首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na-H exchanger (NHE) represents a family of transporters which regulate intracellular pH by removing protons in exchange for sodium influx in an electroneutral 1:1 stoichiometric relationship. Six isoforms have thus far been identified with the NHE-1 subtype representing the primary isoform in the cardiac cell. It is well-established that NHE-1 contributes to cardiac injury produced by ischaemia and reperfusion and inhibitors of the antiporter exert excellent cardioprotection. More recent evidence suggests that NHE-1 may also be important for cell growth and may contribute to the maladaptive remodelling which contributes to heart failure particularly the early hypertrophic responses. Evidence from in vitro studies suggest that NHE-1 inhibitors attenuate cardiomyocyte hypertrophy in response to various stimuli whereas in vivo studies report substantial attenuation of both hypertrophy and heart failure by these agents, especially after myocardial infarction. Accordingly, NHE-1 inhibitors could emerge as important therapeutic tools for the attenuation and treatment of heart failure.  相似文献   

2.
The Na-H exchanger (NHE) represents a family of transporters which regulate intracellular pH by removing protons in exchange for sodium influx in an electroneutral 1:1 stoichiometric relationship. Six isoforms have thus far been identified with the NHE-1 subtype representing the primary isoform in the cardiac cell. It is well-established that NHE-1 contributes to cardiac injury produced by ischaemia and reperfusion and inhibitors of the antiporter exert excellent cardioprotection. More recent evidence suggests that NHE-1 may also be important for cell growth and may contribute to the maladaptive remodelling which contributes to heart failure particularly the early hypertrophic responses. Evidence from in vitro studies suggest that NHE-1 inhibitors attenuate cardiomyocyte hypertrophy in response to various stimuli whereas in vivo studies report substantial attenuation of both hypertrophy and heart failure by these agents, especially after myocardial infarction. Accordingly, NHE-1 inhibitors could emerge as important therapeutic tools for the attenuation and treatment of heart failure.  相似文献   

3.
Extensive pre-clinical work indicates that inhibition of the Na(+)/H(+) exchanger (NHE) affords significant protection to myocardium subjected to ischaemia and reperfusion. By contrast, clinical studies with the NHE inhibitors cariporide, eniporide and zoniporide, in patients with evolving myocardial infarction and those at risk of myocardial infarction, have provided largely disappointing data. Nevertheless, some of these studies have confirmed that, in certain settings, NHE inhibition does indeed protect human myocardium. Furthermore, pre-clinical work suggests that NHE inhibition may provide therapeutic benefit in heart failure also. As an alternative to direct and global NHE inhibition, which may trigger non-cardiac adverse effects, the molecular mechanisms that stimulate cardiac NHE activity in disease may be targeted to attenuate such activity selectively in jeopardized tissue. Many factors associated with cardiac pathology activate RSK, an established NHE kinase, and several selective RSK inhibitors have been described recently. The role of RSK as a potential therapeutic target for indirectly suppressing cardiac NHE activity warrants further investigation.  相似文献   

4.
Sodium ion (Na(+)) transporters have roles in the modulation of cardiomyocyte pH and Na(+) and Ca(2+) handling. Activation of the cardiac Na(+)-H(+) exchanger 1 (NHE1) during ischaemia induces arrhythmias, myocardial stunning and irreversible cell injury. As the benefits of NHE1 inhibitors (e.g., amiloride, cariporide) in models of myocardial infarction are usually much greater when used as pretreatment, rather than during or after ischaemia, it is probably not surprising that clinical trials with cariporide in ischaemia have shown little shortterm benefit. NHE1 inhibitors have been shown to be beneficial in animal models of ventricular fibrillation and resuscitation, cardioplegia, hypertrophy and heart failure, and their therapeutic potential in these conditions should be further developed. The Na(+)-HCO(3)(-) cotransporter (NBC) is also stimulated by intracellular acidification, and part of the benefit of angiotensin-converting enzyme inhibitors after myocardial infarction may be due to inhibition of the NBC. Selective inhibitors of the NBC are required to determine the therapeutic potential of this mechanism. The Na(+)-Ca(2+) exchanger (NCX) has a major role in cardiac Na(+) and Ca(2+) homeostasis and influences cardiac electrical activity. The NCX also has a role in ischaemia/infarction, arrhythmias, hypertrophy and heart failure. NCX inhibitors may have beneficial effects in animal models of ischaemia and reperfusion injury and the therapeutic benefit of these should be further studied in animal models.  相似文献   

