV-1-induced enzyme utilized both ATP and CTP as phosphate donors and differed in relative electrophoretic mobility from the TKs of mock-infected and HSV-1-infected cells. Phosphorylation of 3H-dThd by the EHV-1 TK was inhibited by AraT, IdUrd, BVDU, and DHPG. The EHV-1 TK phosphorylated 125I-dCyd and 3H-ACV. The results indicate that EHV-1 encodes a pyrimidine deoxyribonucleoside kinase with broad nucleoside substrate specificity. These observations suggest that the failure of BVDU to inhibit EHV-1 replication is not attributable to an inability of the EHV-1 TK to phosphorylate BVDU, but may result from the incapacity of the viral TK to convert BVDU monophosphate to the triphosphate or from lack of inhibitory effect of BVDU triphosphate on viral DNA polymerase reactions.  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mutation at amino acid position 167 was constructed. Compared with wild-type HSV-1 TK, the purified mutant HSV-1 TK(A167Y) enzyme was heavily compromised in phosphorylating pyrimidine nucleosides such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and the natural substrate dThd, whereas its ability to phosphorylate the purine nucleoside analogs ganciclovir (GCV) and lobucavir was only reduced approximately 2-fold. Moreover, a markedly decreased competition of natural pyrimidine nucleosides (i.e., thymidine) with purine nucleoside analogs for phosphorylation by HSV-1 TK(A167Y) was observed. Human osteosarcoma cells transduced with the wild-type HSV-1 TK gene were extremely sensitive to the cytostatic effects of antiherpetic pyrimidine [i.e., (E)-5-(2-bromovinyl)-2'-deoxyuridine] and purine (i.e., GCV) nucleoside analogs. Transduction with the HSV-1 TK(A167Y) gene sensitized the osteosarcoma cells to a variety of purine nucleoside analogs, whereas there was no measurable cytostatic activity of pyrimidine nucleoside analogs. The unique properties of the A167Y mutant HSV-1 TK may give this enzyme a therapeutic advantage in an in vivo setting due to the markedly reduced dThd competition with GCV for phosphorylation by the HSV-1 TK.  相似文献   

18.
In an attempt to determine some of the structural features of geiparvarin (1) that account for its cytostatic activity in vitro, a series of geiparvarin analogues (10a-i, 1, 12, and 14-16) which contain novel modifications in the region of the olefinic double bond and of the coumarin moiety have been designed and synthesized. Among the derivatives containing a carbamate moiety, only the analogues containing a carbamate group linked to an alkyl moiety 10b-i were endowed with potent cytostatic activity, whereas the corresponding benzene derivative 10a was devoid of any antiproliferative activity. 6-Methoxygeiparvarin 101 proved equally effective as geiparvin (1), while compounds containing an additional double bond at the side chain (12 and 14-16) were invariably 5-100-fold less effective than geiparvarin. Diene derivative 15, bearing a coumarin moiety, was essentially inactive against murine (L1210, FM3A) tumor cells but exhibited good activity against human (Molt/4F, MT-4) tumor cells.  相似文献   

19.
To investigate the mechanism of action of 1-beta-D-arabinofuranosyl-(E)-5-(2-bromovinyl)uracil (BV-araU) on varicella zoster virus (VZV) replication, we examined the metabolism of the drug in VZV-infected cells using 14C-labeled BV-araU. [14C]BV-araU was taken up by the cells infected with thymidine kinase-positive (TK+)VZV, but not so much by TK- VZV-infected or mock infected cells. Most of the radioactivity in TK+ VZV-infected cells that were incubated with [14C]BV-araU was recovered from their acid-soluble fraction, and little from their acid-insoluble fraction. By high performance liquid chromatographic assay of the acid-soluble fraction, it was proved that BV-araU was metabolized to its 5'-monophosphate, diphosphate, and triphosphate only in TK+ VZV-infected cells. The radioactivity was not detected in VZV nucleocapsids or in VZV DNA and cellular DNA isolated from TK+ VZV-infected cells, even if BV-araU was added at a 1000 times higher concentration than the 50% inhibitory dose for VZV replication in vitro. Furthermore, it was enzymatically proved that [14C]BV-araU was selectively and effectively phosphorylated to BV-araU monophosphate by VZV TK and that affinity of BV-araU triphosphate for VZV DNA polymerase was the quite strong. From these results, it can be concluded that marked inhibition of VZV replication by BV-araU is due to selective phosphorylation of BV-araU in the TK+ VZV-infected cells and strong inhibition of VZV DNA synthesis by BV-araU triphosphate, without detectable incorporation into VZV DNA.  相似文献   

20.
Enantiomerically pure (+)- and (-)-carbocyclic thymidine, (-)-carbocyclic 3'-epi-thymidine, (+)-carbocyclic 3'-deoxy-3'-azidothymidine, (+)-carbocyclic 2,3'-O-anhydrothymidine, (+)-carbocyclic 3'-O,6'-methylenethymidine, and (+)-(6'S)-carbocyclic 6'-methylthymidine were synthesized in a stereospecific manner from common chiral pools of (+)-(1R,5S)- and (-)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and evaluated for antiviral activity. (+)-Carbathymidine and, to a lesser extent, (+)-carbocyclic 2'-deoxyadenosine proved to be effective against HSV-1 [minimum inhibitory concentration (MIC): 0.2 and 2 micrograms/mL, respectively] and HSV-2 (MIC: 2 and 20 micrograms/mL, respectively), but virtually inactive against TK- HSV-1 (MIC: 40 and 100 micrograms/mL, respectively). (+)-Carbathymidine was also active against vaccinia virus (2 micrograms/mL). None of the compounds had a specific effect on the replication of HIV or other RNA viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号