5.
The myocardial Na+/H+ exchanger isoform 1 (NHE-1) represents a major H+ extrusion mechanism for intracellular pH (pHi) regulation especially during ischaemia and early reperfusion. Paradoxically, however, its activation contributes to induction of cell injury because Na+/H+ exchange is coupled closely to elevations in intracellular [Ca2+] through the Na+/Ca2+ exchanger. NHE-1 is exquisitely sensitive to intracellular acidosis but other factors may have also stimulatory effects via phosphorylation-dependent processes, like autocrine and paracrine agents as well as hormonal factors such as endothelin-1, angiotensin II and -1-adrenoceptor agonists. In addition, phosphorylation-independent NHE-1 activation mechanisms are known, e.g. cell shrinkage.To date at least 8 NHE isoforms have been identified and designated as NHE-1–8. All, except NHE-6 and NHE-7, which are located intracellularly, are restricted to the sarcolemmal membrane. The NHE-1 subtype is the predominant isoform in the heart, but NHE-6 is also expressed in the heart. Newly developed, selective NHE-1 inhibitors possess potent cardioprotective properties. The efficacy of NHE-1 inhibitors in experimental studies with ischaemia/reperfusion has led to clinical trials for the evaluation of these agents in high-risk patients with coronary artery disease (GUARDIAN Trial) and acute myocardial infarction (ESCAMI Trial). The GUARDIAN trial demonstrated only for the coronary artery by-pass graft (CABG) patient population a reduction in the primary cardiovascular endpoint (death and reoccurring myocardial infarction). However, recent evidence also suggests that NHE-1 inhibition may be conducive to attenuation of remodelling processes after myocardial infarction, independently of infarct size reduction and blood pressure. In addition, in separate preclinical studies, the NHE-1 inhibitor cariporide also prevented and/or caused regression of age-related and hypertension-induced myocardial fibrosis and hypertrophy.NHE-1 inhibitors thus offer substantial promise for clinical development for attenuation of both a) acute responses to myocardial injury, b) chronic post-infarct and hypertension- and age-related responses resulting in the development of heart failure.  相似文献   

6.
Six isoforms of Na(+)/H(+) exchanger (NHE) have been identified to date. The NHE-1 isoform is expressed on the plasma membrane of cardiomyocytes and is involved in the regulation of intracellular pH and cell volume under normal physiological conditions. Myocardial ischemia-reperfusion is reported to strongly activate NHE-1. NHE-1 activation is postulated to contribute to myocardial injury by Ca(2+) overload. Several amiloride analogs non-selectively inhibit all isoforms of NHE and have been demonstrated to confer cardioprotection against ischemia-reperfusion injury in a number of experimental models with infarction, contractility, enzyme release and arrhythmias as endpoint. Recently, several selective inhibitors of the NHE-1 isoform have been synthesized and tested for their cardioprotective effect in animal models of ischemia-reperfusion injury. Cariporide and eniporide are currently being evaluated in phase II clinical trials for their antiischemic efficacy. NHE activity is reported to be altered in lymphocytes and vascular smooth muscle cells of spontaneously hypertensive rats and hypertensive patients. However, further research is required to clarify the role of NHE in the pathogenesis of hypertension. Several mitogenic stimuli are reported to activate NHE. Results of studies evaluating the effect of NHE inhibitors on postinfarction-induced cardiac remodeling in animals are promising. Further investigations are being carried out to highlight the involvement of NHE in cardiac hypertrophy. Based on the available data, it can be suggested that NHE has emerged as a useful target site in myocardial ischemia and may become a novel site for pharmacological modulation in hypertension and cardiac hypertrophy.  相似文献   

7.
Karmazyn M  Sostaric JV  Gan XT 《Drugs》2001,61(3):375-389
The myocardial Na+/H+ exchange (NHE) represents a major mechanism for pH regulation during normal physiological processes but especially during ischaemia and early reperfusion. However, there is now very compelling evidence that its activation contributes to paradoxical induction of cell injury. The mechanism for this most probably reflects the fact that activation of the exchanger is closely coupled to Na+ influx and therefore to elevation in intracellular Ca2+ concentrations through the Na+/Ca2+ exchange. The NHE is exquisitely sensitive to intracellular acidosis; however, other factors can also exhibit stimulatory effects via phosphorylation-dependent processes. These generally represent various autocrine and paracrine as well as hormonal factors such as endothelin-1, angiotensin II and alpha1-adrenoceptor agonists, which probably act through receptor-signal transduction processes. Thus far, 6 NHE isoforms have been identified and designated as NHE1 through NHE6. All except NHE6, which is located intracellularly, are restricted to the sarcolemmal membrane. In the mammalian myocardium the NHE1 subtype is the predominant isoform, although NHE6 has also been identified in the heart. The predominance of NHE1 in the myocardium is of some importance since, as discussed in this review, pharmacological development of NHE inhibitors for cardiac therapeutics has concentrated specifically on those agents which are selective for NHE1. These agents, as well as the earlier nonspecific amiloride derivatives have now been extensively demonstrated to possess excellent cardioprotective properties, which appear to be superior to other strategies, including the extensively studied phenomenon of ischaemic preconditioning. Moreover, the salutary effects of NHE inhibitors have been demonstrated using a variety of experimental models as well as animal species suggesting that the role of the NHE in mediating injury is not species specific. The success of NHE inhibitors in experimental studies has led to clinical trials for the evaluation of these agents in high risk patients with coronary artery disease as well as in patients with acute myocardial infarction (MI). Recent evidence also suggests that NHE inhibition may be conducive to attenuating the remodelling process after MI, independently of infarct size reduction, and attenuation of subsequent postinfarction heart failure. As such, inhibitors of NHE offer substantial promise for clinical development for attenuation of both acute responses to myocardial as well as chronic postinfarction responses resulting in the evolution to heart failure.  相似文献   

8.
Sodium ion (Na+) transporters have roles in the modulation of cardiomyocyte pH and Na+ and Ca2+ handling. Activation of the cardiac Na+-H+ exchanger 1 (NHE1) during ischaemia induces arrhythmias, myocardial stunning and irreversible cell injury. As the benefits of NHE1 inhibitors (e.g., amiloride, cariporide) in models of myocardial infarction are usually much greater when used as pretreatment, rather than during or after ischaemia, it is probably not surprising that clinical trials with cariporide in ischaemia have shown little shortterm benefit. NHE1 inhibitors have been shown to be beneficial in animal models of ventricular fibrillation and resuscitation, cardioplegia, hypertrophy and heart failure, and their therapeutic potential in these conditions should be further developed. The Na+-HCO3- cotransporter (NBC) is also stimulated by intracellular acidification, and part of the benefit of angiotensin-converting enzyme inhibitors after myocardial infarction may be due to inhibition of the NBC. Selective inhibitors of the NBC are required to determine the therapeutic potential of this mechanism. The Na+-Ca2+ exchanger (NCX) has a major role in cardiac Na+ and Ca2+ homeostasis and influences cardiac electrical activity. The NCX also has a role in ischaemia/infarction, arrhythmias, hypertrophy and heart failure. NCX inhibitors may have beneficial effects in animal models of ischaemia and reperfusion injury and the therapeutic benefit of these should be further studied in animal models.  相似文献   

9.
钠氢交换泵 1介导缺血及再灌流引起的心肌损伤。近期的研究提示钠氢交换泵 1也介导长期不良刺激引起的心肌肥大和心衰。钠氢交换泵 1可能是引起心肌肥大的多种因素信息传导下游区的共同媒介 ,比如血管紧张素Ⅱ ,肾上腺α1、β1受体兴奋等。抑制钠氢交换泵 1可能会成为防治心衰的一种新方法。  相似文献   

10.
《Vascular pharmacology》2014,60(5-6):127-130
Sodium–hydrogen exchangers (NHE) are among the main regulators of cell volume and intracellular concentration of hydrogen and sodium ions. By indirectly affecting sodium/calcium exchange across the plasma membrane, NHE can also influence the intracellular concentration of calcium. Excess activation of NHE or inappropriate sodium extrusion due to failure of ATP-dependent Na+/K+ transport system can be deleterious during cardiac or peripheral organ ischemia. Besides being responsible for the regulation of intracellular pH and sodium–calcium inward currents, NHE isoform 1 (NHE-1), which is predominantly expressed in the cardiovascular system, influences the tone of the vessel wall in response to a variety of stimuli, including hypertonic stress. Because of the extensive involvement of NHE-1 in cardiac myocyte contracture and necrosis, stunning, reperfusion arrhythmias, as well as hypertension and myocardial diseases such as diabetic cardiomyopathy, efforts have been made in developing inhibitors of this transporter. We here review the biology and regulation of NHE, focusing on current knowledge of the role of NHE-1 as a potential target in the development of novel compounds that could play a role in cardiovascular homeostasis, both in physiological and pathological conditions.  相似文献   

11.
Li YY  Feldman AM 《Drugs》2001,61(9):1239-1252
Matrix metalloproteinases (MMPs) are a family of functionally related zinc-containing enzymes that denature and degrade fibrillar collagens and other components of the extracellular matrix. Myocardial extracellular matrix remodelling and fibrosis regulated by MMPs are believed to be important contributors to the progression of heart failure. The role of MMPs in cardiac fibrosis and the progression of heart failure, along with the possibility of halting the progression of heart failure by modulating extracellular matrix remodelling are important issues under intense study. MMPs are increased in the failing hearts of both animal models and patients with heart failure. MMP inhibition may therefore modulate extracellular matrix remodelling and the progression of heart failure. It is a great advantage that various MMP inhibitors have been developed initially for the treatment of cancer, arthritis and other diseases believed to be associated with increased MMP activity. Several preclinical studies have shown that treatment of heart failure in animal models with MMP inhibitors results in less collagen matrix damage, favourable extracellular matrix remodelling, and improved cardiac structure and function. The results suggest that modulation of MMP activity can prevent myocardial dysfunction and the progression of heart failure through alterations in the remodelling process of extracellular matrix and the left ventricle. Although these promising results suggest potential benefits of MMP inhibition for human heart failure, no clinical data evaluating MMP inhibitors in heart failure have been reported. As the preclinical evidence continues to grow and the potential of MMP inhibition for the treatment of heart failure continues to unfold, MMP inhibition may prove to be an effective treatment for heart failure.  相似文献   

12.
BACKGROUND AND PURPOSE: Increased activity of the Na+/H+ -exchanger (NHE-1) in heart failure underlies raised [Na+]i causing disturbances of calcium handling. Inhibition of NHE-1, initiated at the onset of pressure/volume overload, prevents development of hypertrophy, heart failure and remodelling. We hypothesized that chronic inhibition of NHE-1, initiated at a later stage, would induce regression of hypertrophy, heart failure, and ionic and electrophysiological remodelling. EXPERIMENTAL APPROACH: Development of heart failure in rabbits was monitored electrocardiographically and echocardiographically, after one or three months. Cardiac myocytes were also isolated. One group of animals were treated with cariporide (inhibitor of NHE-1) in the diet after one month. Cytoplasmic calcium, sodium and action potentials were measured with fluorescent markers and sarcoplasmic reticulum calcium content by rapid cooling. Calcium after-transients were elicited after rapid pacing. Sodium channel current (INa) was measured using patch-clamp techniques. KEY RESULTS: Hypertrophy and heart failure developed after one month and progressed during the next two months. After one month, dietary treatment with cariporide was initiated. Two months of treatment reduced hypertrophy and heart failure, duration of action potential QT-interval and QRS, and restored sodium and calcium handling and the incidence of calcium after-transients. In cardiac myocytes, parameters of INa were not changed by cariporide. CONCLUSION AND IMPLICATIONS: In rabbit hearts with hypertrophy and signs of heart failure one month after induction of pressure/volume overload, two months of dietary treatment with the NHE-1 inhibitor cariporide caused regression of hypertrophy, heart failure and ionic and electrophysiological remodelling.  相似文献   

13.
14.
Cardiac remodelling is the expression of molecular, cellular and interstitial changes in response to cardiac injury, manifesting as adverse alterations in the size, shape and function of the ventricle. Several clinical studies have documented significant elevations in the levels of renin, angiotensin II (Ang II) and aldosterone attending acute myocardial infarction and/or congestive heart failure. Similar to catecholamines, markedly elevated activity of the renin-angiotensin-aldosterone system (RAAS) is associated with poor prognosis. The effects of Ang II upon cardiac tissue are related to two primary receptors, Ang II type 1 (AT1) and Ang II type 2 (AT2). The AT1-receptor appears to mediate many of the deleterious effects of chronic RAAS activity, while the AT2-receptor is increasingly shown to have potential cardioprotective effects. Attenuating the deleterious effects of sustained Ang II stimulation can be achieved by direct inhibition of angiotensin- converting enzyme (ACE) and/or direct antagonism of AT receptors. ACE inhibition reduces left ventricular (LV) volumes, retards the progression of LV dilatation and hypertrophy and increases systolic function in systolic dysfunction. By blocking at the receptor level, Ang II receptor blockers (ARBs) provide an alternative and more direct approach to inhibiting the effects of Ang II; however, data relating to their effects upon ventricular remodelling, whether used in isolation or in combination with ACE inhibitors (ACE-Is), are less convincing. Data arising from several recent clinical trials suggest that simultaneous use of ACE-Is and ARBs maybe of more benefit in attenuating ventricular remodelling than either agent alone.  相似文献   

15.
The sodium-hydrogen exchanger isoform-1 (NHE-1) plays an important role in the myocardial response to ischemia-reperfusion; inhibition of this exchanger protects against ischemic injury, including reduction in infarct size. Herein we describe a novel, potent, and highly selective NHE-1 inhibitor, zoniporide (CP-597,396; [1-(quinolin-5-yl)-5-cyclopropyl-1H-pyrazole-4-carbonyl] guanidine). Zoniporide inhibits human NHE-1 with an IC(50) of 14 nM, has >150-fold selectivity vs. other NHE isoforms, and potently inhibits ex vivo NHE-1-dependent swelling of human platelets. This compound is well tolerated in preclinical animal models, exhibits moderate plasma protein binding, has a t(1/2) of 1.5 h in monkeys, and has one major active metabolite. In both in vitro and in vivo rabbit models of myocardial ischemia-reperfusion injury, zoniporide markedly reduced infarct size without adversely affecting hemodynamics or cardiac function. In the isolated heart (Langendorff), zoniporide elicited a concentration-dependent reduction in infarct size (EC(50) = 0.25 nM). At 50 nM it reduced infarct size by 83%. This compound was 2.5-20-fold more potent than either eniporide or cariporide (EC(50)s of 0.69 and 5.11 nM, respectively), and reduced infarct size to a greater extent than eniporide. In open chest, anesthetized rabbits, zoniporide also elicited a dose-dependent reduction in infarct size (ED(50) = 0.45 mg/kg/h) and inhibited NHE-1-mediated platelet swelling (93% inhibition at 4 mg/kg/h). Furthermore, zoniporide attenuated postischemic cardiac contractile dysfunction in conscious primates, and reduced both the incidence and duration of ischemia-reperfusion-induced ventricular fibrillation in rats. Zoniporide represents a novel class of potent and selective human NHE-1 inhibitors with potential utility for providing cardioprotection in a clinical setting.  相似文献   

16.
Myocardial protection through pharmacological approaches represents a large therapeutic challenge and is an important therapeutic strategy in patients with coronary artery disease, particularly after myocardial infarction. Extensive animal experiments have repeatedly demonstrated the efficacy of sodium-hydrogen exchange (NHE) inhibition as a potent cardioprotective approach. The heart possesses primarily the NHE1 isoform which has led to the development of NHE1 specific inhibitors for cardiovascular therapeutics. Cariporide (HOE 642) is the first of such agents to have been developed and subjected to clinical trial. Preclinical studies with cariporide revealed excellent protection against necrosis, apoptosis, arrhythmias and mechanical dysfunction in hearts subjected to ischaemia and reperfusion. Cariporide has recently been evaluated in a large dose-finding Phase II/Phase III clinical trial (GUARDIAN) to assess its efficacy in patients with acute coronary syndromes. Overall results failed to demonstrate protection but sub-group analysis revealed significant risk reductions with the highest cariporide dose (120 mg t.i.d.) especially in high risk patients undergoing coronary artery bypass surgery. This suggests that insufficient dosage may have accounted, at least in part, for the less than optimum results. Another NHE1 inhibitor, eniporide, is currently in Phase II clinical trial (ESCAMI) in patients with acute myocardial infarction (MI) who are given angioplasty or thrombolysis. Although the study has not been completed interim findings appear positive. Both drugs were well-tolerated and produced no excess side effects compared with placebo. Further studies are needed to confirm the efficacy of NHE1 inhibitors for the treatment of coronary heart disease, even so initial results are encouraging.  相似文献   

17.
Myocardial protection through pharmacological approaches represents a large therapeutic challenge and is an important therapeutic strategy in patients with coronary artery disease, particularly after myocardial infarction. Extensive animal experiments have repeatedly demonstrated the efficacy of sodium-hydrogen exchange (NHE) inhibition as a potent cardioprotective approach. The heart possesses primarily the NHE1 isoform which has led to the development of NHE1 specific inhibitors for cardiovascular therapeutics. Cariporide (HOE 642) is the first of such agents to have been developed and subjected to clinical trial. Preclinical studies with cariporide revealed excellent protection against necrosis, apoptosis, arrhythmias and mechanical dysfunction in hearts subjected to ischaemia and reperfusion. Cariporide has recently been evaluated in a large dose-finding Phase II/Phase III clinical trial (GUARDIAN) to assess its efficacy in patients with acute coronary syndromes. Overall results failed to demonstrate protection but sub-group analysis revealed significant risk reductions with the highest cariporide dose (120 mg t.i.d.) especially in high risk patients undergoing coronary artery bypass surgery. This suggests that insufficient dosage may have accounted, at least in part, for the less than optimum results. Another NHE1 inhibitor, eniporide, is currently in Phase II clinical trial (ESCAMI) in patients with acute myocardial infarction (MI) who are given angioplasty or thrombolysis. Although the study has not been completed interim findings appear positive. Both drugs were well-tolerated and produced no excess side effects compared with placebo. Further studies are needed to confirm the efficacy of NHE1 inhibitors for the treatment of coronary heart disease, even so initial results are encouraging.  相似文献   

18.
Sodium-hydrogen exchanger isoform 1 (NHE1) is a ubiquitously expressed transmembrane ion channel responsible for intracellular pH regulation. During myocardial ischemia, low pH activates NHE1 and causes increased intracellular calcium levels and aberrant cellular processes, leading to myocardial stunning, arrhythmias, and ultimately cell damage and death. The role of NHE1 in cardiac injury has prompted interest in the development of NHE1 inhibitors for the treatment of heart failure. This report outlines our efforts to identify a compound suitable for once daily, oral administration with low drug-drug interaction potential starting from NHE1 inhibitor sabiporide. Substitution of a piperidine for the piperazine of sabiporide followed by replacement of the pyrrole moiety and subsequent optimization to improve potency and eliminate off-target activities resulted in the identification of N-[4-(1-acetyl-piperidin-4-yl)-3-trifluoromethyl-benzoyl]-guanidine (60). Pharmacological evaluation of 60 revealed a remarkable ability to prevent ischemic damage in an ex vivo model of ischemia reperfusion injury in isolated rat hearts.  相似文献   

19.
Despite considerable progress in therapy, the progressive augmentation of lifespan makes cardiac remodelling and its consequence, heart failure, a major cause of mortality and morbidity. Heart failure is consequently becoming a major goal in pharmacological research. New approaches include converting enzyme inhibitors, beta-blockers and anti-aldosterones and have demonstrated that cardiac remodelling is, at least partly, a reversible process. This review aims to establish a strategy for therapeutic research which is based on the recent advances on the molecular mechanisms of cardiac remodelling, and also to evaluate some of the new developments which are presently in progress, including new inotropic drugs, new receptors or signals blockers, nitric oxide donors, metalloproteinases and apoptotic inhibitors. Our view is clearly evolutionary and several of our conclusions may contradict current opinions, such as those which consider hypertrophy a detrimental process, hormones as a primary cause of cardiac remodelling or inotropic interventions as beneficial.  相似文献   

20.
1 We investigated the single vs the combined long-term inhibition of Na(+)-H(+) exchanger-1 (NHE-1) and ACE in rats with congestive heart failure induced by myocardial infarction (MI). 2 Rats with MI were randomized to receive either placebo, cariporide (3000 p.p.m. via chow), ramipril (1 mg kg(-1) day(-1) via drinking water) or their combination for 18 weeks starting on day 3 after surgery. 3 Cardiac morphology and function was assessed by echocardiography and by means of a 2.0 F conductance catheter to determine left ventricular (LV) pressure volume relationships. 4 MI for 18 weeks resulted in an increase in LV end-diastolic diameter (LVDed) in the placebo-treated group when compared to sham (placebo: 1.1+/-0.04 cm; sham: 0.86+/-0.01; P<0.05). Combined inhibition of NHE-1 and ACE, but not the monotherapies, significantly reduced LVDed (1.02+/-0.02 cm). 5 Preload recruitable stroke work (PRSW), dp/dt(max) (parameter of systolic function) and end-diastolic pressure volume relationship (EDPVR, diastolic function) were significantly impaired in placebo-treated MI group (PRSW: 39+/-7 mmHg; dp/dt(max): 5185+/-363 mmHg s(-1); EDPVR: 0.042+/-0.001 mmHg microl(-1); all P<0.05). Cariporide treatment significantly improved PRSW (64+/-7 mmHg), dp/dt(max) (8077+/-525 mmHg s(-1)) and EDPVR (0.026+/-0.014 mmHg microl(-1)), and reduced cardiac hypertrophy in rats with MI. Combined inhibition of NHE-1 and ACE had even a more pronounced effect on PRSW (72+/-5 mmHg) and EDPVR (0.026+/-0.014 mmHg microl(-1)), as well as cardiac hypertrophy that, however, did not reach statistical significance compared to cariporide treatment alone. 6 The NHE-1 inhibitor cariporide significantly improved LV remodeling and function in rats with congestive heart failure induced by MI. The effect of cariporide was comparable or tended to be stronger (e.g. systolic function) compared to ramipril. Combined treatment with cariporide and ramipril tended to be more effective on LV remodeling in rats with heart failure than the single treatments. Thus, inhibition of the NHE-1 may be a promising novel therapeutic approach for the treatment of congestive heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号